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Abstract—We address a simultaneous stabilization and syn-
chronization problem for one class of non-identical multi-agent
systems. The agent dynamics can be different and the orders
of agents are not necessarily equal. One single control loop is
designed for each agent to enable some agent states, named
as internal states, to be stabilized and some other states,
named as external states, to be synchronized. A distributed
control law is designed based on local measurements and
information exchanged from neighboring agents to achieve
simultaneous stabilization and synchronization. The necessary
and sufficient conditions to achieve simultaneous stabilization
and synchronization have been obtained using the closed-loop
form of the system, followed by specific approaches of designing
the control gain matrices that make the sufficient conditions
satisfied. A precise form of the synchronized trajectory has
also been determined. Simulation results have been provided
to demonstrate the performance of the proposed method.

I. INTRODUCTION

Cooperative control of multi-agent systems has attracted

substantial attention over the past decade. The control goal

is to design distributed control laws such that a team of

agents achieve a desired group behavior. One relevant topic

is the synchronization problem of dynamic systems (see,

e.g., [1]–[7], just name a few) where the agent trajectories

in a network converge to each other through distributed

local coupling. Specifically, for linear time invariant (LTI)

multi-agent systems, Tuna studied the output synchroniza-

tion problem of identical agents [1] and investigated the

synchronizability conditions for coupled linear systems [2]

where the number of inputs is equal to the number of states.

Scardovi and Sepulchre [3] investigated the synchronization

problem of a network of identical linear state-space models

using a dynamic output feedback coupling. Li et al. [4]

introduced a new framework to address the output feedback

synchronization problem of a group of LTI systems by

introducing the notion of consensus region. Seo et al. [5]

presented a low gain synchronization approach for design-

ing an output feedback compensator which only used the

local output information. Chopra and Spong [6] investigated

the output synchronization problem for a class of passive

nonlinear systems. Nair and Leonard [7] solved the stable

synchronization problem for a network of under-actuated

mechanical systems.

In multi-agent systems, the overall behavior of each agent

can be determined by its internal dynamics and external
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dynamics. The internal dynamics govern the behavior of the

agent as an individual system while the external dynamics

are related to the coordination with the other agents. In

some systems (see, e.g., [8], [9]), the internal dynamics is

much faster than the external dynamics, so that the internal

dynamics can be ignored and the agents are modeled as

first order integrators. For multi-agent systems that need to

be represented using more general models, one idea is to

use an inner control loop (see, e.g., [10], [11]). Specifically,

Fax and Murray [10] proposed an idea to stabilize each

agent by closing an inner control loop around its internal

dynamics and then closing an outer control loop to achieve

the desired formation performance. Arcak [11] assumed that

an inner control loop is designed so that the resulting system

becomes passive with respect to the external feedback and

then proposed a passivity-based method for the coordination

purpose. However, as will be shown in the motivating exam-

ple introduced in Section II, there exist cases where separate

control loops are not available for both stabilization of

internal dynamics and synchronization of external dynamics.

If no internal control loop is available and the agents have

unstable open-loop internal dynamics and/or dynamically

coupled internal and external states (see the motivating ex-

ample in Section II), then the decentralized controller of each

agent should perform two tasks simultaneously: 1) stabilize

the agent’s internal dynamics, and 2) coordinate with other

agents to achieve a group behavior. Nair and Leonard [7]

developed a new framework for stable synchronization of

under-actuated mechanical systems, distinguishing between

actuated and under-actuated states. They used an energy

shaping method to stabilize the under-actuated states while

rendering the actuated states synchronized. It looks en-

couraging to distinguish the states that are supposed to be

stabilized from those that are synchronized through dynamic

coupling. This distinction leads to generalizing the existing

results for identical LTI systems to non-identical ones in the

current work.

In this paper, we consider a simultaneous stabilization and

synchronization (SSS) problem for a group of non-identical

linear agents with potentially unstable open-loop dynamics.

