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Abstract— This work presents a quasi-decentralized net-
worked control structure with a dynamic communication logic
for plants with limited state measurements and interconnected
units that exchange information over a shared, resource-
constrained communication network. Initially, an observer-
based output feedback controller is synthesized for each unit,
and Lyapunov techniques are used to explicitly characterize the
closed-loop stability properties of each unit under continuous
communication. This characterization is then used as the basis
for developing a dynamic communication strategy that keeps
the information transfer between the local control systems to
a minimum without jeopardizing closed-loop stability. The key
idea is to monitor the evolution of the observer-generated state
estimates locally within each unit and suspend communication
for as long as the expected stability threshold is met. During
periods of communication suspension, each control system relies
on a set of models that provide estimates of the states of the

neighboring units. At times when the stability threshold is
breached, communication is re-established and the neighboring
units are prompted to send their data over the network to
update the models. The stability threshold is determined using
Lyapunov techniques and can be tightened or relaxed by
proper controller and observer tuning. Finally, the stability
and performance properties of the dynamic networked control
structure are illustrated using a chemical plant example.

I. INTRODUCTION

The development of systematic methods for control of

large-scale dynamical systems composed of tightly inter-

connected subsystems is a fundamental problem that has

been the subject of significant research work within process

control over the past few decades (e.g., see [1], [2], [3], [4],

[5], [6], [7], [8], [9] and the references therein). Traditionally,

the controller synthesis problem for such plants has been ad-

dressed within either the centralized or decentralized control

frameworks. An approach that provides a compromise be-

tween the complexity of centralized control schemes and the

performance limitations of decentralized control approaches

is quasi-decentralized control [10], [11], [12] which refers

to a distributed control strategy in which most signals used

for control are collected and processed locally, while some

signals are transferred between the local units and controllers

to adequately account for the interactions and minimize

the propagation of process upsets. A key consideration in

this strategy is to enforce the desired closed-loop stability

and performance objectives of the plant with minimal cross
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communication between the component subsystems. This

is an appealing objective particularly when the commu-

nication medium is resource-constrained (e.g., a wireless

sensor network) and conserving network resources is key

to prolonging the service life of the network and minimizing

communication disruptions (the reader may refer to [13], [14]

for surveys of results and references on networked control

systems). Inspired by the ideas of model-based networked

control [15], information transfer between the plant units

under quasi-decentralized control is kept to a minimum by

embedding within the local control systems dynamic models

that provide the local controllers with estimates of the states

of the neighboring units when communication is suspended,

and updating the states of those models when communication

is restored.

A key feature of the communication logic used in [10],

[11], [12] is that it is static in the sense that the allowable

communication rate is constant and can be computed off-

line prior to plant operation. More recently, we developed

in [16] a feedback-based communication policy in which

the necessary communication rate can be determined and

adjusted on-line (i.e., during plant operation) based on the

evolution of the state of the plant. The key idea is to locally

monitor the evolution of the state of each unit and request

model updates from the rest of the plant only when a state-

dependent stability bound is breached. This allows the plant

to respond quickly in an adaptive fashion to a unit that

requires immediate attention.

In most practical applications, however, direct measure-

ments of the full-state are typically unavailable, and this

introduces a number of challenges that need to be accounted

for at the local control level, as well as at the plant-wide

communication level. At the local control level, for example,

the lack of full-state measurements necessitates the design of

suitable state observers to generate estimates of the states of

each unit from the available measurements. Each observer

must be designed to enforce quick decay of the estimation

error in the presence of interconnections between the plant

units. This is critical given that the observer-generated es-

timates are needed to implement the local control action

and must also be transmitted to the neighboring units to

perform model updates at communication times. Observer

estimation errors also require placing additional restrictions

on the communication logic to account for these errors

explicitly in the stability threshold and for the fact that only
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the observer-generated estimates can be monitored and used

to assess the stability properties of the individual subsystems.

