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Abstract—This paper proposes a distributed estimation and
control strategy for cooperative monitoring by swarms of
unmanned aerial vehicles (UAVs) modeled as constant-speed
unicycles. The geometric moments, encoding an abstraction of
the swarm, are controlled via a nonlinear gradient descent
to match those of a discrete set of particles describing the
occurrence of some event of interest to be monitored. Because
of its limited sensing capabilities, each agent can measure
the position of only a subset of the overall particles, from
which it locally estimates the desired moments of the swarm
running a proportional-integral (PI) average consensus estimator.
The closed-loop stability of the system arising from the com-
bination of the gradient-descent controllers and the consensus
estimators is studied and simulation results are provided to
illustrate the proposed theory.

I. INTRODUCTION
Recent years have witnessed an acceleration in research

efforts aimed at designing environmental monitoring algo-
rithms for mobile sensor networks [1], [2]. In fact, as known,
mobile sensors offer distinctive advantages over static ones,
in terms of quality of sensing and estimation, area coverage,
adaptability to changing conditions and robustness against
failures. In this paper we are interested in monitoring a set
of moving particles describing the occurrence of some event
of interest in a 2-D environment, with a team of unmanned
aerial vehicles (UAVs) flying at fixed altitude. With the term
particle, we refer to any discrete entity belonging to a given
ensemble, whose position in the plane has to be tracked
over time: examples include animals in a group, people in a
crowd, smoke particles in a plume, multiple wildfire spots,
droplets in an oil spill. The “shape” of the UAV swarm
and of the ensemble of particles is synthetically described
in terms of their geometric moments. Because of its limited
sensing capabilities, each agent, modeled as a unicycle with
constant positive forward velocity, can only measure the
position of a subset of the overall particles. Our goal is to
design a distributed estimation and control strategy to match
the moments of the swarm with those of the particles: this
in turn guarantees the UAVs to properly cover the region
of interest.

A. Literature review
Two literature domains are relevant to the present work.

In the first one, the goal is to design distributed algorithms
for multiple agents to detect and track the boundary of a
region of interest. In [3], a “snake algorithm” is adopted to
identify and track the boundary of harmful algae blooms
using a team of agents equipped with chemical sensors.
In [4], a random coverage controller is used to detect and
surround oil spills, and in [5] an algorithm is described to
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allow multiple UAVs to cooperatively monitor and track
the propagation of large forest fires. Recently, in [6], a
method has been proposed to optimally approximate an
environmental boundary with a polygon. The mobile agents
rely only on sensed local information to position some
interpolation points and define the approximating polygon
whose vertices are uniformly distributed along the boundary
of the target region.
In the second literature domain of interest for this work,

the goal is to synthesize decentralized simultaneous esti-
mation and control strategies for multiple agents. In [7], a
general framework to design collective behaviors for groups
of mobile robots has been proposed: each agent communi-
cates with its neighbors and estimates the global performance
properties of the robotic network needed to make a local con-
trol decision. In [8], a decentralized strategy for modeling of
environmental parameters is presented and a gradient control
is used to move the agents in order to maximize their sensory
information relative to the current uncertainty in the model.
A distributed learning and cooperative control strategy has
been proposed in [9]. Each agent recursively estimates an
unknown field of interest from noisy measurements and
moves towards its peaks using the gradient of its estimated
field, while maintaining network-wide connectivity. Other
distributed approaches to controlled sampling and modeling
of deterministic or stochastic scalar fields, include [10]–[12].
In [10], the agents move in a fixed platoon along an estimated
gradient, while in [11] they are controlled to track a level
set of the field. Recently, in [12], a procedure to adapt local
interpolations to represent spatial fields as they are measured
by a mobile sensor network, has been presented.

B. Original contributions and organization
This paper proposes a distributed estimation and control

strategy for cooperative monitoring by swarms of UAVs.
Differently from the first literature domain above, our focus
is not on the boundary of the region spanned by the particles
(that may be faint or fuzzy in real settings, and thus hard to
detect and track), but on controlling the (first- and second-
order) geometric moments encoding an abstraction of the
swarm [13], [14], to match the moments of the ensemble
of particles observed by the UAVs. Although full aircraft
dynamics are quite complex, the essential components for
level cruise flight can be captured by the model of a planar
constant-speed unicycle. This model is challenging to control
because the vehicle cannot stop (nor move directly sideways),
and so it is not small-time locally controllable [15]. A new
nonlinear gradient-descent angular control is proposed in this
paper to steer our team of unicycle-type vehicles.
Differently from [16], [17] and related works in the