A single control loop is designed for each agent to enable

the internal states to be stabilized and the external states to

be synchronized. Regarding the system model, not only the

agent dynamics are non-identical but also the dimensions

of internal agent states are not required to be equal. A

distributed SSS protocol is designed based on local measure-

ments and information exchanged from neighboring agents

to enable simultaneous stabilization and synchronization. The

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 487



Oref

Mi

2 i

m i

Mj Mk

li mk

ri rj rk r

F i F j Fk

k k
dk

Fig. 1. Schematic of the motivating example.

necessary and sufficient conditions to enable SSS have been

obtained using the closed-loop form of the system, followed

by specific approaches of designing the control gain matrices

that make the sufficient conditions satisfied. A precise form

of the synchronized trajectory has also been determined.

II. MOTIVATING EXAMPLE

The motivating example described in this section was

inspired from an example addressed in [7], where Nair and

Leonard tested their developed controller to solve a formation

problem for systems of identical carts with inverted pendu-

lums. In the following motivating example, formation of a

group of different types of cart systems (i.e., non-identical

systems) is considered.

Consider a multi-agent system which is consisted of Ql
carts with inverted pendulums, Qm simple carts, and Qn carts
with mounted mass spring systems. As depicted in Fig. 1, the

l-th cart with inverted pendulum is consisted of a point mass
pl connected to a bar of length ol which is hinged to a cart
of mass Pl. The inverted pendulum has an angle �l from
the vertical axis and the constant j denotes the acceleration
of gravity. This system is an under-actuated system with

unstable open-loop internal dynamics. The m-th simple cart
has the massPm . This system is fully-actuated. The n-th cart
with spring mass system is consisted of a point mass pn

which is connected to the cart of mass Pn through a linear

spring with stiffness coefficient nn and a displacement of gn
from the equilibrium point. This system is an under-actuated

system with marginally stable open-loop internal dynamics.

The o-th (o = l> m> n) cart is located at a distance of uo from
the origin of the global reference frame Ruhi and it can
move freely along the horizontal axis. In each subsystem, a

horizontal control force Io with the corresponding index l,
m, or n is applied to the cart.
The objective is to design a control law for Io that

stabilizes the internal dynamics while enabling a specific

formation for all the cart systems. Specifically, the carts are

required to move at a desired constant velocity yg, and all
the carts achieve a formation with a pre-specified separation

distance �lm between cart l and cart m (l> m = 1> ===> Q ).
The interesting characteristics of this example are two-fold.

First, the internal agent dynamics is unstable, or marginally

stable. Second, only one control input is available to stabilize

the internal dynamics while enabling the cart to achieve a

formation with its neighboring carts.

If there is an additional input, for example in the cart pen-

dulum systems, a torque input is exerted on the inverted pen-

dulum, then it can be used to stabilize the inverted pendulum

while the force input Il enables synchronization. However,
when an additional input is not available, it is challenging to

achieve the control objective for this motivation example. In

this paper, we will formulate a simultaneous stabilization and

synchronization problem in Section IV and design a control

law to achieve this control objective. In comparison with

the motivating example in [7], two generalizations are made

here. 1) The agent dynamics and the order of dynamics for

the agents can be different. 2) The connection graph can be

a directed graph containing a spanning tree instead of an

undirected graph.

III. NOTATION AND PRELIMINARIES

Graph theory [12]: Let G = {V> E} represent a directed
graph and V= {1> ===> Q} denote the set of vertices. Every
agent is represented by a vertex. The set of edges is denoted

as E � V × V . An edge is an ordered pair (l> m) 5 E if agent
m can be directly supplied with information from agent l.
In this paper, we assume that there is no self loop in the

graph, that is, (l> l) @5 E . Nl = {m 5 V |(m> l) 5 E} denotes
the neighborhood set of vertex l. Graph G is said to be

undirected if for any edge (l> m) 5 E , edge (m> l) 5 E . Hence,
an undirected graph is a special case of a directed graph.