Motivated by these considerations, we present in this

work a methodology for the design of a quasi-decentralized

networked control structure with a dynamic communication

logic for plants with incomplete state measurements and

interconnected subsystems that communicate over a shared,

resource-constrained network. The structure integrates ideas

from model-based control, high-gain observers, Lyapunov

stability and feedback-based communication. Initially, an

output feedback controller that enforces practical stability

and ultimate boundedness in the absence of communication

suspension is synthesized for each unit. To reduce informa-

tion transfer over the network, a set of models are included

within each local control system to provide estimates of

the states of the neighboring units when communication

is suspended. To determine when communication must be

re-established, the evolution of the observer-generated state

estimates is monitored locally within each unit such that

if it begins to breach a pre-specified time-varying stability

threshold at any time, the neighboring units are prompted to

send their data over the network to update the corresponding

models. Finally, the stability and performance properties of

the dynamic networked control structure are illustrated using

a chemical plant example.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a large-scale distributed plant composed of n
interconnected processing units, each of which is described

by a continuous-time uncertain nonlinear system, and repre-

sented by the following state-space description:

ẋ1 = f1(x) +G1(x)u1 +W1(x)θ1(t), y1 = h1(x1)
ẋ2 = f2(x) +G2(x)u2 +W2(x)θ2(t), y2 = h2(x2)

...
...

ẋn = fn(x) +Gn(x)un +Wn(x)θn(t), yn = hn(xn)
(1)

where xi := [x
(1)
i x

(2)
i · · · x

(pi)
i ]′ ∈ IRpi denotes the

vector of process state variables associated with the i-th
processing unit, x′ denotes the transpose of a vector x,

x = [x′1 x
′
2 · · · x′n]′, yi := [y

(1)
i y

(2)
i · · · y

(qi)
i ]′ ∈ IRqi and

ui := [u
(1)
i u

(2)
i · · · u

(ri)
i ]′ ∈ IRri denote the vector of mea-

sured outputs and manipulated inputs associated with the i-th

processing unit, respectively, θi := [θ
(1)
i θ

(2)
i · · · θ

(si)
i ]′ ∈

IRsi denotes the vector of uncertain (possibly time-varying),

but bounded, variables which takes values in a nonempty

compact convex subset of IRsi , and satisfies ‖ θi ‖ ≤ θb,i, for

i = 1, · · · , n, where θb,i is a positive real number and ‖ · ‖ de-

notes the standard Euclidean norm of a vector. The uncertain

variables may describe time-varying parametric uncertainty

and/or exogenous disturbances. The functions fi(·), Gi(·),
Wi(·), and hi(·) are sufficiently smooth nonlinear functions.

Without loss of generality, it is assumed that the origin is

an equilibrium point of the nominal uncontrolled plant (i.e.,

fi(0) = 0 for i = 1, · · · , n). Referring to (1), we consider

the problem of designing a distributed, networked control

strategy that robustly stabilizes the individual units near the

origin, while simultaneously accounting for the constrained

resources of the plant-wide communication network and the

lack of complete state measurements within each unit.

III. ROBUST QUASI-DECENTRALIZED NETWORKED

OUTPUT FEEDBACK CONTROL STRUCTURE

A. Robust output feedback controller synthesis

To realize the desired robust quasi-decentralized net-

worked control structure, the first step is to synthesize for

each unit an output feedback controller that enforces robust

closed-loop stability and an arbitrary degree of asymptotic

attenuation of the effect of the uncertainty on the closed-loop

system in the absence of communication suspension (i.e.,

when the sensors of each unit transmit their data continuously

to the control systems of the other plant units). To illustrate

the main idea, we consider as an example the following

Lyapunov-based controller (e.g., [17], [18], [19], [20]) (note

that other controller design methods can be used as well):

ui =ki(x, θb,i, ρi, χi, φi), i = 1, 2, · · · , n

=−




L∗

fi
Vi +

√
(L∗∗

fi
Vi)2 + ‖ (LGi

Vi)′ ‖4

‖ (LGi
Vi)′ ‖2



 (LGi
Vi)

