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Abstract— In this paper, we study the distributed contain-
ment control problem for networked Lagrangian systems with
multiple stationary or dynamic leaders in the presence of para-
metric uncertainties under a directed graph that characterizes
the interaction among the leaders and the followers. When the
leaders are stationary, a distributed adaptive control algorithm
is proposed. We present a necessary and sufficient condition
on the directed graph such that all followers converge to the
stationary convex hull spanned by the stationary leaders asymp-
totically. As a byproduct, we show a necessary and sufficient
condition on leaderless consensus for networked Lagrangian
systems under a directed graph. When the leaders are dynamic,
two cases are considered: i) The leaders have constant vectors
of generalized coordinate derivatives; ii) The leaders have
varying vectors of generalized coordinate derivatives. In the
first case, we propose a distributed continuous estimator and a
distributed adaptive control algorithm. In the second case, we
propose a distributed adaptive control algorithm combined with
distributed sliding-mode estimators. In both cases, a necessary
and sufficient condition on the directed graph is presented such
that all followers converge to the dynamic convex hull spanned
by the dynamic leaders asymptotically.

I. INTRODUCTION

Recently, distributed coordination of multi-agent systems
has gained much attention due to its broad applications,
including consensus, flocking, and formation control. Many
existing works in distributed coordination focus on the
consensus problem when there is no leader. We refer the
readers to [1], [2] and references therein for more details.
In reality, the presence of a single leader or multiple leaders
can broaden the applications as a group objective can be
encapsulated by the leader or the leaders. In the case where
there exists one leader, [3] studies the coordinated tracking
problem with an active leader under the assumption that
the leader’s acceleration is known by all followers. In [4],
the distributed coordinated tracking and swarm tracking
problems are studied in the absence of velocity or accelera-
tion measurements. Distributed sliding-mode estimators are
proposed in [5] to solve the finite-time formation tracking
problem. In the case where there exist multiple leaders,
[6] proposes a distributed containment control algorithm for
agents with single-integrator dynamics such that a group of
followers is driven to the convex hull spanned by multiple
leaders under an undirected graph. The work of [6] is
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extended in [7] to the case of a directed and switching
interaction graph and in [8] to the case of double-integrator
dynamics. Note that the above results focus on linear systems
with single-integrator or double-integrator dynamics.

A class of mechanical systems including autonomous
vehicles, robotic manipulators, and walking robots are La-
grangian systems. Therefore, distributed coordination of net-
worked Lagrangian systems has many applications. Unfortu-
nately, the results for single- and double-integrator dynamics
cannot be directly applied to Lagrangian systems due to
their inherent nonlinearity. Recent work on coordination of
networked Lagrangian systems focuses on the leaderless case
[9], [10], the case with a single leader [11]–[13], and the case
with multiple leaders [14], [15]. In the leaderless case, a
controller based on potential functions is proposed in [9] for
networked Lagrangian systems to achieve leaderless flocking.
In [10], three distributed leaderless consensus algorithms are
proposed for networked Lagrangian systems under an undi-
rected graph. In the case of a single leader, output synchro-
nization of networked Lagrangian systems is studied in [11]
under a passivity-based framework. Both fixed and switching
graphs as well as communication delays are considered.
Based on nonlinear contraction analysis, [12] analyzes the
stability of cooperative tracking control laws for multiple
robotic manipulators. In [13], the distributed coordinated
tracking problem for networked Lagrangian systems is solved
in the presence of a dynamic leader, where the leader is a
neighbor of only a subset of the followers and the followers
have only local interaction. In the case of multiple leaders,
[14] studies the distributed attitude containment control prob-
lem for multiple rigid bodies with multiple stationary leaders
under an undirected graph. In [15], the distributed finite-
time containment control problem is studied for networked
Lagrangian systems under the assumption that the interaction
graph associated with the followers is undirected.