coverage literature, in this paper we assume that the agents
have not access to a distribution density function, providing
an a priori global measure of information or probability that
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some event takes place over the region of interest. On the
contrary, similarly to [18] where sensor measurements are
used to learn the distribution of sensory information in the
environment, each agent is equipped with a limited-footprint
sensor (e.g., a camera pointing downward), which allows it
to detect only a fraction of the overall particles. We will
abstract from any actual sensor model, and assume that each
agent processes only the particles lying within the Voronoi
cell that it generates (and ignores those possibly located
outside): from them each UAV locally estimates the desired
moments of the swarm running a proportional-integral (PI)
average consensus estimator [8]. As known, if the inputs of
the PI estimators as well as the topology of the connected
network are slowly varying (this is true in our setting
since the dynamics of the environment is assumed to be
significantly slower than that of the swarm, c.f. Th. 2), small
estimation errors are achieved. The closed-loop stability of
the system arising from the combination of the gradient-
descent angular controllers and the PI estimators has been
studied and simulation experiments have been performed to
illustrate the proposed theory.
The rest of the paper is organized as follows. In Sect. II

we introduce the gradient-based control, assuming that the
desired moments of the swarm are a priori known to each
agent. In Sect. III and Sect. IV we deal with the distributed
estimation problem and the closed-loop stability analysis,
respectively. Finally, in Sect. V simulation results are pre-
sented and in Sect. VI the main contributions of the paper
are summarized and possible avenues for future research
are highlighted.

II. CONTROL DESIGN

Consider a swarm of n unmanned aerial vehicles (here-
after, simply agents or vehicles) flying at fixed altitude, with
the following unicycle model,⎧⎪⎨

⎪⎩
ṗix(t) = vi(t) cos(θi(t)),

ṗiy(t) = vi(t) sin(θi(t)), i ∈ {1, . . . , n},
θ̇i(t) = ωi(t),

(1)

where pi(t) = [pix(t), piy(t)]
T ∈ IR2 denotes the position

of agent i at time t in the plane of motion, θi(t) ∈ [−π, π)
its heading and [vi(t), ωi(t)]

T ∈ [vmin,+∞)× IR, vmin > 0,
its forward and angular velocities. Let p = [pT

1 , . . . ,p
T
n ]

T ∈
(IR2)n. The configuration of the agents is described by using
a swarm moment function f : (IR2)n → IR� that we will
assume to be of the form:

f(p) =
1

n

n∑
i=1

φ(pi),

where the moment-generating function φ : IR2 → IR� is
defined as,

φ(pi) � [ pix, piy, p2ix, p2iy , pixpiy, p3ix, p3iy, . . . ]
T. (2)

Note that � = 1
2 (r + 1)(r + 2) − 1 where r ∈ Z>0 is the

maximum order of the moments appearing in (2), and that
if � moment constraints are specified on n agents then there
is in general a (2n− �)-dimensional algebraic set of swarm
configurations that satisfy them. The primary objective of the
agents is to move so that their final arrangement minimizes
the error f(p) − f�, where the goal vector f� ∈ im(f)
defines the desired shape of the formation. For the sake

.
[cos θi, sin θi]

T

−∇pi Π(p)

Agent i

pi

Fig. 1. The angular control of agent i forces its heading direction
[cos θi, sin θi]T to align with the antigradient of Π(p).

of simplicity, thorough this section we will assume that
f� is constant and a priori known to each agent: we will
relax this hypothesis in Sect. III, where each agent indepen-
dently estimates the goal vector from the environmental data.
Our control strategy relies on the gradient of the potential
function Π : (IR2)n → IR≥0,

Π(p) = (f(p)− f�)T Γ (f(p) − f�), (3)

where Γ ∈ IR�×� is an assigned symmetric positive-definite
gain matrix. Let Crit(Π) � {p ∈ (IR2)n : ∇p Π(p) = 0}
denote the set of critical points of (3) and classify such points
as good critical points where f(p) = f� (these are the global
minima of Π) and bad critical pointswhere f(p) �= f�. Given
a closed set of swarm configurations P ⊂ (IR2)n and a
goal vector f� ∈ f(P), let G(f�,P) be the convex cone of
all symmetric positive-definite matrices Γ such that no bad
critical points of Π in P are local minima of Π. To reduce
the risk of the swarm “getting stuck” at bad critical points
of Π, we would ideally choose a gain matrix Γ belonging
to G(f�,P) for a large set P . Actually, for r = 2 one can
always compute members of G(f�,P) when P contains all
possible configurations of at least 3 agents. This idea is made
precise in the following theorem, readapted from [7, Th. 2]:
Theorem 1: Let P = (IR2)n with n ≥ 3 and f� ∈ f(P).