A path is referred by the sequence of its vertices. Path P
between two vertices y0 and yn is the sequence {y0> ===> yn}
where (yl�1> yl) 5 E for l = 1> ===> n and the vertices are
distinct. The number n is defined as the length of path P .
Graph G is strongly connected if any two vertices are linked
with a path in G. Graph G contains a directed spanning tree
if there is a vertex which can reach all the other vertices

through a directed path. A = [dlm ] 5 RQ×Q denotes the

adjacency matrix of G, where dlm A 0 if and only if (m> l) 5 E
else dlm = 0. O = G � A is called Laplacian matrix of

G, where G = [gll] 5 RQ×Q is a diagonal matrix with

gll =
PQ

m=1 dlm .
Lemma 1: [12]–[14] Zero is an eigenvalue of O for both

directed and undirected graphs. Zero is a simple eigenvalue

of O and the associated eigenvector is 1 where 1 5 RQ is a
unitary column vector, if and only if the undirected graph is

connected or if the directed graph has a spanning tree. All of

the nonzero eigenvalues of O are positive for an undirected
graph or have positive real parts for a directed graph.

Kronecker Product: Some properties of the Kronecker

product are recalled as below [15]

(DE)(F G) = DF EG (1)

D (E + F) = DE +D F

(DE)W = DW EW

(DE)�1 = D�1 E�1=

Assume that �1l are the eigenvalues of D1 5 R
q1×q1 and

�2m are the eigenvalues of D2 5 Rq2×q2 . Eigenvalues of
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(Lq2  D1 + D2  Lq1) are �1l + �2m with l 5 {1> ===> q1}
and m 5 {1> ===> q2}.
Right Inverse: Matrix Ep×u is called the right inverse

of matrix Du×p if DE = Lu×u. The necessary condition for
the existence of such a matrix E is that udqn(D) = u.
Lemma 2: [16] The algebraic matrix equation

P[ +[Q = T> (2)

where P 5 Rp×p and Q 5 Rq×q are square matrices,

has a unique solution if and only if P and (�Q) does not
have any common eigenvalues.

Remark 1: This algebraic matrix equation (2) is very

similar to the Sylvester equation. However, in the Sylvester

equation, the matrices P and Q are square matrices of the

same order.

IV. PROBLEM FORMULATION

Consider a multi-agent system of Q agents with the

following dynamics:

{̇l = Dl{l +Elxl (3)

}̇l = Hl{l + I}l>

where {l 5 R
ql and }l 5 R

u are the states of agent l, xl 5
Rpl is the control input of agent l, and Dl 5 R

ql×ql , El 5
R
ql×pl , Hl 5 R

u×ql , and I 5 Ru×u are constant matrices.
In (3), the matrices Dl, El, and Hl are not required to be
identical, the dimensions ql and pl can also be different for

different agents. However, the dimensions of the state }l and
the matrix I are the same for all the agents since the state
}l of the agents reaches synchronization as will be discussed
later.

The objective of simultaneous stabilization and synchro-

nization (SSS) is to design a control law of the form

xl = �Nl{l +Jl
X

m5Nl

dlm [}lm + (Fl{l � Fm{m)]> (4)

so that the states {l are stabilized while the states }l are
synchronized, i.e.,

{l $ 0 (stabilization) (5)

}lm = }l � }m $ 0 (synchronization)>

as w $ 4 for l> m 5 {1> ===> Q}. In (4), dlm’s are the
elements of the adjacency matrix of the connection graph,

Nl 5 R
pl×ql , Fl 5 R

u×ql , and Jl 5 R
pl×u are constant

gain matrices to be designed, and Fm 5 R
u×qm determines

the portion of the internal states that agent m provides to the
other agents. We name the states for synchronization (i.e.,

}l) as external states and the states for stabilization (i.e., {l)
as internal states.

Under control law (4), the closed-loop dynamics of system

(3) are given by

{̇l = Dfl{l +ElJl
X

m5Nl

dlm [}lm + (Fl{l � Fm{m)] (6)

}̇l = Hl{l + I}l> (7)

where Dfl , Dl �ElNl 5 R
ql×ql .