In this paper, we study the distributed containment control
problem for networked Lagrangian systems with multiple
stationary or dynamic leaders in the presence of parametric
uncertainties under a directed graph that characterizes the
interaction among the leaders and the followers. The objec-
tive is that a team of followers modeled by Euler-Lagrange
equations converge to the convex hull spanned by multiple
stationary or dynamic leaders. When the leaders are station-
ary, a distributed adaptive control algorithm is proposed. We
present a necessary and sufficient condition on the directed
graph such that all followers converge to the stationary
convex hull spanned by the stationary leaders asymptotically.
As a byproduct, we show a necessary and sufficient condition
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on leaderless consensus for networked Lagrangian systems
under a directed graph. When the leaders are dynamic, we
consider two cases: i) The leaders have constant vectors
of generalized coordinate derivatives; ii) The leaders have
varying vectors of generalized coordinate derivatives. In the
first case, we propose a distributed continuous estimator
and a distributed adaptive control algorithm. A necessary
and sufficient condition on the directed graph is presented
such that all followers converge to the dynamic convex hull
spanned by the dynamic leaders. In the second case, we pro-
pose a distributed adaptive control algorithm combined with
distributed sliding-mode estimators and present a necessary
and sufficient condition on the directed graph.

Comparison with existing work in the literature: In
contrast to the containment control algorithms for first- and
second-order linear dynamics [6]–[8], we study the nonlinear
Lagrangian systems. In contrast to the leaderless case or
the case with a single leader for networked Lagrangian
systems [9]–[13], we consider the containment control prob-
lem with multiple leaders. In contrast to the rigid body
attitude containment control problem in [14] and the finite-
time containment control problem for networked Lagrangian
systems in [15] , we deal with the containment control
problem for networked Lagrangian systems in the presence
of parametric uncertainties under a directed graph.

Notations: Let 1m and 0m denote, respectively, the m×1
column vector of all ones and all zeros. Let 0m×n denote
the m× n matrix with all zeros and Im denote the m×m
identity matrix. For a point x and a set M , let d(x,M)

4
=

infy∈M ‖x − y‖ denote the distance between x and M .
Throughout the paper, we use ‖ · ‖ to denote the Euclidean
norm.

II. BACKGROUND AND PROBLEM STATEMENT

Suppose that there exist m followers, labeled as agents 1
to m, and n−m (n > m) leaders labeled as agents m+ 1
to n, in a team. The m followers are represented by Euler-
Lagrange equations of the form

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, · · · ,m, (1)

where qi ∈ Rp is the vector of generalized coordinates,
Mi(qi) ∈ Rp×p is the symmetric positive-definite inertia
matrix, Ci(qi, q̇i)q̇i ∈ Rp is the vector of Coriolis and cen-
trifugal torques, gi(qi) is the vector of gravitational torque,
and τi ∈ Rp is the vector of control torque on the ith agent.

Throughout the subsequent analysis we assume that the
following assumptions hold [16], [17]:

(A1) Parametric Boundedness: For any i, there exist positive
constants km, km, kC , and kgi

such that 0 < kmIp ≤
Mi(qi) ≤ kmIp, ‖Ci(x, y)z‖ ≤ kC‖y‖ ‖z‖ for all
vectors x, y, z ∈ Rp, and ‖gi(qi)‖ ≤ kgi .

(A2) Skew symmetric property: Ṁi(qi)−2Ci(qi, q̇i) is skew
symmetric.

(A3) Linearity in the dynamic parameters: Mi(qi)x +
Ci(qi, q̇)y + gi(qi) = Yi(qi, x, y, z)Θi for all vectors
x, y ∈ Rp, where Yi(qi, x, y) is the regressor and Θi

is the constant parameter vector associated with the ith
agent.

We use a directed graph to describe the network topology
between the n agents. Let G 4= (V, E) be a directed graph
with the node set V 4

= {1, ..., n} and the edge set E ⊆
V × V . An edge (i, j) ∈ E denotes that agent j can obtain
information from agent i, but not vice versa. Here, node i is
the parent node while node j is the child node. A directed
path from node i to node j is a sequence of edges of the
form (i1, i2), (i2, i3), . . ., in a directed graph. A directed
tree is a directed graph, where every node has exactly one
parent except for one node, called the root, and the root has
directed paths to every other node. A directed spanning tree
of a directed graph is a direct tree that contains all nodes
of the directed graph. A directed graph has a spanning tree
if there exists a directed spanning tree as a subset of the
directed graph.