Then there exists a symmetric positive-definite matrix Γ such
that for every bad critical point p ∈ P of Π, the Hessian
matrix H(Π(p)) has at least one strictly negative eigenvalue
(hence, p cannot be a local minimum of Π). In particular,
Γ ∈ G(f�,P). �
In the rest of this paper, we will then restrict to the case

of r = 2, (i.e., � = 5), i.e., only the first- and second-order
moment statistics will be considered. To provide concise
statements in the sequel, we introduce the function proj(·),
which maps the angle α ∈ IR into the interval [−π, π),

proj(α) � ((α + π)mod 2π) − π, (4)

where “mod” stands for the modulo operator which returns
the remainder after division. The symbolA[i, j] will be used
to denote the (i, j)-th component of a matrix A.
The geometric intuition behind our control strategy

(see equ. (5) below) is simple: in fact, the forward velocity of
the agents is set to the same positive constant value and the
angular velocities are chosen so that the heading direction
of each vehicle is forced to align with the antigradient of
the potential function Π(p) (see Fig. 1). Let n ≥ 3 and
choose Γ and P as in Th. 1. Let us define the vector function
gi : IR≥0 → IR2, i ∈ {1, . . . , n},
gi(t) � −∇pi Π(p(t)) = −(Jφ(pi(t)))

T Γ (f(p(t)) − f�),
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where Jφ(·) ∈ IR�×2 is the Jacobian matrix of φ(·) and set
αi(t) � proj(arg(gi(t))−θi(t)) where arg : IR2 → [−π, π).
Consider the following control input for agent i,

vi(t) = v, ωi(t) = ραi(t), (5)

where v ≥ vmin is a positive constant and ρ is a positive gain.
We observe the following two properties, for almost every

initial configuration of the agents:
a) For any ε > 0, there exists a sufficiently large gain

ρ such that the error on the desired swarm configura-
tion is uniformly ultimately bounded with an ultimate
bound ε, i.e., for every ζ > 0 there is a positive constant
t0 = t0(ζ) such that:

Π(p(0)) < ζ ⇒ Π(p(t)) ≤ ε, ∀ t ≥ t0.

b) Let dθij(t) � proj(θi(t) − θj(t)) and dωij(t) � ωi(t) −
ωj(t), i, j ∈ {1, . . . , n}, i �= j, be the functions mea-
suring the disagreement between the heading directions
and angular velocities of agents i and j at time t,
respectively. Then, for any εθ, εω > 0 there exists a
sufficiently large constant μ ∈ IR>0 satisfying,

Γ[1, 1],Γ[2, 2] ≥ μ
∣∣Γ[h, l]∣∣, h, l ∈ {1, . . . , �},

(h, l) �= {(1, 1), (2, 2)},
such that |dθij(t)|, |dωij(t)| are uniformly ultimately
bounded with ultimate bounds εθ, εω, respectively.

Point b) states that dθij(t) becomes bounded as t → +∞:
this behavior is typically referred to as phase locking in the
literature of coupled oscillators [19].
Remark 1: Note that the angular control in (5) presents

discontinuities: in fact, the function proj(·) in (4) is discon-
tinuous at (2m + 1)π, m ∈ Z, and arg(·) is not defined
at the origin. It is possible to modify the control in order to
make it smooth: however, in order to simplify our subsequent
analysis we will not pursue this direction herein. �
Remark 2: To compute the angular control in (5), agent i

needs to know the position of all the other agents (i.e., the
vector p) at each time instant. This means that control (5) is
not implementable in a distributed fashion. We will overcome
this issue in Sect. III where we will introduce distributed
estimators of the swarm moment function f(p) (as well
as of the goal vector, using the environmental data) for
each agent. �
As an illustration, Fig. 2 shows the trajectory of

n = 4 agents implementing control (5) with v = 1 m/s,
ρ = 0.5, f� = [10, 5, 800, 100, 10]T and Γ =
diag(1000, 1000, 0.1, 0.1, 0.1). The red dashed ellipse graph-
ically represents the initial moments of swarm (i.e., the
uniform-density ellipse has the same mass and the same first-
and second-order moments as the swarm at the initial time),
the red solid ellipse the moments of the swarm at the final
time instant, and the black ellipse the desired moments of
the swarm. Note that differently from [7], where double-
integrator agents are considered, the red solid and black
ellipses are not perfectly superimposed at steady state and
the vehicles hover about four points corresponding to a
minimum of Π(p). In other words, the swarm converges to
a configuration that satisfies the desired moment statistics
up to an inherent error, consequence of the inability of the
agents to stop moving forward. Actually, with a control of
the form (5), spinning around the equilibrium turns out to
be the “best strategy” for the vehicles to meet the goal.
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Fig. 2. Example: Trajectory of n = 4 agents using control (5). The red
dashed ellipse graphically represents the initial moments of the swarm,
the red solid ellipse the moments of the swarm at the final time instant
(t = 80 sec.), and the black ellipse the desired moments of the swarm.