′(x)

(2)

when ‖ (LGi
Vi)

′ ‖ 6= 0, and ui = 0 when ‖ (LGi
Vi)

′ ‖ = 0,

where Vi(xi) is a robust control Lyapunov function for the

i-th unit,

L∗∗
fi
Vi = Lfi

Vi + ρi‖ xi ‖ + χi‖ (LWi
Vi)

′ ‖θb,i (3)

L∗
fi
Vi = Lfi

Vi +
(
L∗∗

fi
Vi − Lfi

Vi

) (
‖ xi ‖

‖ xi ‖ + φ′i

)
(4)

and Lfi
Vi = (∂Vi/∂xi)fi(x), LGi

Vi =
[Lgi,1

Vi · · · Lgi,ri
Vi], Lgi,j

Vi = (∂Vi/∂xi)gi,j(x),
gi,j(x) is the j-th column of Gi(x), LWi

Vi =
[Lwi,1

Vi · · · Lwi,si
Vi], Lwi,j

Vi = (∂Vi/∂xi)wi,j(x),
wi,j(x) is the j-th column of Wi(x), and ρi > 0, χi > 1,

φ′i > 0 are tunable parameters.

Consider now the i-th subsystem of the nonlinear plant

of (1) under the control law of (2)-(4). Evaluating the time-

derivative of the i-th Lyapunov function along the closed-

loop trajectories, it can be verified that V̇i satisfies the

following bound:

V̇i ≤ −ρi
‖xi ‖

2

‖xi ‖+φ′

i

< 0 ∀ ‖ xi ‖ ≥ φ′i(χi − 1)−1, (5)

for i = 1, 2, · · · , n, which implies that the state of the i-th
closed-loop unit remains bounded and converges in finite

time to a terminal neighborhood of the origin that can

be made arbitrarily small by appropriate selection of the

controller tuning parameters φ′i and χi. It can also be verified

that the inequality in (5) implies that V̇i satisfies:

V̇i(x) ≤ −αi(‖xi‖) + γi(φi) (6)

for some class K functions, αi(·) and γi(·), where φi =
φ′i(χi − 1)−1.

Note that the implementation of the control law of (2)-(4)

as written requires the availability of full-state measurements

both from the local subsystem being controlled, xi, and from

the other units, xj , which are seldom available in practice. To

compensate for the lack of full-state measurements, a suitable
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state observer needs to be designed for each local control

system to generate estimates of the local state variables

from the measured outputs, and combined with the state

feedback controller of (2)-(4) to enforce closed-loop stability.

Specifically, we consider an observer-based output feedback

controller of the following general form:

ẇi = ψi(w, yi, ui, µi)
ui = ki(w, θb,i, ρi, χi, φ

′
i)

(7)

where wi is the observer-generated estimate of the state

of the i-th subsystem, w = [w′
1 w′

2 · · · w′
n]′, µi > 0

is an observer design parameter, and ψi(·) is a smooth

vector function. We consider that an appropriate set of state

observers have been synthesized for the different plant units.

The necessary requirements for such observer designs are

stated in the following assumption and discussed thereafter.

Assumption 1: Refereing to the closed-loop system of (1),

(2)-(4) and (7), given any set of positive real numbers

{δb,i, θb,i, δd,i}, there exists φ∗i > 0, and for each φi ∈
(0, φ∗i ], there exists µ∗

i > 0, such that if φi ≤ φ∗i ,

µi ≤ µ∗
i , ‖ xi(0) ‖ ≤ δb,i, ‖wi(0) ‖ ≤ δb,i, and ‖ θi ‖ ≤

θb,i, the trajectories of the closed-loop system are bounded

and satisfy lim sup
t→∞

‖ xi(t) ‖ ≤ δd,i. Furthermore, given any

T b
i > 0, there exists µ̃i ≤ µ∗

i such that if 0 < µi ≤ µ̃i,

‖ xi(t) − wi(t) ‖ ≤ Kiµi for all t ≥ T b
i , for some Ki > 0,

i = 1, · · · , n.