The adjacency matrix A = [aij ] ∈ Rn×n associated with
G is defined as aij > 0 if (j, i) ∈ E , and aij = 0 otherwise.
In this paper, self edges are not allowed, i.e., aii = 0. The
(nonsymmetric) Laplacian matrix LA = [lij ] ∈ Rn×n asso-
ciated with A and hence G is defined as lii =

∑n
j=1,j 6=i aij

and lij = −aij , i 6= j.
Lemma 2.1: [18] Let G be a directed graph of order n

and LA ∈ Rn×n be the associated (nonsymmetric) Laplacian
matrix. The following three statements are equivalent:

1) The matrix LA has a single zero eigenvalue and all other
eigenvalues have positive real parts;

2) G has a directed spanning tree;
3) Given a system ż = −LAz, where z = [z1, . . . , zn]T ,

consensus is reached exponentially. In particular, for all
i = 1, . . . , n and all zi(0), zi(t) →

∑n
i=1 pizi(0) as

t → ∞, where p = [p1, . . . , pn]T is a nonnegative left
eigenvector of LA associated with the zero eigenvalue
satisfying

∑n
i=1 pi = 1.

For the n agents with m (m < n) followers and n −m
leaders, we use VF

4
= {1, . . . ,m} and VL

4
= {m+ 1, . . . , n}

to denote, respectively, the follower set and the leader set.
Let qF and qL be the column stack vectors of, respectively,
qi, ∀i ∈ VF , and qi, ∀i ∈ VL. In this paper, we assume that
the directed graph G satisfies the following assumption.

Assumption 2.1: For each of the m followers, there exists
at least one leader that has a directed path to the follower.

Definition 2.2: [19] Let C be a set in a real vector space
S ⊆ Rn. The set C is convex if, for any x and y in C, the
point (1−t)x+ty ∈ C for any t ∈ [0, 1]. The convex hull for
a set of points X = {x1, . . . , xn} in S is the minimal convex
set containing all points in X . We use Co(X) to denote the
convex hull of X . In particular, Co(X) = {

∑n
i=1 αixi|xi ∈

X,αi ≥ 0,
∑n

i=1 αi = 1}.
Definition 2.3: [20] Let Zn ⊂ Rn×n denote the set of all

square matrices of dimension n with nonpositive off-diagonal
entries. A matrix A ∈ Rn×n is said to be a nonsingular M -
matrix if A ∈ Zn and all eigenvalues of A have positive real
parts.

Lemma 2.2: [20] A matrix A ∈ Zn is a nonsingular M -
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matrix if and only if A−1 exists and each entry of A−1 is
nonnegative.

Note that the (nonsymmetric) Laplacian matrix LA asso-
ciated with A hence G can be written as

LA =
[

L1 L2

0(n−m)×m 0(n−m)×(n−m)

]
, (2)

where L1 ∈ Rm×m and L2 ∈ Rm×(n−m).
Lemma 2.3: The matrix L1 defined as in (2) is a non-

singular M -matrix if and only if Assumption 2.1 holds.
In addition, if Assumption 2.1 holds, then each entry of
−L−1

1 L2 is nonnegative and all row sums of −L−1
1 L2 equal

to one.
Proof: See [21].

Lemma 2.4: [22] Consider the system

ẋ = f(t, x, u), (3)

where f(t, x, u) is continuously differentiable and globally
Lipschitz in (x, u), uniformly in t. If the unforced system
ẋ = f(t, x, 0) has a globally exponentially stable equilibrium
point at the origin x = 0, then the system (3) is input-to-state
stable.

III. DISTRIBUTED CONTAINMENT CONTROL WITH
MULTIPLE STATIONARY LEADERS

In this section, we consider the case where all leaders are
stationary, i.e., q̇i = 0,∀i ∈ VL. We will design a distributed
control algorithm for (1) such that all followers converge to
the convex hull spanned by the stationary leaders.