III. DISTRIBUTED ESTIMATION

In this section we present a distributed algorithm to locally
estimate the swarm moment function f(p) and the vector of
desired geometric moments using the environmental data.
The following notion of Voronoi partition [16, Sect. IIB]

is essential for the forthcoming developments.
Definition 1 (Voronoi partition): Given a set Q ⊂ IR2

and n distinct points {p1, . . . , pn} inQ, the Voronoi partition
of Q generated by {p1, . . . , pn} is the collection of sets{V1, . . . , Vn} defined by, for each i ∈ {1, . . . , n},

Vi �
{
z ∈ Q | ‖z − pi‖ ≤ ‖z − pj‖, ∀ j �= i

}
,

where ‖ · ‖ denotes the standard Euclidean norm. We will
refer to Vi as the Voronoi cell of pi. �
Given a set Q ⊂ IR2, let qk = [qkx, qky ]

T , k ∈
{1, . . . , N} be the k-th of N particles describing the oc-
currence of some event of interest in Q and evolving over
time according to,

q̇ = Υ(q, t), (6)

where q = [qT
1 , . . . ,q

T
N ]T and Υ = [ΥT

1 , . . . ,Υ
T
N ]T :

QN × IR≥0 → (IR2)N is a vector field unknown to the
agents. Since each vehicle is assumed to be equipped with a
limited-footprint sensor (e.g., a camera pointing downward),
it will be able to measure the x-, y-coordinates of only a
subset of the N particles. For the sake of simplicity, in this
paper we will abstract from any actual sensor model and
assume that agent i processes only the particles lying within
the Voronoi cell Vi that it generates, while ignoring those
possibly located outside (see Fig. 3): in other words, agent
i is only responsible for the particles over its “dominance
region” Vi. Note that since the sides Vi ∩ Vj , i �= j, of
the Voronoi cells are of measure zero, each particle will
be assigned exactly to one agent, thus avoiding possible
double countings. We will denote by Ni, 0 < Ni < N , the
number of particles lying within Vi (note that by construction∑n

i=1 Ni = N ), and we will assume that agent i computes
the following vector from the Ni particles:

hi =
∑

qk: qk ∈ Vi

φ(qk), i ∈ {1, . . . , n}.

Note that the Voronoi cells V1, . . . , Vn can be locally
computed and maintained by the agents using the distributed
asynchronous algorithms presented in [16, Sect. IVB].
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Q

Ni
Vi

Agent i

Fig. 3. Voronoi partition of the set Q generated by six agents (black
triangles). Agent i processes only Ni of the overall N particles (gray dots):
these are the particles lying within the Voronoi cell Vi of pi (purple).

We recall here that our ultimate goal is to match the
geometric moments of the swarm with those of the ensemble
of particles: this in turn guarantees a suitable coverage of
the region spanned by the particles. In order to obtain local
estimates of the function f(p), necessary for a distributed
implementation of control (5) (recall Remark 2) and of the
environmental goal vector,

f�env � 1

N

N∑
k=1

φ(qk) =
1

N

n∑
i=1

hi,

obtained from the overall particles and thus unknown
to the vehicles, we will suppose that agent i runs
the following proportional-integral (PI) average consensus
estimator [7], [8]:

ξ̇i = − γ ξi −
∑
j �=i

σ(pi,pj) (ξi − ξj)

+
∑
j �=i

τ(pi,pj) (ηi − ηj) + γ [φ(pi)
T , hTi , Ni]

T , (7)

η̇i = −
∑
j �=i

τ(pi,pj) (ξi − ξj),

χi = ξi[1 : �]− ξi[�+ 1 : 2�]

ξi[2�+ 1]
, (8)

where [φ(pi)
T , hTi , Ni]

T ∈ IR2� × Z>0, i ∈ {1, . . . , n},
is agent i’s vector input, ξi is agent i’s estimate of the
average of all the agents’ input, ηi is the internal estimator
state, γ > 0 is a global forgetting factor governing the rate
at which new information replaces old information in the
dynamic averaging process, and σ, τ : IR2 × IR2 → IR≥0

are C1 bounded symmetric gain functions (i.e., σ(pi, pj) =
σ(pj , pi) and τ(pi, pj) = τ(pj , pi), ∀ pi, pj with i �= j),
such that σ(pi,pj) and τ(pi,pj) are different from zero
only if agents i and j can communicate with each other.
We also suppose that τ(·, ·) has bounded first-order partial
derivatives. Vector χi ∈ IR� is the output of the PI estimator
and ξi[1 : �] denotes the vector consisting of the first �
components of ξi. Note that the last entry of the input vector
of the PI estimator is necessary for a correct estimation
of f�env: in fact the overall number of particles N is unknown
to the agents (in fact, agent i has only knowledge of the
number Ni of particles that it processes).