To facilitate the subsequent design and analysis, we make

the following assumptions.

Assumption 1: The connection network has a fixed di-

rected graph G that contains a directed spanning tree.
Assumption 2: The pair {Dl> El} for l 5 {1> ===> Q} is

stabilizable.

Let �l 5 C> l 5 {1> · · · > u} represent the eigenvalues of I
and let �2(G) 5 C represent the non-zero eigenvalue of the
Laplacian matrix of G with the smallest real part.
Assumption 3: The biggest real part of the eigenvalues of

I (i.e., max{Re(�l)}) is less than the smallest real part of
the nonzero eigenvalues of the Laplacian matrix of G (i.e.,
� , Re(�2(G))).

V. MAIN RESULTS

A. Necessary and Sufficient Conditions for SSS

In order to facilitate the subsequent analysis, we use bold

font to represent the block diagonal matrices used in the

collective forms. For example, A, defined as A ,
LQ

l=1Dl,
represents a block diagonal matrix with Dl’s as the diagonal
elements. The concatenated vectors [ and ] are defined as

[ , [{W1 > ===> {
W
Q ]
W > ] , [}W1 > ===> }

W
Q ]
W =

The closed-loop system determined by (6) and (7) can be

rewritten in terms of the concatenated vectors [ and ] as
�
[̇

]̇

¸
=

�
Af +BG (O Lu)C BG (O Lu)

E (LQ  I )

¸ �
[

]

¸
> (8)

where Af = A�BK.
Lemma 3: Under Assumption 1, there exists a Schur

transformation of the form [2], [4]

W , [e> PO]
W > W�1 , [1> QO] (9)

so that

� , WOW�1 = gldj{0>�s}> (10)

where �s is an upper triangular matrix with the nonzero

eigenvalues of O along the diagonal. In (9), eW 5 R1×Q is

the normalized left eigenvector of O corresponding to the
zero eigenvalue (i.e., eWO = 0 and 1W e = 1), 1 5 RQ is a

unitary column vector, and PO> QO 5 C
Q×(Q�1).

Lemma 4: Under Assumption 1, the states }1> ===> }Q 5

Ru are synchronized in the sense that [17] }1 = · · · = }Q if
and only if ]̄ = 0 where

]̄ , (O Lu)]. (11)

Remark 2: Lemma 4 indicates that if ]̄ is stabilized, then
}1> ===> }Q are synchronized.
Based on the coordinate transformation (11), (8) can be

rewritten as �
[̇
˙̄]

¸
= H

�
[

]̄

¸
> (12)

where

H ,

�
Af +BG (O Lu)C BG

(O Lu)E (LQ  I )

¸
= (13)

Remark 3: The matrix H has u eigenvalues equal to the
eigenvalues of I (see proof of Theorem 2).
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Proposition 1: 1) The eigenvalues of a block upper trian-

gular matrix are the eigenvalues of all the diagonal blocks.

2) The stability of a block upper triangular system can be

determined by the stability of the subsystems possessing the

diagonal blocks.

Theorem 2: Under Assumption 1, the matrix H has u
eigenvalues equal to those of I . In addition, SSS is enabled
for system (3) using the controller (4) if and only if the other

(Q � 1) u eigenvalues of H have negative real parts.