Before moving on, we introduce the following auxiliary
variables

q̇ri
4
=− α

∑
j∈VL

⋃
VF

aij(qi − qj), (4)

si
4
= q̇i − q̇ri = q̇i + α

∑
j∈VL

⋃
VF

aij(qi − qj), i ∈ VF ,

(5)

where α is a positive constant, and aij is the (i, j)th entry
of the adjacency matrix A associated with G. We propose
the following distributed adaptive control algorithm for (1)
in the presence of parametric uncertainties

τi = −Kisi + Yi(qi, q̈ri, q̇i, q̇ri)Θ̂i, (6a)
˙̂Θi = −ΛiY

T
i (qi, q̈ri, q̇i, q̇ri)si, i ∈ VF , (6b)

where Ki is a symmetric positive-definite matrix, Θ̂i is
the estimate of Θi, and Λi is a symmetric positive-definite
matrix.

Theorem 3.1: Suppose that all leaders are stationary. Us-
ing (6) for (1), d[qi(t),Co(qL)]→ 0 and q̇i → 0p as t→∞,
∀i ∈ VF , for arbitrary initial conditions in the presence of
parametric uncertainties if and only if Assumption 2.1 holds.
More specifically, qF (t) → −(L−1

1 L2 ⊗ Ip)qL as t → ∞,
that is, the final vectors of generalized coordinates of the
followers are given by −(L−1

1 L2 ⊗ Ip)qL.
Proof: (Sufficiency) Let sF , qF , q̇r, and qL be the column
stack vectors of, respectively, si, ∀i ∈ VF , qi, ∀i ∈ VF , q̇ri,

∀i ∈ VF , and qi, ∀i ∈ VL. Let Θ̃i
4
= Θi− Θ̂i. Also let Θ̃, Θ,

and Θ̂ be, respectively, the column stack vectors of Θ̃i, Θi,
and Θ̂i, ∀i ∈ VF . From Assumption (A3), it follows that

Mi(qi)q̈ri+Ci(qi, q̇i)q̇ri+gi(qi)=Yi(qi, q̈ri, q̇i, q̇ri)Θi, i ∈ VF .
(7)

Hence, using (6) and (7), the closed-loop system (1) can be
written in a vector form as

M(qF )ṡF =− C(qF , q̇F )sF −KF sF − Y (qF , q̈r, q̇F , q̇r)Θ̃,
(8)

where M(qF ), C(qF , q̇F ), Y (qF , q̈r, q̇F , q̇r), and KF are, re-
spectively, the block diagonal matrices of Mi(qi), Ci(qi, q̇i),
Yi(qi, q̈ri, q̇i, q̇ri), and Ki, ∀i ∈ VF .

Consider the following Lyapunov function candidate

V (t) =
1
2
sT

FM(qF )sF +
1
2

Θ̃T ΞΘ̃, (9)

where Ξ is the block diagonal matrix of Λ−1
i , ∀i ∈ VF .

Taking the derivative of V along (8) gives that

V̇ (t) = sT
FM(qF )ṡF +

1
2
sT

F Ṁ(qF )sF + Θ̃T Ξ ˙̃Θ

= −sT
FKF sF , (10)

where we have used Assumption (A2) and (6b) to obtain
(10). Because KF is symmetric positive definite, we can get
that V̇ (t) ≤ 0, which means that sF and Θ̃ are bounded. If
Assumption 2.1 holds, it follows from Lemma 2.3 that L1

is a nonsingular M -matrix, which implies that L−1
1 exists.

Note that (5) can be written in a vector form as

q̇F = −α(L1 ⊗ Ip)qF − α(L2 ⊗ Ip)qL + sF . (11)

Also note that q̇L = 0. Then (11) can be written as

˙̄qF = −α(L1 ⊗ Ip)q̄F + sF , (12)

where

q̄F
4
= qF + (L−1

1 L2 ⊗ Ip)qL. (13)

Because L1 is a nonsingular M -matrix, it follows from Def-
inition 2.3 that all eigenvalues of L1 have positive real parts.
It thus follows that when sF = 0mp, (12) is globally expo-
nentially stable at the origin q̄F = 0mp. We can conclude
from Lemma 2.4 that (12) is input-to-state stable with respect
to the input sF and the state q̄F . Because sF is bounded, so
is q̄F . Because qL is constant, it follows from (13) that qF is
bounded. We can get from (4) that q̇ri, ∀i ∈ VF , is bounded.
It also follows from (11) that q̇F is bounded. Note from
Assumption (A1) that ‖Ci(qi, q̇i)q̇ri‖ ≤ kC‖q̇i‖‖q̇ri‖ and
‖gi(qi)‖ ≤ kgi

