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Abstract— This paper studies the discrete-time multivariable
model reference adaptive control (MRAC) design for discrete-
time linearized aircraft systems under damage conditions. A
discrete-time sequential linear system with uncertain parame-
ters and an unknown dynamics offset is used to model the large
uncertain system parametric and structural changes caused by
damage. The invariance properties of the two important design
conditions, the interactor matrix and the signs of the high
frequency gain matrix, of the discrete-time systems are studied.
A discrete-time state feedback MRAC scheme is developed to
ensure closed-loop signal boundedness and asymptotic output
tracking in the presence of damage. Simulation study of the
linearized NASA Generic Transport Model (GTM) shows the
desired system performance under uncertain damage.

Keywords: Aircraft damage, digital adaptive control, dis-
cretization, flight control, GTM, linearization, output track-
ing, state feedback.

I. INTRODUCTION

In the research field of aircraft systems, study and control
of aerodynamic and structural damage, such as locked flaps
or loss of wing tips, are very pertinent topics. The designed
controller must tolerate the damage, keep desired aircraft
performance before and after damage, and guarantee aircraft
safety. Considerable efforts have been devoted on this, e.g.
([1], [3], [4], [5], [6], [7], [8], [11]).

A damaged aircraft is a complicated nonlinear system with
large uncertainties. We apply a linearization-based adaptive
control design to deal with this. Due to uncertainties, equi-
librium points are not available for the damaged system. We
will arbitrarily choose an operating point to linearize the
nominal and damaged systems. Thus the linearized system
model with damage has an unknown constant dynamics
offset. Digital control systems are widely used in flight
control systems and they offer some advantages over conven-
tional analog control, such as no degradation of performance
because of wear and tear or aging. We will design a digital
multivariable MRAC scheme for a linearized digital aircraft
model with damage to compensate the uncertainties and
make the output signals track given reference signals.

Discrete-time multivariable MRAC schemes have been
well-studied ([9], [12]). For such designs, the two essential
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conditions are knowledge of the infinity zero structure of
the system and that of signs of high frequency gain ma-
trix principal minors. We will study these for a generic
discrete-time aircraft model before and after damage and
find that, irrespective of the relative degree of the elements
of the interactor matrix of the continuous-time system, for
sufficiently small sampling periods, the corresponding dis-
cretized system is unity. This means that even if the damage
changes the continuous-time interactor matrix, the digital
controller will tolerate the damage. Based on such system
invariance, to compensate the unknown dynamics offset
and the parametric uncertainties, we develop a discrete-time
multivariable MRAC scheme with a state feedback controller
to achieve asymptotic output tracking. This scheme has less
restrictive matching conditions [2], so we can choose a
common reference system before and after damage despite
the uncertainties of damage. Stability analysis and simulation
study of the linearized system obtained from the NASA
GTM model will demonstrate that the proposed controller
can guarantee boundedness of all closed-loop signals and
asymptotical tracking of the reference by the output.

The paper is organized as follows. In Section II, we
will give a discrete-time sequential linear system with an
uncertain dynamics offset which represent the linearized
aircraft system before and after damage. The invariance of
the infinity zero structure is investigated in Section III. We
will design an adaptive state feedback controller in Section
IV, where a nominal controller is developed as a priori
knowledge for the adaptive scheme. In Section V, we will
apply the proposed scheme to a linearized GTM model with
damage to demonstrate the desired tracking performance.

II. PROBLEM STATEMENT

We will consider a sequence of discrete-time linear sys-
tems with unknown dynamics offsets, which represent the
linearized aircraft system models before and after damage.

A. Control Problem
Consider a sequential linear discrete-time system with M -

inputs, M -outputs, n states and an unknown dynamics offset

x(k + 1) = Ax(k) +Bu(k) + f0, y(k) = Cx(k), (1)

where A, B, C are n×n, n×M , M×n unknown piecewise
constant real matrices respectively with a finite number of

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 606



unknown jumps (Ai, Bi, Ci), i = 1, 2, . . . , N , and f0, an n-
dimensional real array, is an unknown piecewise constant
offset with a finite number of unknown jumps f0i, i =
1, 2, . . . , N , such that A = Ai, B = Bi, C = Ci, f0 = f0i,
for k ∈ [ki−1, ki], i = 1, 2, . . . , N . k0 = 0 and kN =∞.