Proof: Make the following coordinate transformation:

]̃ = (W  Lu) ]̄> (14)

where W is defined in (9). The system (12) in the new

coordinates ([> ]̃) can be written as
�
[̇
˙̃]

¸
=

�
Af +BG (O Lu)C BG

¡
W�1  Lu

¢

(WO Lu)E (LQ  I )

¸ �
[

]̃

¸
=

(15)

The first u rows of (WO Lu)E is zero because E is

a block diagonal matrix and WO =

�
eWO

PW
OO

¸
=

�
0

PW
OO

¸

according to the fact that e is a normalized left eigenvector
of O corresponding to the zero eigenvalue (i.e., eWO = 0).
The governing equation of }̃1 (i.e., the first component of
]̃ , [}̃W1 > ===> }̃

W
Q ]
W ) is given by

˙̃}1 = I }̃1= (16)

Therefore, the matrix H in (13) has u eigenvalues which are
equal to the eigenvalues of I .
According to the coordinate transformations (11) and (14),

}̃1 = (eW  Lu)]̄ = (e
W
 Lu) (O Lu)]

=
¡
eWO Lu

¢
] = 0u×1=

This means }̃1(w) is always equal to zero based on (11) and
(14) even though it is governed by the dynamic equation

(16). Since H has u eigenvalues of I , the system (15) is

exponentially stable if and only if the remaining eigenvalues

have negative real parts. The stability of system (15) is

equivalent to the stability of system (12), which implies that

SSS can be enabled for system (3) with control law (4) under

the provided conditions in this Theorem.

Remark 4: If all the agents have the same dynamics, i.e.,

Dl = D> El = E> Hl = H (17)

Nl = N> Jl = J> Fl = F>

it is possible to use a coordinate transformation to express the

stability condition in another way. Specifically, the stability

condition will be stated using the eigenvalues of O as follows.
Theorem 3: Under Assumption 1, SSS is enabled for

system (3) using the controller (4) if and only if Df =
D�EN is Hurwitz and the matrices Kl’s defined as

Kl ,

�
Df + �lEJF EJ

�lH I

¸
(18)

are Hurwitz for all nonzero eigenvalues �l of the Laplacian
matrix O.

Proof: For identical agents, the concatenated dynamics

(12) of Q agents can be written as
�
[̇
˙̄]

¸
=

�
LQ Df + (OEJF) (LQ EJ)

(OH) (LQ  I )

¸ �
[

]̄

¸
=

(19)

The stability analysis can be performed similar to the method

in [10]. As shown in Lemma 3, there exists a Schur transfor-

mation W that transforms O into an upper triangular matrix
� = WOW�1 = gldj{0>�s}. Define new variables {̄0l
and }̄0l such that [

0 , [{0W1 > ===> {
0W
Q ]

W = (W  Lq)[ and

]̄0 , [}̄0W1 > ===> }̄
0W
Q ]

W = (W  Lu)]̄. Based on (19), the
derivatives of [ 0 and ]̄ 0 can be determined as
�
[̇ 0

˙̄]0

¸
=

�
LQ Df + (�EJF) (LQ EJ)

(�H) (LQ  I )

¸ �
[ 0

]̄0

¸
=

(20)

Since the block components of the system matrix in (20)

are block diagonal or block upper triangular, the stability

of (20) can be investigated through the stability of the Q
subsystems defined by

�
{̇0l
˙̄}
0

l

¸
=

�
Df + �lEJF EJ

�lH I

¸ �
{0l
}0l

¸
> (21)

where �l> l = 1> · · · > Q= are the eigenvalues of O.
Without loss of generality, assume �1 = 0, then (21) for

l = 1 can be written as
�
{̇01
˙̄}
0

1

¸
=

�
Df EJ
0 I

¸ �
{01
}01

¸
= (22)

Based on (22), the matrix K1 has u eigenvalues equal to
those of I . Therefore, based on Theorem 2, SSS is enabled
for system (3) using the controller (4) if and only if Df is
Hurwitz and Kl in (18) is Hurwitz for l = 2> ===> Q .
Remark 5: Theorem 3 is a special case of Theorem 2

when the agents are identical. The necessary and sufficient

conditions in Theorem 3 can be proved to be equivalent

to those in Theorem 2 under (17). The condition that Df
is Hurwitz and Kl in (18) is Hurwitz for l = 2> ===>Q
in Theorem 3 is equivalent to the condition that the other

(Q � 1) u eigenvalues of H have negative real parts in

Theorem 2 when all the agents have the same dynamics (see

(17)).