, ∀i ∈ VF . Therefore, both ‖Ci(qi, q̇i)q̇ri‖
and ‖gi(qi)‖ are bounded. Differentiating (4), we can see
that q̈ri, ∀i ∈ VF , is bounded. Note that in (7), Mi(qi),
q̈ri, Ci(qi, q̇i)q̇ri and gi(qi), ∀i ∈ VF , are all bounded.
We conclude from (7) that Yi(qi, q̈ri, q̇i, q̇ri) is bounded.
Note again from Assumption (A1) that ‖Ci(qi, q̇i)si‖ ≤
kC‖q̇i‖‖si‖, ∀i ∈ VF . From (8), we can get that ṡF is
bounded. By differentiating (10), we can see that V̈ (t) is
bounded. Therefore, V̇ (t) is uniformly continuous in time.
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From Barbalat’s Lemma [22], we can conclude that V̇ (t)→
0 as t → ∞, i.e., sF (t) → 0mp as t → ∞. Because
(12) is input-to-state stable with respect to the input sF and
the state q̄F , we have that q̄F (t) → 0mp as t → ∞. As
a result, it follows that qF (t) → −(L−1

1 L2 ⊗ Ip)qL and
q̇F → 0mp as t → ∞. If Assumption 2.1 holds, it follows
from Lemma 2.3 that each entry of −L−1

1 L2 is nonnegative
and each row of −L−1

1 L2 has a sum equal to one. We then
get from Definition 2.2 that −(L−1

1 L2⊗ Ip)qL is within the
convex hull spanned by the stationary leaders. It thus follows
that d[qi(t),Co(qL)] → 0 as t → ∞. This conclude the
sufficiency part.

(Necessity) We prove the necessity part by contraposition.
If Assumption 2.1 does not hold, there exists a subset
of the followers who cannot receive any information from
the leaders directly or indirectly. That is, the motions of
these followers are independent of the states of the leaders.
Therefore, these followers cannot always converge to the
convex hull spanned by the stationary leaders for arbitrary
initial conditions.

Corollary 3.2: Suppose that VL = ∅.1 Using (6) for (1),
‖qi(t)− qj(t)‖ → 0 and q̇i(t)→ 0p as t→∞ for arbitrary
initial conditions in the presence of parametric uncertainties
if and only if the directed graph G associated with the n
agents has a directed spanning tree.
Proof: (Sufficiency) Because VL = ∅, (11) can be written as

q̇ = −α(LA ⊗ Ip)q + s, (14)

where LA ∈ Rn×n is the (nonsymmetric) Laplacian matrix
associated with G, and q and s are column stack vectors
of qi and si, i = 1, . . . , n. Following the same steps as in
the proof of Theorem 3.1, we can get that s(t) → 0np as
t→∞. For the linear system q̇ = −α(LA ⊗ Ip)q, if G has
a directed spanning tree, then it follows from Lemma 2.1
that consensus is reached exponentially. Thus, there exists
q̄ =

∑n
i=1 piqi(0), where pi is defined in Lemma 2.1, such

that 1n ⊗ q̄ is a globally exponentially stable equilibrium
point of q̇ = −α(LA⊗ Ip)q. We can conclude from Lemma
2.4 that the system (14) is input-to-state stable with the input
s and the state q−1n⊗ q̄. Note that s(t)→ 0np as t→∞.
We can conclude that ‖qi(t) − qj(t)‖ → 0 and q̇i(t) → 0p

as t→∞.
(Necessity) The proof of the necessity part is the same as

Theorem 3.1 and is omitted here.
Remark 3.3: In Corollary 3.2, we have shown that the

adaptive control algorithm (6) can be used to deal with the
leaderless consensus problem for networked Lagrangian sys-
tem. Thus, Corollary 3.2 extends the first algorithm in [10] to
a directed graph in the presence of parameter uncertainties.