Remark 1: Assumption 1 requires that the observer de-

signed for each unit be able to (a) ensure that the closed-

loop system under the output feedback controller of (7) is

stable with an ultimate bound on the closed-loop state that

can be tuned via proper selection of the observer design

parameter, and (b) enforce an arbitrarily fast convergence

of the observer-generated estimate to the actual state by

proper selection of the observer design parameter. As will be

shown later, these requirements will facilitate the design and

implementation of the dynamic communication policy under

output feedback control. In principle, any observer satisfying

these requirements can be used. Typical examples include

high-gain observers (e.g., see [21], [20]) where µi scales

inversely with the observer gain. Note that convergence of

the estimation error below some desired level is ensured only

after a short period of time T b
i which can be made arbitrarily

small by proper selection of µi.

The following proposition provides an explicit character-

ization of the stability properties of the closed-loop system

under output feedback control.

Proposition 1: Consider the closed-loop system of (1)-(4)

and (7) for which Assumption 1 holds with φi ≤ φ∗i , µi ≤ µ̃i,

‖ xi(0) ‖ ≤ δb,i, ‖wi(0) ‖ ≤ δb,i, and ‖ θi ‖ ≤ θb,i for all

i = 1, · · · , n. Then, there exists a class K function ǫi(·)
such that:

V̇i(xi(t)) ≤ −αi(‖xi(t)‖) + γi(φi) + ǫi(µo) (8)

for all t ≥ T b := max
j=1,···,n

{T b
j } > 0, where µo =

max
j=1,···,n

{µj}.

Proof: Consider the i-th subsystem of the nonlinear

plant of (1) under the controller of (2)-(4) and (7). Evaluating

the time-derivative of Vi along the trajectories of the closed-

loop system yields:

V̇i(xi) = Lfi
Vi(x) + LGi

Vi(x)ki(x) + LWi
Vi(x)θi

+ LGi
Vi(x)[ki(w) − ki(x)]

≤ −αi(‖xi‖) + γi(φi)

+ ‖LGi
Vi(x) ‖‖ ki(w) − ki(x) ‖

(9)

where we have used the fact that Lfi
Vi(x) +

LGi
Vi(x)ki(x) + LWi

Vi(x)θi ≤ −αi(‖xi‖) + γi(φi)
for φi ≤ φ∗i from (6). Since the state of the closed-loop

system is bounded (from Assumption 1), we have that

there exist positive real numbers Mi and Lki
, such that

‖LGi
Vi(x) ‖ ≤ Mi and ‖ ki(w) − ki(x) ‖ ≤ Lki

‖w − x ‖.

Substituting these estimates into (9) yields:

V̇i(xi) ≤ −αi(‖xi‖) + γi(φi) +MiLki
‖w − x ‖

≤ −αi(‖xi‖) + γi(φi) +MiLki

∑n

j=1‖wj − xj ‖
(10)

From the definitions of Tb and µo in Proposition 1, as well as

the bound on the estimation error given in Assumption 1, it

follows that for all t ≥ Tb and µj ≤ µ̃j , ‖wj(t)− xj(t) ‖ ≤
Kjµj ≤ Kjµo. Substituting this estimate into (10) yields:

V̇i(xi(t)) ≤ −αi(‖xi(t)‖) + γi(φi) +MiLki

∑n

j=1Kjµo

= −αi(‖xi(t)‖) + γi(φi) + ǫi(µo), ∀ t ≥ T b

(11)
where ǫi(µo) := MiLki

∑n

j=1Kjµo.

Remark 2: The bound in (8) implies that the closed-loop

state under output feedback control is bounded and converges

in finite time to a neighborhood of the origin whose size

depends on the choices of both the controller and observer

design parameters. When comparing this bound with its

counterpart in (6) under full-state feedback control, it can

be observed that the effect of the state estimation error is to

essentially increase the ultimate bound obtained under state

feedback control (i.e., the terminal set) by a certain amount

that can be made arbitrarily small by appropriate selection

of the observer design parameter. In the limit as µo goes to

zero (e.g., sufficiently high observer gains are used for all

the subsystems), the state feedback bound can be recovered.