B. SSS Protocol Gain Matrix Design and Stability Analysis

Lemma 5: Under Assumptions 1 and 3, the Q subsys-

tems

żl = Izl �
X

dlm(zl � zm)> l 5 {1> · · · > Q} (23)

synchronize, and the states zl (w) are synchronized to the
trajectory given by

ż0 = Iz0 (24)

z0(w0) = (eW  Lu)Z (w0)>

where Z , [zW1 > ===> z
W
Q ]
W =

Proof: The Q subsystems (23) can be written as

Ż = (LQ  I � O Lu)Z= (25)
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Make the following coordinate transformation:

Z 0 = (W  Lu)Z> (26)

where W is defined in (9) andZ 0 , [z0W1 > ===> z
0W
Q ]

W . Rewrite

the vector Z 0 as

Z 0 = [z0W1 > Z
0W
� ]

W = (27)

System (25) can be rewritten in the new coordinateZ 0 (w)
as

Ż 0 = (LQ  I � � Lu)Z
0= (28)

Based on (26) and the definition of � in (10), (28) can be

decomposed into the following two subsystems:

ż01 = Iz
0
1 (29)

and

Ż 0
� = (LQ�1  I � �s  Lu)Z

0
�= (30)

The eigenvalues of (LQ�1 I ��s  Lu) are �m � �l> m 5
{1> ===> u}> l 5 {2> ===>Q}. According to the assumptions in
the lemma, Re(�l) ? �. Therefore, the real parts of (�m��l)
are negative so that the matrix (LQ�1  I � �s  Lu) is
Hurwitz. This proves that Z 0

� (w) in (30) is exponentially
stable.

Based on (26) and (27),Z = ([1> QO]Lu)[z
0W
1 > Z

0W
� ]

W .

Since Z 0
� (w) in (30) is exponentially stable,

Z (w)$ ([1> QO] Lu)[z
0W
1 (w) > 0]

W = 1 z01 (w)

as w$4. This shows that zl’s are synchronized to z
0
1. The

synchronized trajectory can be characterized by (29) and the

following initial condition:

z01(w0) =
¡
[1> 01×(Q�1)] Lu

¢
Z 0(w0)

=
¡
[1> 01×(Q�1)] Lu

¢
(W  Lu)Z (w0)

=
¡¡
[1> 01×(Q�1)][e> PO]

W
¢
 Lu

¢
Z (w0)

= (eW  Lu)Z (w0)=

Lemma 6: For Q agents with the following closed-loop

dynamics:

{̇l = Dfl{l +ElJl
X

dlm(zl � zm) (31)

żl = Izl �
X

dlm(zl � zm)> (32)

suppose that Assumptions 1, 2, and 3 are satisfied and

the gains Nl’s are selected such that the matrices Dfl’s
are Hurwitz. Then SSS is enabled exponentially for (31-

32), i.e. the {�states are stabilized while the z�states are
synchronized exponentially.

Proof: The proof can be obtained using Lemma 5 and

the fact that Dfl is Hurwitz.
The system (31-32) can be rewritten in the collective form

as
�
[̇

Ż

¸
=

�
Af BG(O Lu)
0 (LQ  I )� (O Lu)

¸ �
[

Z

¸
= (33)

In order to design a control law of the form (4) for (3),

we make use of the system (31-32). More specifically, the

gain matrices Nl, Fl, and Jl will be properly designed so
that (8) can be related to (33). According to (6) and (31), a

transformation is chosen as

Z = ] +C[> (34)

where the gain matrix C =
LQ

l=1 Fl will be designed later.
Note that this transformation is invertible. Equation (33) in

the coordinate ([>]) becomes
�
[̇

]̇

¸
=

�
Af +BG(O Lu)C BG(O Lu)

�1 +�2C �2 + (LQ  I )

¸ �
[

]

¸
>

(35)

where �1 = �CAf + (LQ  I )C and �2 = �(CBG +
L)(O Lu).
According to (34), SSS is enabled for (33) if and only

if SSS is enabled for (35). Under proper design of gain

matrices, we will show that the SSS problem of (8) can

be transformed to that of (35). The following theorem

demonstrates how to design the gain matrices for the SSS

purpose.