IV. DISTRIBUTED CONTAINMENT CONTROL WITH
MULTIPLE DYNAMIC LEADERS

In this section, we consider the case where the leaders are
dynamic. We consider two subcases. In the first subcase, we

1In this case, there does not exist a leader. Therefore, (6) becomes a
leaderless consensus algorithm accounting for parametric uncertainties.

assume that the leaders have constant vectors of generalized
coordinate derivatives. In the second subcase, we assume that
the leaders have varying vectors of generalized coordinate
derivatives.

A. Leaders with Constant Vectors of Generalized Coordinate
Derivatives

In this subsection, we deal with the case where the leaders
have constant vectors of generalized coordinate derivatives.
Define the following auxiliary variables

q̇ri
4
=v̂i − α

∑
j∈VL

⋃
VF

aij(qi − qj), (15)

si
4
=q̇i − q̇ri = q̇i − v̂i + α

∑
j∈VL

⋃
VF

aij(qi − qj), i ∈ VF ,

(16)

where α is a positive constant, aij is defined as in (4),
and v̂i is the ith follower’s estimate of its desired vector
of generalized coordinate derivatives in the convex hull
spanned by those of the leaders’ that will be designed later.
We propose the following control algorithm for (1) in the
presence of parametric uncertainties

τi =−Kisi + Yi(qi, q̈ri, q̇i, q̇ri)Θ̂i, (17a)
˙̂vi =− β

[ ∑
j∈VF

aij(v̂i − v̂j) +
∑

j∈VL

aij(v̂i − q̇j)
]
, (17b)

˙̂Θi =− ΛiY
T
i (qi, q̈ri, q̇i, q̇ri)si, i ∈ VF , (17c)

where β is a positive constant rather that (4), and Ki and Λi

are symmetric positive-definite matrices.
We next state the main result of containment control

with multiple dynamic leaders that have constant vectors of
generalized coordinate derivatives.

Theorem 4.1: Suppose that the leaders have constant vec-
tors of generalized coordinate derivatives. Using (17) for (1),
d{qi(t),Co[qL(t)]} → 0, ∀i ∈ VF , as t → ∞ for arbitrary
initial conditions in the presence of parametric uncertainties
if and only if Assumption 2.1 holds. More specifically,
‖qF (t) + (L−1

1 L2 ⊗ Ip)qL(t)‖ → 0 as t→∞.
Proof: (Sufficiency) Let sF , qF , qL, and Θ̃i defined as in the
proof of Theorem 3.1. Let v̂F be the column stack vector
of v̂i, ∀i ∈ VF . Consider the Lyapunov function candidate
defined in (9). Following the proof of Theorem 3.1, we get
(10), which implies that sF and Θ̃ are bounded. Because
Assumption 2.1 holds, we can get from Lemma 2.3 and
Definition 2.3 that L−1

1 exists and all eigenvalues of L1 have
positive real parts. Note from (16) that

q̇F =− α(L1 ⊗ Ip)qF − α(L2 ⊗ Ip)qL + v̂F + sF . (18)

Then (18) can be written as

˙̄qF =− α(L1 ⊗ Ip)q̄F + v̄F + sF , (19)

where q̄F
4
= qF +(L−1

1 L2⊗Ip)qL and v̄F
4
= v̂F +(L−1

1 L2⊗
Ip)q̇L. It thus follows from Lemma 2.4 that (19) is input-to-
state stable with respect to the input v̄F + sF and the state
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q̄F . Note that (17b) can be written in a vector form as

˙̂vF =− β(L1 ⊗ Ip)v̂F − β(L2 ⊗ Ip)q̇L, (20)