Control objective. The control objective is to design a
state feedback control law u(k) in (1) such that all the closed-
loop signals remain bounded and the plant output signal
y(k) tracks a given reference output ym(k) ∈ RM that is
generated from the reference model system

ym(k) = Wm(z)[r](k). (2)

Wm(z) is an M ×M real transfer matrix, and r(k), an M -
dimensional real array, is a bounded reference input signal.

Assumptions. To begin the control design, we assume:

(A1) All zeros of Gi(z) = Ci(zI − Ai)
−1Bi, i =

1, 2, . . . , N , lie within the unit circle in the z-plane;
(A2) Gi(z), i = 1, 2, . . . , N , have full rank, there is
a known modified left interactor matrix ξm(z) for all
Gi(z), i = 1, 2, . . . , N , and the reference system trans-
fer matrix Wm(z) = ξ−1m (z); (A3) All leading principal
minors ∆ij , i = 1, 2, . . . , N , j = 1, 2, . . . ,M , of each
high frequency gain matrices Kpi = limz→∞ ξm(z)Gi(z)
are nonzero and their signs are known, and sign[∆pj ] =
sign[∆qj ], p, q = 1, 2, . . . , N , j = 1, 2, . . . ,M ; (A4) (Ai,
Bi) is controllable and (Ai, Ci) is observable.

Next, we need to show that the sequential linear dig-
ital system (1) can represent the linearized aircraft sys-
tems before and after damage, so that we can apply a
linearization-based design for the control problem of non-
linear continuous-time aircraft systems with damage.

B. Control of Nonlinear Aircraft Systems with Damage
A nonlinear continuous-time aircraft system in nominal

conditions can be described as

ẋ(t) = fc1(x(t), u(t)), y(t) = Cx(t) = [θ, ψ]T , (3)

with state variables and input variables:

x(t)=[ub, wb, qb, θ, vb, rb, pb, φ, ψ]T, u(t)=[de, dr]
T , (4)

where ub, vb and wb are the body-axis velocity components
of the origin of the body-axis frame whose units are ft/sec,
pb, qb and rb are the body-axis components of the angular
velocity in rad/sec, φ, θ and ψ are the Euler roll, pitch
and yaw angles of the aircraft body axes with respect to
the reference axes in radians, and de and dr are the control
surfaces’ (elevator and rudder) angular positions in degrees.

Damage to the aircraft will cause uncertain parametric and
structural variations. The nonlinear aircraft dynamic model
in the presence of damage can be represented as

ẋ(t) = fc2(x(t), u(t)), y(t) = Cx(t) = [θ, ψ]T , (5)

fc2(t) is different from fc1(t) in (3) due to the damage.

Linearized continuous-time system with damage. We
choose (x0, u0) as the operating point for linearizing the

nonlinear aircraft system. The linearized nominal system at
(x0, u0) can be denoted as

∆ẋ = Ac1∆x+Bc1∆u+ fc1(x0, u0), ∆y = C∆x. (6)

The linearized damaged system at (x0, u0) is expressed as

∆ẋ = Ac2∆x+Bc2∆u+ fc2(x0, u0), ∆y = C∆x, (7)

∆x(t) = x(t)−x0,∆y(t) = y(t)−Cx0,∆u(t) = u(t)−u0,

∆x(t), ∆y(t), and ∆u(t) being the linearized system’s state,
output, and input signals, and x(t), y(t), and u(t) are the
nonlinear aircraft system’s signals. Since (x0, u0) can be
chosen as the equilibrium point for the aircraft before dam-
age, fc1(x0, u0) = 0 in (6). (x0, u0) is not the equilibrium
point of the damaged system (5) and fc2(x0, u0) 6= 0. The
parameters in the systems (6), (7) and the offset fc2(x0, u0)
are unknown due to the uncertainties in the aircraft system.