Theorem 4: Under Assumptions 1, 2, and 3, the gain

matrices Nl, Fl, and Jl will be designed according to the
following criterions:

A1. Dfl = (Dl�ElNl) is Hurwitz and Dfl does not have
common eigenvalues with I .
A2. Fl is the solution of

�FlDfl + IFl = Hl= (36)

A3. Jl is the right inverse of �FlEl (i.e., �FlElJl = L).
Then, the control law (4) exponentially enables SSS for

(3). Furthermore, the synchronized trajectory that }l’s con-
verge to is characterized as

}̇0 = I}0 (37)

}0(w0) = (eW  Lu) [](w0) +C[(w0)] =
Proof: Under Assumption 2, there exists Nl such that

Dfl = (Dl � ElNl) is Hurwitz. During the design of Nl

through pole placement, we can also tune Nl so that Dfl
does not have common eigenvalues with I . Thus, A1 can be
easily satisfied. Based on A1, Dfl and I have no common

eigenvalues. According to Lemma 2, there exists Fl such
that (36) in A2 is satisfied. This further indicates that �1 �

�CAf+(LQI )C = E based on (36). Selecting Jl as the
right inverse of �FlEl as stated in A3 will make (CBG+
L) = 0. This indicates that�2 = �(CBG+L)(OLu) = 0.
Thus, the transformed system (35) will be the same as system

(8). Based on Lemma 6, under Assumptions 1, 2, and 3,

SSS is enabled for (31-32) (i.e., (33)) and therefore (35)

according to the transformation (34). Thus, SSS is enabled

for the closed-loop system (8). The synchronized trajectory

that }l’s converge to can be formulated as (37) based on (24)
and (34).

Remark 6: In Theorem 4, Jl is the right inverse of
�FlEl. This requires that the rank of �FlEl is equal to u.
To fulfil this requirement,pl must be greater than or equal to

u, which requires that the number of inputs are not less than
the dimension of the states that are required to synchronize.
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Fig. 2. The internal states are stabilized for all the agents.

VI. EXAMPLE AND SIMULATIONS

Consider a group of non-identical agents with Q = 3. The
system matrices of the l�th agent’s dynamics (i.e., (3)) are

Dl =

5

999
7

0 12 · · · l2

�1 1 · · · 0
... 0

. . . 0
�l 0 0 l

6

:::
8
5 R

(l+1)×(l+1)>

El =

5

9999
7

0 l

1
...

... 1
l 0

6

::::
8
5 R

(l+1)×2> I =

�
0 1
�1 0

¸
>

Hl =

�
1 0 · · · 0
0 1 · · · l

¸
5 R

2×(l+1)=

The control gain Nl is selected so that the dominant eigen-
values of Dfl = Dl � ElNl are �1 ± 2m. The connec-
tion graph is a fixed directed graph with the Laplacian

O = [1>�1> 0; 0> 1>�1; 0>�1> 1]. The initial conditions are
selected randomly in (�5> 5). The simulation results are
presented in Fig. 2 and Fig. 3, which show that the internal

states are stabilized and the external states are synchronized.

VII. CONCLUSIONS

We studied the simultaneous stabilization and synchro-

nization (SSS) problem for one class of non-identical multi-

agent systems. The agent dynamics are different and the

dimensions of agent states are not necessarily equal. A dis-

tributed control law is designed based on local measurements

and information exchanged from neighboring agents to en-

able SSS. The necessary and sufficient conditions to achieve

this goal have been obtained using the closed-loop form of

the system. Specific approaches of designing the control gain

matrices are provided such that the sufficient conditions can

be satisfied. A precise form of the synchronized trajectory

has also been determined.
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Fig. 3. The external states are synchronized for all the agents.
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