Because q̇L is constant and hence q̈L = 0, (20) can be written
as ˙̄vF = −β(L1 ⊗ Ip)v̄F . It thus follows that v̄F = 0mp

is globally exponentially stable. Therefore, v̄F is bounded,
which in turn implies that v̂F is also bounded because q̇L
is constant. Because v̄F + sF is bounded, it follows from
(19) that q̄F is bounded. Because (18) can be written as
q̇F = −α(L1⊗Ip)q̄F +v̂F +sF , it follows that q̇F is bounded.
Note from (16) that q̇ri = q̇i − si, ∀i ∈ VF . We can get that
qri is bounded, ∀i ∈ VF . Differentiating (15), we can get
that q̈ri, ∀i ∈ VF , is bounded. A similar statement to that
in the proof of Theorem 3.1 show that Yi(qi, q̈ri, q̇i, q̇ri),
ṡF , and hence V̈ (t) are bounded. Therefore, V̇ (t) is uni-
formly continuous in time. From Barbalat’s Lemma, we can
conclude that V̇ (t) → 0 as t → ∞, i.e., sF → 0mp as
t → ∞. Because both v̄F (t) → 0mp and sF (t) → 0mp

as t → ∞ in (19), it thus follows that q̄F (t) → 0mp, i.e.,
‖qF (t) + (L−1

1 L2 ⊗ Ip)qL(t)‖ → 0, as t → ∞. A similar
statement to that in the proof in Theorem 3.1 shows that
−(L−1

1 L2⊗Ip)qL(t) is within the convex hull spanned by the
dynamic leaders. It thus follows that d{qi(t),Co[qL(t)]} → 0
as t→∞.

(Necessity) The proof of the necessity part is the same as
Theorem 3.1 and is omitted here.

B. Leaders with Varying Vectors of Generalized Coordinate
Derivatives

In this subsection, we deal with the case where the leaders
have varying vectors of generalized coordinate derivatives.
Suppose that the leaders’ vectors of generalized coordinate
derivatives and their first-order and seconde-order derivatives
are all bounded. Let qd

4
= [qT

d1, . . . , q
T
dm]T = −(L−1

1 L2 ⊗
Ip)qL.

We first introduce the following auxiliary variables

ˆ̇qri
4
= v̂i − α

∑
j∈VL

⋃
VF

aij(qi − qj), (21)

ˆ̈qri
4
= âi − α

∑
j∈VL

⋃
VF

aij(q̇i − q̇j), (22)

ŝi
4
= q̇i − ˆ̇qri = q̇i − v̂i + α

∑
j∈VL

⋃
VF

aij(qi − qj), i ∈ VF ,

(23)

where α is a positive constant, aij is defined as in (4), and v̂i

(respectively âi) is the ith follower’s estimate of its desired
vector of generalized coordinate derivatives (respectively,
accelerations) in the convex hull spanned by those of the
leaders that will be designed later. We then propose the
following distributed algorithm combined with distributed

sliding-mode estimators

τi =−Kiŝi + Yi(qi, ˆ̈qri, q̇i, ˆ̇qri)Θ̂i, (24a)
˙̂vi =− β1sgn

[ ∑
j∈VF

aij(v̂i − v̂j) +
∑

j∈VL

aij(v̂i − q̇j)
]

(24b)
˙̂ai =− β2sgn

[ ∑
j∈VF

aij(âi − âj) +
∑

j∈VL

aij(âi − q̈j)
]
,

(24c)
˙̂Θi =− ΛiY

T
i (qi, ˆ̈qri, q̇i, ˆ̇qri)ŝi, i ∈ VF , (24d)

where Ki and Λi are symmetric positive-definite matrixes,
β1 and β2 are positive constants, and sgn(·) is the signum
function defined componentwise.

Lemma 4.1: Suppose that Assumption 2.1 holds. Let qd
4
=

[qT
d1, . . . , q

T
dm]T = −(L−1

1 L2 ⊗ Ip)qL, where qdi ∈ Rp.2 If
β1 > ‖q̈d‖, then ‖v̂i(t) − q̇di(t)‖ → 0, ∀i ∈ VF , in finite
time. Similarly, if β2 > ‖

...
q d‖, then ‖âi(t) − q̈di(t)‖ → 0,

∀i ∈ VF , in finite time.
Proof: See [21].