We henceforth assume that each agent is able to measure
its pose [pT

i , θi]
T , and that agents i and j can communicate

with each other if and only if ‖pi − pj‖ ≤ R, where R > 0
represents a fixed communication radius (agent j is then said
a neighbor of agent i). Each configuration p ∈ (IR2)n then
defines the graph of an underlying communication network
and we will use C ⊂ (IR2)n to denote the set of all such
configurations for which this graph is connected. As the
agents move with time, the topology of the network can
change, but we will assume that p(t) ∈ C, i.e., that the
network remains connected in forward time. Each agent
transmits its estimate ξi and its internal estimator state ηi to
its neighbors in the network. Each ξi will approximately
track the true average of the inputs [φ(pi)

T , hTi , Ni]
T ,

i∈{1, . . . , n}. If the input and the topology of the
(connected) network were ideally constant, each ξi
would exactly converge to 1

n

∑n
i=1 [φ(pi)

T , hTi , Ni]
T =

[f(p)T , 1
n

∑N
k=1 φ(qk)

T , N/n]T and the output χi of the
PI estimator would converge exactly to f(p)− f�env. However,
it has been shown in [8, Th. 3] that the network of n PI
estimators (7) is input-to-state stable: hence, even if the
inputs and the topology of the network are arbitrary fast
time-varying, a bound on the norm of the input implies a
bound on the norm of the estimation error.
We define the proportional Laplacian LP (p) ∈ IRn×n

to be the symmetric matrix whose off-diagonal elements
in row i, column j are equal to −σ(pi,pj) and whose
diagonal elements are such that LP (p)1 = 0n, where 1
denotes the vector of n ones and 0n the vector of n zeros.
The integral Laplacian LI(p) ∈ IRn×n is defined in an
analogous way, but using function τ(·, ·) instead of σ(·, ·).
Let Orth(1) denote the collection of n× (n− 1) matrices S
such that STS = In−1, where In−1 is the (n− 1)× (n− 1)
identity matrix, and ST1 = 0n−1. Then, by orthogonal
decomposition,

In = SST +
1

n
11T , (9)

and thus ‖AS‖F ≤ ‖A‖F for any n-column real matrix
A, where ‖ · ‖F denotes the Frobenius norm. Fixing some
S ∈ Orth(1), we finally define the reduced proportional and
integral Laplacians to be the (n − 1) × (n − 1) symmetric
matrices L�

P (p) � STL�
P (p)S and L�

I(p) � STL�
I(p)S,

respectively. We finally assume that there exist constants

 > −γ and ϑ > 0, such that,


 In−1 ≤ L�
P (p) ≤ 
̄ In−1, ϑ In−1 ≤ L�

I(p) ≤ ϑ̄ In−1, (10)

along trajectories in forward time (this implies a connected
network p(t) ∈ C). The constants 
̄, ϑ̄ > 0 represent upper
bounds on the reduced Laplacians, which exist since the
functions σ(·, ·) and τ(·, ·) are bounded.

IV. CLOSED-LOOP STABILITY ANALYSIS

In this section we study the closed-loop behavior of the
system arising from the combination of the gradient-descent
controllers (5) and the PI estimators (7)-(8). Following [7],
we will assume that the maximum diameter of a connected
swarm of n agents,

d(n) � sup
p∈C∩ (IR2)n

max
i,j ∈{1,...,n}

‖pi − pj‖, (11)

is finite for every n. It follows from (11) that there exists
a class-K function a and a C1 function � : IR2 → IR≥0
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such that

‖[φ(pi)
T,hT

i , Ni]
T− [φ(pj)

T,hT
j , Nj ]

T ‖2≤ a(d(n))�(pi),
(12)

for every p ∈ C and every i, j ∈ {1, . . . , n}. Let us also
assume that the following inequality holds,

λmax(blkdiag(Γ,B)) < 2 δ1, (13)

where λmax(blkdiag(Γ,B)) denotes the largest eigenvalue of
the block diagonal matrix blkdiag(Γ,B), and B is a certain
(�+ 1)× (�+ 1) invertible symmetric matrix (see the proof
of Th. 2 for more details). δ1 > 0 is a scalar constant
depending on n, 
, 
̄, ϑ, ϑ̄, γ and the bounds on the partial
derivatives of τ(·, ·) (the exact dependencies are given in
the proof). Note that inequality (13) represents a small-
gain condition: in fact, for given estimator gains which
determine δ1, the control gain Γ (as well as the matrix B)
should be sufficiently small. Given a closed set of swarm
configurations P ⊂ (IR2)n and f�env(t) ∈ f(P), ∀ t ≥ 0, let⋂

t≥0 G(f�env(t),P) denote the convex cone of all symmetric
positive-definite matrices Γ such that no bad critical points
of the potential function,