B. Model-based quasi-decentralized control

The implementation of each control law in (7) requires

the availability of state estimates generated by the observers

both within the local subsystem being controlled and within

the units connected to it. Unlike the local observer estimates

which are available continuously through a dedicated net-

work, the observer-generated estimates from the neighbor-

ing units are available only through the shared plant-wide

network. To reduce the transfer of information between the

local control systems as much as possible without sacrificing

stability, a set of dynamic models of the interconnected plant

units are embedded in the local control system of each

unit to provide it with an estimate of the evolution of the

states of the neighboring units when state estimates are not

transmitted over the network. The use of models allows the

neighboring units to send their data at discrete time instants

since the models can provide an approximation of the plant’s

dynamics. Feedback from one unit to another is performed by

updating the state of each model using the observer estimates
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of the corresponding unit whenever communication between

the plant units is allowed. Under this architecture, the local

control law for each unit is implemented as follows:

ui(t) = ki(wi(t), x̂
i(t)), i = 1, 2, · · · , n

ẇi(t) = ψi(wi(t), x̂
i(t), yi(t), ui(t), µi)

˙̂xi
j(t) = f̂j(wi(t), x̂

i(t)) + Ĝj(wi(t), x̂
i(t))ûi

j(t)

ûi
j(t) = kj(wi(t), x̂

i(t)), t ∈ (tik, t
i
k+1)

x̂i
j(t

i
k) = wj(t

i
k), j = 1, · · · , n, , j 6= i, k = 0, 1, 2, · · ·

(12)

where x̂i
j is an estimate of xj , used by the local control

system of the i-th unit, x̂
i

is a vector containing the model

estimates of the states of all the plant units except for the

i-th unit, i.e., x̂
i = [x̂i′

1 , · · · , x̂
i′

i−1, x̂
i′

i+1, · · · , x̂
i′

n ]′, f̂j(·) and

Ĝj(·) are nonlinear functions that model the dynamics of

the j-th unit. The notation tik is used to indicate the k-th

time instance that the states of the models embedded in i-
th control system are updated using the observer generated

state estimates transmitted from the rest of the plant.
C. A dynamic strategy for terminating and restoring com-

munication
Our aim in this section is to devise a communication

policy that allows each local control system to determine,

and adaptively adjust (based on the conditions of the local

subsystem), the rate at which it requests updates from the rest

of the plant. The main idea is to use the Lyapunov stability

condition derived in Section III-A as a guide for establishing

and suspending communication. Specifically, consider the

nonlinear plant of (1) subject to the model-based networked

controller of (12). Evaluating the time-derivative of Vi along

the trajectories of the networked closed-loop subsystem for

t ∈ [tik, t
i
k+1), where tik > T b, yields:

V̇i(xi) = Lfi
Vi(x) + LGi

Vi(x)ki(wi, x̂
i) + LWi

Vi(x)θi

= Lfi
Vi(x) + LGi

Vi(x)ki(w) + LWi
Vi(x)θi

+ LGi
Vi(x)[ki(wi, x̂

i) − ki(w)]

≤ −αi(‖xi‖) + γi(φi) + ǫi(µo)

+ LGi
Vi(x)[ki(wi, x̂

i) − ki(w)]
(13)

where we have used the bound in (8) to derive the inequality

in (13). Examining this inequality and comparing it with the

inequality in (8) obtained for the non-networked plant (i.e.,

under continuous communication) reveals the perturbation

introduced by suspending the transfer of state estimates from

the rest of the plant to the i-th unit and the reliance on

the model estimates instead. This perturbation potentially

alters the rate at which Vi decays, especially as the model

estimation error grows, and could become large enough to

cause instability. Before this happens, communication with

the rest of the plant must be re-established to allow updating

the states of the models embedded in the local control system

so that the plant-model mismatch can be corrected in time.