The linearized aircraft before and after damage can be
respectively expressed as the two sequential linear systems:

ẋ(t) = Ac1x(t) +Bc1u(t) + fc1, y(t) = Cx(t), (8)
ẋ(t) = Ac2x(t) +Bc2u(t) + fc2, y(t) = Cx(t), (9)

where Ac1, Ac2, Bc1, Bc2, C are n×n, n×n, n×M , n×M ,
M × n unknown real matrices respectively. fc1 is a zero
vector of dimension n, and fc2 is an n-dimensional real
vector. The nominal system (6) or (8) is not coupled, so we
consider the lateral-dimensional and longitudinal dynamics
separately. But the damaged system (7) or (9) is coupled.

Discretization. The generic linearized aircraft systems (8)
and (9) (before and after damage) both have the form

ẋ(t) = Acx(t) +Bcu(t) + fc, y(t) = Cx(t), (10)

the subscript c denoting continuous-time domain. The digital
form of (10) can be derived as

x(k + 1) = Ax(k) +Bu(k) + f0, y(k) = Cx(k), (11)

A = In + TAc +
T 2

2!
A2
c +

T 3

3!
A3
c + · · · , (12)

B =

(
TIn +

T 2

2!
Ac +

T 3

3!
A2
c +

T 4

4!
A3
c + · · ·

)
Bc, (13)

f0 =

(
TIn +

T 2

2!
Ac +

T 3

3!
A2
c +

T 4

4!
A3
c + · · ·

)
fc. (14)

The discrete digital systems before and after damage can
be obtained. Thus, for the linearization-based design of the
nonlinear aircraft system with damage, we consider the
control problem of the system (1) in subsection II-A.

III. INVARIANCE OF INFINITY ZERO STRUCTURES

In this section, we examine the infinity zero structure
invariance of the digital linearized system in presence of
relatively small damages.
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Proposition 1. If, for an M -input, M -output continuous-
time system, the M ×M interactor matrix is diagonal and
of the form

ξm(s) = diag{(s+ a)ρ1 , (s+ a)ρ2 , . . . , (s+ a)ρM },
ρi = 1, 2, . . . , i = 1, 2, . . . ,M, a > 0,

then, the M × M interactor matrix of the corresponding
M -input, M -output discretized system is of the form

ξm(z) = diag{(z + a′), (z + a′), . . . , (z + a′)}, |a′| < 1.

for all small sampling intervals T ∈ [0, T1], with T1 > 0.
Proof: Given the system matrices A, B and C of a lin-
ear continuous-time or discrete-time MIMO system with n
states, the transfer matrix can be calculated as

G(D) =
1

α(D)

(
En−1D

n−1 + En−2D
n−2 + · · ·+ E0

)
,

α(D) = det(DI −A) = zn + αn−1D
n−1 + · · ·+ α0,

En−1 = CB,

En−2 = CAB + αn−1CB,
...

E0 = CAn−1B + αn−1CA
n−2B + · · ·+ α1CB. (15)

For a continuous-time system, D needs to replaced by s, and
for a digital system, D must be replaced by z. The elements
of the interactor matrix ξm(D) must be of relative degrees
such that the high frequency gain matrix of G(D), defined
as Kp = limD→∞ ξm(D)G(D) is finite and non-singular.

For a continuous-time system with system matrices
(Ac, Bc, C), the non-zero element in ith row of the interactor
matrix is (s+ a)ρi . This implies that

Ei,n−j = CiA
j−1
c Bc, j = 1, 2, . . . , ρi − 1 (16)

are all zero vectors, and that

Ei,n−ρi = CiA
ρi−1
c Bc, (17)

is not a zero vector. The subscript i denotes the ith row of
a matrix. Also, the high frequency gain matrix,

Kpc = [E1,n−ρ1 , E2,n−ρ2 , . . . , EM,n−ρM ]T , (18)

is finite and non-singular, which means that the vectors
E1,n−ρ1 , E2,n−ρ2 , . . . , EM,n−ρM are linearly independent.