Πenv(p) � (f(p) − f�env)
T Γ (f(p) − f�env),

in P are local minima of Πenv.
Theorem 2 (Closed-loop stability): Let us suppose

there exists a closed set P ⊂ (IR2)n such that
Γ ∈ ⋂

t≥0 G(f�env(t),P) and p(t) ∈ P , ∀ t ≥ 0.
Suppose that n ≥ 3 is fixed, that (10) holds for some

 > −γ and ϑ > 0 (with γ > 0), and that (13) is satisfied.
Let the control input of agent i be of the form (5), with
αi(t) � proj(arg(gi(t)) − θi(t)) and

gi(t) = −(Jφ(pi(t)))
T Γ χi(t). (14)

Let us finally suppose that the evolution of the N particles
is governed by (6) and that ‖Υk(q, t)‖, ∀ k ∈ {1, . . . , N},
is sufficiently smaller than v. Then, for almost every initial
configuration of the agents, each trajectory of the system
(1), (5), (7)-(8), (14) is bounded in forward time. Moreover,
for any ε > 0, there exists a sufficiently large gain ρ
on the angular control such that the error on the desired
swarm configuration is uniformly ultimately bounded with
an ultimate bound ε.

Proof: The proof follows the same lines as that of [7,
Th. 4]. Let ei �

[
f(p)T , 1

n

∑N
k=1 φ(qk)

T , N/n
]T − ξi,

i ∈ {1, . . . , n} be the estimation error and let ζi �
d
dt [φ(pi)

T , hTi , Ni ]
T . Let us choose V = nΠenv(p) as

storage function: its time derivative along the system’s tra-
jectories is given by:

V̇ = 2 (f(p)− f�env)
T Γ
(
v

n∑
i=1

Jφ(pi) [ cos θi, sin θi ]
T

− n

N

N∑
k=1

Jφ(qk)Υk(q, t)
)
= −2 v

n∑
i=1

‖gi‖ cosαi

+2 v
n∑

i=1

[ cos θi, sin θi ] Jφ(pi)
T Γ εi

−2n

N
(f(p) − f�env)

T Γ

N∑
k=1

Jφ(qk)Υk(q, t), (15)

where εi � (f(p) − f�env)− χi (the output estimation error)

and αi � proj(arg(gi)−θi) with gi defined in (14). We will
use equ. (15) later in the proof. Let us now focus on the
estimation part and let us introduce the (2�+1)×n matrices
Ξ � [ξ1, ξ2, . . . , ξn], W � [η1, η2, . . . , ηn],

U �

⎡
⎣φ(p1) φ(p2) . . . φ(pn)

h1 h2 . . . hn

N1 N2 . . . Nn

⎤
⎦ .

We can then write the collection of PI estimators (7)-(8) as:

Ξ̇ =−Ξ(γ I+ LP (p)) +WLI(p) + γU, Ẇ=−ΞLI(p).
(16)

Let us now introduce the aggregate estimation error E =

[e1, e2, . . . , en] � U 11T

n −Ξ. We thus obtain,

Ė1 = − γE1+ U̇1, Ẇ1 = 0. (17)

Note that by definition U̇ = [ζ1, ζ2, . . . , ζn]. From (9), we
have LP = LPSS

T and LI = LISS
T , which means that

we can post-multiply both sides of (16) by S, to obtain,

Ξ̇ S = −ΞS(γ I+ L�
P (p)) +WSL�

I(p) + γUS,

Ẇ S = −ΞSL�
I(p).

(18)

Using the change of variables H = WS+γUS [L�
I(p)]

−1,
Ω = [ΞS H], equ. (18) becomes

Ω̇ = ΩFT +NGT , (19)

where F =
[−γ I−L�

P (p) L�
I (p)

−L�
I (p) 0

]
, G = [0 I ]

T , N =

γ U̇ S [L�
I(p)]

−1 + γUS d
dt [L

�
I(p)]

−1. We will write N as,

N = γ

n∑
i=0

Ni, (20)

where N0 = U̇ S [L�
I(p)]

−1,

Ni = −vUS [L�
I(p)]

−1
( ∂ L�

I(p)

∂ pix
[L�

I(p)]
−1 cos θi

+
∂ L�

I(p)

∂ piy
[L�

I(p)]
−1 sin θi

)
, i ∈ {1, . . . , n}.

We now derive bounds on these matricesNi. First, using the
second condition in (10) we obtain,

N0 NT
0 = U̇ S [L�

I(p)]
−2 ST U̇T ≤ 1

ϑ2 U̇ SST U̇T . (21)

Next, using (12) and the assumption that p(t) ∈ C, ∀ t ≥ 0,
we get,

‖US‖2F = ‖(U− [φ(pi)
T , hT

i , Ni]
T 1T )S‖2F

≤ ‖U− [φ(pi)
T ,hT

i , Ni]
T1T ‖2F ≤

∑
j �=i

∥∥[φ(pi)
T,hT

i , Ni

]T
−[φ(pj)

T , hT
j , Nj

]T∥∥2 ≤ (n− 1) a(d(n))�(pi).