However, since full-state measurements are not available,

the bound in (8) cannot be used directly as the criterion for

verifying when communication should be terminated or re-

established. To address this problem, we need to derive an

alternative bound that can be checked by monitoring only the

state estimate generated by the local observer. The following

proposition provides such a bound and characterizes the

evolution of the time-derivative of Vi in terms of wi (instead

of xi) under continuous communication by exploiting the

error convergence properties of the local observers.

Proposition 2: Consider the closed-loop system of (1)-(4)

and (7) for which Assumption 1 holds with φi ≤ φ∗i , µi ≤ µ̃i,

‖ xi(0) ‖ ≤ δb,i, ‖wi(0) ‖ ≤ δb,i, and ‖ θi ‖ ≤ θb,i for all

i = 1, · · · , n. Then, there exists a class K function Θi(·)
such that:

V̇i(wi(t)) ≤ −αi(‖wi(t)‖) + γi(φi) + Θi(µo) (14)

for all t ≥ T b, with Tb and µo as defined in Proposition 1.

Proof: From the continuity of αi(·) and V̇i(·) in xi, it

follows that for any µi > 0 there exist class K functions

∆i(·) and Γi(·), such that if ‖ xi − wi ‖ ≤ Kiµi for some

Ki, the following estimates hold:

V̇i(wi) − V̇i(xi) ≤ Γi(µi), αi(‖xi‖) ≥ αi(‖wi‖) − ∆i(µi)

Substituting these relations into (8) yields (14) where

Θi(·) := ∆i(·) + Γi(·) + ǫi(·).
Having characterized the expected behavior of Vi(wi)

under continuous communication, we are now in a position

to state the main result of this section. The following theo-

rem describes a strategy for suspending and re-establishing

communication on the basis of the evolution of the local

observer-generated state estimate.

Theorem 1: Consider the nonlinear plant of (1), for which

the Lyapunov functions Vi, i = 1, · · · , n, satisfy (8) when

the state estimates generated by the local observers of the

corresponding units are exchanged continuously between the

plant units. Consider also the i-th plant unit subject to the

model-based networked controller of (12) with x̂i
j(t) = wj(t)

for all 0 ≤ t ≤ T b, for all j and all i. Let ti−k > T b be the

earliest time such that:

V̇i(wi(t
i−
k )) > −αi(‖wi(t

i−
k )‖) + γi(φi) + Θi(µo) (15)

where wi(t
i−
k ) = limt→t

i−

k

wi(t), then the update law given

by x̂i
j(t

i
k) = wj(t

i
k) for all j 6= i ensures that V̇i(xi(t

i
k)) ≤

−αi(‖xi(t
i
k)‖)+γi(φi)+Ψi(µo), for some class K function

Ψi(·) ≥ Θi(·).
Proof: In light of (8), (13) and (14), we have that for all

t ≥ T b, the evolution of the local state estimate, wi, under

the model-based networked controller of (12) satisfies:

V̇i(wi(t)) ≤ −αi(‖wi(t)‖) + γi(φi) + Θi(µo)

+ LGi
Vi(x(t))[ki(wi(t), x̂

i(t)) − ki(w(t))]
(16)

Therefore, if at any time ti−k > T b (15) is satis-

fied, we conclude that LGi
Vi(x(ti−k ))[ki(wi(t

i−
k ), x̂i(ti−k ))−

ki(w(ti−k ))] > 0. By re-setting the states of the models em-

bedded in the i-th control system such that x̂i
j(t

i
k) = wj(t

i
k),

for j 6= i, we have ki(x̂
i(tik), wi(t

i
k)) − ki(w(tik)) = 0

which when substituted into (16) restores the original bound

obtained under continuous communication: V̇i(wi(t
i
k)) ≤

−αi(‖wi(t
i
k)‖) + γi(φi) + Θi(µo). This, together with the

O(µo) closeness between xi and wi for all t ≥ T b and the

continuity of V̇i(·) and αi(·) with respect to wi, implies the

existence of a class K function Ψi(µo) ≥ Θi(µo) such that

V̇i(xi(t
i
k)) ≤ −αi(‖xi(t

i
k)‖) + γi(φi) + Ψi(µo).
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Remark 3: Notice that, unlike the case under full-state