Now, for the discretized system,

Ei,(n−1) = TCiBc +
T 2

2!
CiAcBc +

T 3

3!
CiA

2
cBc + · · ·

+
T ρi

ρi!
CiA

ρi−1
c Bc +

T ρi+1

(ρi + 1)!
CiA

ρi
c Bc + · · ·(19)

Considering (16) and (17), we note that the first ρi−1 terms
on the right side of (19) are all zeros and contribute nothing.
Thus, in the present case, for the discretized system,

Ei,(n−1) =
T ρi

ρi!
CiA

ρi−1
c Bc+

T ρi+1

(ρi + 1)!
CiA

ρi
c Bc+· · · (20)

The first term on the right side of (20) is the same as the right
side of (17) multiplied by the factor Tρi

ρi!
. Thus, the former

is not a zero vector. We can conclude that there exists a
T1 > 0, such that, for all sampling periods T ∈ [0, T1], the
effects of higher order terms (power of T greater than ρi)
can be nullified, that is Ei,(n−1) of the discretized system is
not a zero vector. Since the Ei,(n−1) of the digital system is
the Ki,pc in (18) multiplied by a scalar factor, the vectors
Ei,(n−1), i = 1, 2, . . . ,M are linearly independent and En−1
of the digital system is non-singular.

For the discretized system, due to the non-singularity of
En−1, each row of the transfer matrix G(z) has a relative
degree of 1. So we choose the interactor matrix ξm(z) as

ξm(z) = diag{(z + a′), (z + a′), . . . , (z + a′)}, |a′| < 1,

and the high frequency gain matrix is Kpd = En−1. ∇
Proposition 2. The signs of the corresponding leading

principal minors of the high frequency gain matrix remain
unchanged after discretization for sufficiently small (as de-
fined above) sampling intervals.

Proof: We noted that for sufficiently small sampling intervals,
effects of higher order terms in En−1 (for the discretized
system) can be neglected. Under such conditions, Ki,pd ≈
Tρi

ρi!
Ki,pc , ρi being the relative degree of the diagonal ele-

ment in the ith row of ξm(s).

Lemma 1: The signs of the determinants of corresponding
j × j sub-matrices of Kpc and Kpd are the same, when any
j (corresponding) elements from each of j (corresponding)
row of Kpc or Kpd form the said sub-matrices, with j =
1, 2, . . . ,M .

The logic behind the lemma statement can be grasped if
we keep in mind the one-to-one correspondence between the
elements of Kpc and Kpd . The lemma can be proved using
mathematical induction.

Proposition 2 being a special case of lemma 1, we see that
signs of corresponding leading principal minors of the high
frequency gain matrix are unaffected by discretizaton. ∇

Propostions 1 and 2 imply that the assumptions (A2) and
(A3) hold for the aircraft system (1), for which we will derive
a multivariable MRAC scheme next.

IV. ADAPTIVE CONTROL SCHEME

In this section, we will present a multivariable state
feedback model reference adaptive control design for the
linear sequential discrete-time system (1).

State feedback controller design. To compensate the
constant offset term f in (1), we choose the state feedback
controller structure as

u(k) = KT
1 (k)x(k) +K2(k)r(k) + k3(k), (21)

where k3(k) ∈ RM is the adaptive estimate of an unknown
constant compensation term k∗3 , which will be derived next,
for canceling the effect of the constant offset f , and K1(k)
and K2(k) are the estimates of the nominal K∗1 and K∗2
which satisfy the matching conditions

C(zI −A−BK∗T1 )−1BK∗2 = Wm(z),K∗−12 = Kp, (22)
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where Kp is the piecewise constant high frequency gain ma-
trix, for each jump, Kp = Kpi = limz→∞ ξm(z)Gi(z), i =
1, 2, . . . , N .