It follows from the second condition in (10) and the fact that
τ has bounded partial derivatives, that there exists a constant
κ > 0 such that ‖Ni‖2F ≤ κ v2 �(pi), i ∈ {1, 2, . . . , n},
where the constant κ depends on n, ϑ, and the bounds on
the partial derivatives of τ . Let λ ∈ (0, 1) be such that

λ ≤ ϑ(γ + 
)

(γ + 
̄2) + 2ϑϑ̄
. (22)

Then the positive-definite matrices P =
[

I −λ I
−λ I I

]
, Q =
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[
(γ+	) I 0

0 λϑ I

]
, satisfy (1− λ)I ≤ P ≤ (1 + λ)I and

PF+ FTP+Q

=

[−2L�
P (p) + (
− γ)I+ 2λL�

I(p) λ(γ I+ L�
P (p))

λ(γI+ L�
P (p)) λ(−2L�

I(p) + ϑI)

]

≤ −λ

[
( 1λ(γ + 
)− 2ϑ̄)I −γI− L�

P (p)

−γI− L�
P (p) ϑI

]
︸ ︷︷ ︸

R(p)

≤ 0,

because (22) implies that R(p) ≥ 0. Let κ > 0 be such
that κ < min{ γ+	

λ , λϑ}. Then we have PGGTP = P −[
(1−λ2)I 0

0 0

]
and

Q− κ

1+λPGGTP=

[
(γ + 
+ κ(1 − λ))I 0

0 λϑ I

]
− κ

1+λP

≥ min{γ + 
+ κ(1 − λ), λϑ}I− κI = α I,

where α = min{γ + 
− λκ, λϑ− κ}. It now follows that:
PF+ FTP+ κ

1+λ PGGTP ≤ −α I. (23)

Let us introduce the matrix Ψ = ΩPΩT + βE11T ET +
W 11T WT where β > 0 is a constant parameter. Defining
ς = γ2(n+1)(λ+1)

κ
, we use (9), (17), (19), (20), (21) and (23)

to obtain,

Ψ̇ = Ω[PF+ FTP]ΩT + γ

n∑
i=0

[NiG
TPΩT +ΩPGNT

i ]

− 2βγE11T ET + β U̇11T ET + βE11T U̇T

≤ Ω
[
PFT + FTP+ κ

1+λ PGGTP
]
ΩT − βγ E11TET

+ ς

n∑
i=0

NiN
T
i +

β

γ
U̇11T U̇T ≤ −αΩΩT − βγE11TET

+ max
{nβ

γ
,

ς

ϑ2

}
U̇ U̇T + ς

n∑
i=1

NiN
T
i .

Because ES = −ΞS we also have ΩΩT = ΞSSTΞT +
HHT = ESSTET + HHT and therefore Ψ̇ ≤
−ν1 EET − αHHT + ν2 U̇ U̇T + ς

∑n
i=1 NiN

T
i where

ν1 = min{α, n β γ} and ν2 = max{nβ
γ , ς

ϑ2 }. Defining the
storage function M = trace(Ψ), we see that

Ṁ ≤ −α ‖H‖2F +
n∑

i=1

[−ν1‖ei‖2 + ν2‖ζi‖2 + ς κ v2�(pi)].

(24)
With reference to equ. (15), note that
2 v
∑n

i=1 [cos θi, sin θi]Jφ(pi)
T Γ εi = 2

∑n
i=1 ζi[1 :

�]T Γ εi ≤ 2
∑n

i=1 ζT
i blkdiag(Γ, B) ei, for a certain

(� + 1) × (� + 1) invertible symmetric matrix B.
Let now ℵ be a positive constant such that the inequality
2 ζT

i blkdiag(Γ, B) ei ≤ ℵ eTi blkdiag(Γ
2,B2) ei − ‖ζi‖2

is satisfied. We can then bound (15) from above as,

V̇ ≤ −2 v

n∑
i=1

‖gi‖ cosαi +

n∑
i=1

[ℵ eTi blkdiag(Γ
2,B2) ei

−‖ζi‖2]−
2n

N
(f(p)− f�env)

T Γ
N∑

k=1

Jφ(qk)Υk(q, t). (25)

Assume that (13) holds with δ1 = 1
2ℵ
√

ν1
ν2
and choose ϕ > 0

so that
blkdiag(Γ,B) < ϕν1

2 δ1
I < 2 δ1I. (26)

Upon taking inverses and then multiplying by blkdiag(Γ,B)
from the left and the right, we obtain,