feedback, continuous communication is initially needed for

a short period of time to ensure that for the given choice

of the observer design parameter, the state estimation error

has decreased to a sufficiently small value such that, from

that point in time onwards, the position of the local state can

be inferred reliably from the local state estimate. Recall that

the bounds in (8) and (14) which constitute the basis for

turning on and off the communication are valid only after

the observer estimation error has become sufficiently small.

IV. SIMULATION STUDY: APPLICATION TO CHEMICAL

REACTORS WITH RECYCLE

We consider a plant composed of two cascaded non-

isothermal continuous stirred-tank reactors (CSTRs) with

recycle (see the plant model in [10]). The output of CSTR

2 is passed through a separator that removes the products

and recycles the unreacted material to CSTR 1. The reactant

species A is consumed in each reactor by three parallel

irreversible exothermic reactions; and a jacket is used to

remove/provide heat to each reactor. The control objective

is to stabilize the plant at the (open-loop) unstable steady-

state with the rates of heat input, denoted by Q1 and Q2,

chosen as the manipulated variables for the two reactors.

Only the temperatures of the two reactors are assumed to

be available as measurements. The control objective is to

be achieved with minimal data exchange between the local

control systems of the reactors over a shared communication

network. Following the methodology presented in Section

III, the plant is cast in the form of (1) with n = 2, where xi

and ui are the (dimensionless) state and manipulated input

vectors for the i-th unit, respectively, and θi represents the

vector of parametric uncertainties in the enthalpies of the

three reactions. A Lyapunov-based controller of the form of

(2)-(4) with Vi = x′iPixi, i = 1, 2, P1 = P2 =

[
1 0
0 0.5

]
,

is then designed for each reactor to enforce robust stability

and uncertainty attenuation in the absence of communication

suspensions. A state observer of the following form is also

designed for each reactor: ẇi = fi(w1, w2)+ giui +Li(yi −
Ciwi), where wi is an estimate of xi, Li is the observer gain

(chosen as L1 = [79.4 − 94.8]′ and L2 = [72.3 352.5]′

in the simulations). The controller and observer design

parameters were chosen to ensure that the closed-loop state

of each unit converges in finite time to a small neighborhood

of the desired steady-state. It was verified that, when w1 and

w2 are communicated continuously between the two units,

the controllers successfully stabilize the closed-loop state of

the plant near the desired steady state.

For the case when the observer estimates can be received

only through the shared network, and in order to reduce

utilization of network resources, the following models are

used during periods of communication suspension to gen-

erate estimates of the state of the neighboring unit: ˙̂xi =
f̂i(wi, x̂j) + ĝiui(wi, x̂j), where for simplicity, f̂i = fi and

ĝi = gi. Using the models’ estimates, the control laws are

implemented as in (12) where the estimates are used by the

local controller so long as no data from the neighboring

unit are transmitted over the network, but are updated using

the observer estimates provided by the local state observer

of the other reactor whenever they become available from

the network. The solid profiles in Figs.1(a)-(b) depict the

resulting evolution of the closed-loop state profiles when the

plant is operated using the dynamic communication policy

presented in Section III. In obtaining these plots, models with

parametric uncertainty of θi = [−0.1 −0.1 −0.1]′, i = 1, 2,

were used, and the following values were chosen for the

controller tuning parameters: χi = 1.1, ρi = 0.0001, φ′i =
0.0001. In this case, the evolution of Vi(wi) is monitored

locally within each unit, and an update is requested and

received only when either (1) Vi(wi) is on the verge of

increasing while wi is outside the terminal set, or (2) wi

is on the verge of escaping the terminal set while previously

inside. It can be seen from the figures that the plant can be

successfully stabilized near the desired steady-state.
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Fig. 1. Plots (a)-(b): Closed-loop temperature profiles under the dynamic
communication policy between the reactors. Plots (c)-(d): Update times of
the models embedded in the local control systems of the two reactors.