Theorem 4.2: Suppose that the leaders have varying vec-
tors of generalized coordinate derivatives, β1 > ‖q̈d‖, and
β2 > ‖

...
q d‖. Using (24) for (1), d{qi(t),Co[qL(t)]} → 0 as

t→∞, ∀i ∈ VF , for arbitrary initial conditions in the pres-
ence of parametric uncertainties if and only if Assumption
2.1 holds. More specifically, ‖qF (t)+(L−1

1 L2⊗Ip)qL(t)‖ →
0 as t→∞.
Proof: (Sufficiency) First, we show that for bounded initial
values qi(0) and q̇i(0), using the control algorithm (24)
for (1), the states qi(t) and q̇i(t), ∀i ∈ VF , will remain
bounded in finite time. From (24b) and (24c), we can get
that v̂i(t) and âi(t), ∀i ∈ VF , are bounded in finite time
for bounded initial values v̂i(0) and âi(0). For bounded
states qi and q̇i, ∀i ∈ VF , we can get that ŝi, ˆ̇qri and
ˆ̈qri, ∀i ∈ VF , are bounded. From Assumption (A1), we can
get that Yi(qi, ˆ̈qri, q̇i, ˆ̇qri) defined in (24a) is bounded and
therefore, Θ̂i(t) is bounded for bounded initial value Θ̂i(0).
Thus, we can get from (24a) that τi is bounded. Finally, from
(1), for bounded qi, q̇i, and τi, under Assumption (A1), we
can get that q̈i is also bounded. Thus, we can conclude that
for bounded initial values qi(0) and q̇i(0), qi(t) and q̇i(t),
∀i ∈ VF , are bounded in finite time.

Let q̇ri
4
= q̇di − α

∑
j∈VL

⋃
VF

(qi − qj), and

si
4
= q̇i − q̇ri = q̇i − q̇di + α

∑
j∈VL

⋃
VF

(qi − qj), i ∈ VF ,

(25)

where qdi is defined in Lemma 4.1. Under the condition of
the theorem, using the sliding-mode estimators (24b) and
(24c), we can get from Lemma 4.1 that v̂i(t) ≡ q̇di(t) and
âi(t) ≡ q̈di(t) when t ≥ max{T1, T2}

4
= T0. Therefore,

ˆ̇qri(t) ≡ q̇ri(t), ˆ̈qri(t) ≡ q̈ri(t), and ŝi(t) ≡ si(t), ∀i ∈ VF ,
when t ≥ T0. Note that (25) can be written in a vector

2When Assumption 2.1 holds, it follows from Lemma 2.3 that L−1
1 exists.

Therefore, qd is well defined.
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form as (12), where q̄F is defined in (13). Let sF and Θ̃ be,
respectively, the column state vectors of si and Θ̃i

4
= Θi−Θ̂i,

∀i ∈ VF . When t ≥ T0, consider the Lyapunov function
candidate defined in (9). The rest of the proof follows that
of Theorem 3.1.

(Necessity) The proof of the necessity part is the same as
Theorem 3.1 and is omitted here.

Remark 4.3: Note that a single leader is a special case
of multiple leaders. Therefore, the distributed coordinated
tracking problem of a single leader for networked Lagrangian
systems is a special case of the distributed containment
control problem. Thus the results in the current paper can
be used to deal with the coordinated tracking problem and
hence extend the work in [11]–[13] to a directed graph.

V. CONCLUSIONS

The distributed containment control problem for net-
worked Lagrangian systems with multiple stationary or dy-
namic leaders in the presence of parametric uncertainties has
been studied under a directed graph that characterizes the
interaction among the leaders and the followers. In the case
of multiple stationary leaders, we have proposed a distributed
adaptive control algorithm and a necessary and sufficient
condition on the directed graph such that all followers con-
verge to the stationary convex hull spanned by the stationary
leaders asymptotically. As a byproduct, we have presented
a necessary and sufficient condition on leaderless consensus
algorithm for networked Lagrangian systems under a directed
graph. In the case with multiple dynamic leaders, we have
considered two subcases where the leaders have constant
or varying vectors of generalized coordinate derivatives. In
the first subcase, a distributed continuous estimator and a
distributed adaptive control algorithm have been proposed. In
the second subcase, we have proposed a distributed adaptive
control algorithm combined with distributed sliding-mode
estimators and presented a necessary and sufficient condition
on the directed graph.
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