1
2 δ1

blkdiag(Γ2,B2) < blkdiag(Γ,B). (27)

In particular, (26) and (27) imply the existence of a scalar
constant ν̄ > 0 such that (1 − ϕν2) I ≥ ν̄ I, ϕν1I −
ℵ blkdiag(Γ2,B2) ≥ ν̄ I. We then define the combined
storage function Z(p,E,W) = V+ϕM and use (24), (25),
and the two previous inequalities to obtain,

Ż ≤ −αϕ ‖H‖2F +

n∑
i=1

[−2 v ‖gi‖ cosαi − ν̄‖ei‖2−ν̄‖ζi‖2

+ ςϕκv2�(pi)]− 2n

N
(f(p) − f�env)

T Γ

N∑
k=1

Jφ(qk)Υk(q, t).

(28)
If we now use our assumption on the norm of the vector
field Υk(q, t), k ∈ {1, . . . , N} and observe that we have
some freedom in the choice of the C1 function�(pi) (recall
inequality (12)), from (28) we can conclude that for almost
every initial configuration of the agents, each trajectory
of the swarm system (1), (5), (14), (7)-(8) is bounded in
forward time. Furthermore, by acting on the angular control
gain ρ, it is possible to make the error on the desired swarm
configuration arbitrarily small.

V. SIMULATION RESULTS

Simulation experiments have been conducted to illustrate
the proposed theory. Fig. 4 shows the closed-loop behavior
of the gradient-descent controllers and PI estimators for a
swarm of n = 4 agents. The plots were generated using v =
1 m/s, ρ = 3 and Γ = diag(100, 100, 0.1, 0.1, 0.1). As far as
the PI estimators are concerned, we set γ = 7 and chose the
gain functions according to an equal weighting scheme with
a communication radius R = 27 m: σ(pi,pj) = 25 and
τ(pi,pj) = 0.8 when ‖pi − pj‖ ≤ R and σ(pi,pj) =
τ(pi,pj) = 0, otherwise. The PI estimators have been
initialized with ξi(0) = [0, 0, 80, 80, 0, 0, 0, 0, 0, 0, 50]T and
ηi(0) = 0, for all i. The particles qk, k ∈ {1, . . . , N},
N = 200, have been drawn from a bivariate normal dis-
tribution N (μ, Σ) with mean μ = [10, 5]T and variance
Σ =

[
70 1
1 70

]
, and lie within a rectangular domain Q

with vertices (−30, −22), (32, −22), (32, 30), (−30, 30).
Fig. 4(a) shows the cluster of particles and the corresponding
ellipse of desired geometric moments of the swarm. Fig. 4(b)
reports the initial random pose of the four agents and the
corresponding ellipse of geometric moments (red). The initial
Voronoi partition {V1, V2, V3, V4} of Q and the graph of
the underlying communication network are represented with
solid and dashed lines in the figure. Fig. 4(c) shows the
trajectory of the four agents and the ellipse of geometric
moments of the swarm at the final time instant: note that
the red and black ellipses are almost exactly superimposed
and the agents rotate around four points corresponding to
a minimum of Πenv(p). Finally, Fig. 4(d) shows the time
history of log10 Πenv(p(t)), and Figs. 4(e) and 4(f) the time
evolution of f�env(t) (dashed) and f(p(t)) (solid), respectively:
the symbols CMx, CMy and Ixx, Iyy, Ixy refer to the first-
and second-order moment statistics, respectively.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new estimation and con-
trol strategy for distributed monitoring tasks. The geometric
moments of a team of UAVs modeled as constant-speed
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Fig. 4. Simulation results: (a) Cluster of N = 200 particles and corresponding ellipse of desired geometric moments of the swarm (black); (b) Initial pose
of the four agents and corresponding ellipse of geometric moments (red). The initial Voronoi partition of Q and the graph of underlying communication
network are represented with solid and dashed lines; (c) Trajectory of the four agents and ellipse of geometric moments at the final time instant (red);
(d) Time history of log10 Πenv(p(t)); (e) First-order moments and (f) second-order moments of f

�
env(t) (dashed, “Particles”) and f(p(t)) (solid, “Swarm”).

unicycles are controlled via a nonlinear gradient descent to
match those of an ensemble of discrete particles describing
the occurrence of some event of interest to be monitored.
A PI average consensus estimator is run by each agent to
locally estimate the desired moments of the swarm from
the environmental data. The closed-loop stability of the
system has been studied and simulation results have been
presented to support the theoretical analysis. The extension
of our strategy to SE(3) and to vehicles with non-constant
positive forward velocity are subjects of ongoing research. In
future investigations, we also aim to use second-order central
moments in order to have a translation-invariant description
of the desired swarm configuration, and plan to test our
estimation and control algorithm on field data (e.g., on
recorded trajectories of marine oil spills).
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