Figs.1(c)-(d) show the time instances at which the models

embedded in the local control systems of the two reactors

are updated. The variable “Updatei” takes a value of 1 when

the local control system for the i-th reactor requests and

receives an update from its neighbor to reset the state of

the model embedded within it, and takes a value of zero

when no updates are needed. It can be seen from the two

plots that continuous communication between the two local

control systems is needed only initially and over a short

period of time. As the closed-loop plant state settles close

to the desired operating point, no further communication

from the first unit to the second is required; however,

periodic updates for CSTR 1 (although less frequent than

initially required), are still needed due to a tighter ultimate

bound requirement. Notice that, compared with the state

feedback case, communication between the two reactors is

needed more frequently under output feedback because of the

uncertainty in the models (as well as the observer estimation

errors). However, it can be shown that in the case of perfect

models, we can practically recover the same communication

pattern obtained under state feedback control.

For comparison, we also implemented a static communica-

tion policy in which the two reactors communicate with each

3156



other over the network periodically, and each unit transmits

its observer estimates at a constant rate (the same for both

units) to update the model embedded in the local controller

of its neighboring unit. This policy assumes that the sensors

of all the units are given access to the network and can

successfully transmit their data simultaneously. The dashed

and dotted profiles in Figs.1(a)-(b) depict the evolution of

the closed-loop state profiles of the two reactors under this

policy. It can be verified that the maximum allowable update

period that guarantees closed-loop stability is h = 0.02 hr,

and that the closed-loop plant becomes unstable for h > 0.02
hr. However, operating at the maximum allowable update

period leads to poor performance (see dashed profiles),

especially when compared with the performance obtained

under the dynamic policy. In order to achieve an overall

closed-loop response comparable to the one obtained under

the dynamic communication policy, a smaller update period

of h = 0.01 hr must be used (see dotted profiles) which

requires further increase in communication.
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Fig. 2. Plots (a)-(b): Closed-loop state profiles under dynamic and static
communication policies between the reactors when the closed-loop system
is subject to unexpected external disturbance in the flow rate of the fresh
feed stream to CSTR 1. Plots (c)-(d): Update times of the models embedded
in the local controllers under the dynamic communication policy.

In addition to closed-loop performance and network

utilization considerations, we have also investigated the

disturbance-handling capabilities of both the static and dy-

namic communication policies in order to compare their

robustness with respect to unanticipated disturbances during

plant operation. To this end, a 50% step disturbance was

introduced in the flow rate of the fresh feed stream in CSTR

1, F0, at time t = 2 hr (i.e., after the plant has reached

its steady-state), and this disturbance lasts for 0.2 hrs. Fig.2

panels (a)-(b) depict the resulting closed-loop temperature

profiles subject to the unexpected external disturbance. It can

be seen that while the control systems under the dynamic

communication policy can successfully recover from the

disturbance and force the plant to return to its steady-

state (see the solid profiles), the closed-loop performance

deteriorates under the static communication policy (in this

example we used a constant update period h = 0.01 hr)

where the states move away from the desired steady-state

significantly in the presence of the disturbance (see the

dotted profiles). Fig.2 panels (c)-(d) show the update times

of the models embedded in the local control systems of

the two reactors when the dynamic communication policy is

implemented. These two plots highlight the adaptive nature

of the dynamic communication policy which is the reason

for its ability to overcome the influence of the disturbance

on the closed-loop plant. Specifically, it can be seen that

the dynamic policy responds to the external disturbance by

increasing the frequency of communication between the two

control systems following the onset of the disturbance. This

in turn allows the plant states to return to the desired steady-

state by the end of the disturbance following which only less

frequent communication is needed to maintain stability.
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