Remark 1: From assumption (A2), all (Ai, Bi, Ci), i =
1, 2, . . . , N , have the same interactor matrix ξm(z), and
Wm(z) = ξ−1m (z). Based on [10], for each (Ai, Bi, Ci), i =
1, 2, . . . , N , we can obtain a set of constant parameters K∗1
and K∗2 to satisfy the plant-model matching equations (22),
so that the nominal K∗1 and K∗2 are piecewise constants. �

To derive k∗3 , we apply a nominal controller

u(k) = K∗T1 x(k) +K∗2r(k) + k∗3 (23)

to the system (1) to achieve exact plant-model matching.
To define the matching parameter vector k∗3 , we consider

a particular set of constant values of the system parameters
(A,B, f). Then, substituting (23) in the plant (1), we have
the closed-loop system in the z-domain as

y(z) = C(zI −A−BK∗T1 )−1BK∗2r(z) + ∆(z), (24)

∆(z) = C(zI −A−BK∗T1 )−1(B
k∗3z

z − 1
+

f0z

z − 1
).(25)

From the reference system (2) and the matching conditions
(22), we have the output tracking error in the z-domain as

e(z) = y(z)− ym(z) = ∆(z). (26)

Applying the z-domain final value theorem, we obtain

lim
k→∞

e(k) = lim
z→1

(z − 1)∆(z) = Dk∗3 + d (27)

for some constant invertible matrix D and vector d. For offset
rejection, we set

k∗3 = −D−1d, (28)

and then from (27)–(28), we have

lim
k→∞

(y(k)− ym(k)) = lim
k→∞

δ(k) = 0 (29)

exponentially fast, where δ(k) = Z−1[∆(z)].
Since the system parameters (A,B, f0) are piecewise con-

stant, the nominal matching parameter k∗3 is also piecewise
constant, as defined above for each set of (A,B, f0).

From the matching conditions (22) and (28), we can
conclude that there exists a nominal controller (23) to achieve
the asymptotic output tracking. However, we will use the
adaptively updated control law (21), since the parameters
K∗1 , K∗2 , and k∗3 are unknown. In the following, we will first
develop the tracking error equation by applying the control
law (21) to the system (1).

Tracking error equation. Substituting the control law
(21) in the plant (1), we have

x(k + 1) = (A+BK∗T1 )x(k) +BK∗2r(k) +Bk∗3 + f0

+B(K̃T
1 (k)x(k) + K̃2(k)r(k) + k̃3(k))

y(k) = Cx(k), (30)

where K̃T
1 (k) = KT

1 (k) −K∗1 , K̃2(k) = K2(k) −K∗2 , and
k̃3(k) = k3(k)− k∗3 .

In view of the reference model (2), matching conditions
(22), (28), and (30), the output tracking error is

e(k) = y(k)− ym(k) = Wm(k)Kp[Θ̃
Tω](k) + δ(k), (31)

where

Θ̃(k) = Θ(k)−Θ∗, Θ(k) = [KT
1 (k),K2(k), k3(k)]T,

Θ∗ = [K∗T1 ,K
∗
2 , k
∗
3 ]T, ω(k) = [xT(k), rT (k), 1]T. (32)

To deal with the uncertainty of the high frequency gain
matrix Kp, we use its LDS decomposition [12]. A matrix
Kp ∈ RM×M with all its leading principal minors being
non-zero has a unique decomposition:

Kp = LsDsS. (33)

Remark 2: In the adaptive laws design, we will use Ds

matrix as a gain matrix. Although Kp is a piecewise constant,
we can choose a uniform Ds for all the high frequency gain
matrices from the assumption (A3) for the adaptive laws. �

Substituting the LDS decompensation of Kp (with a
uniform Ds) (33) in (31), and ignoring the exponentially
decaying term δ(t), we have

L−1s ξm(z)[e](k) = DsSΘ̃T (k)ω(k). (34)

We introduce a filter h(z) = 1/fh(z), where fh(z) is a
stable and monic polynomial of degree equals to the degree
of ξm(z), Operating both sides of (34) by h(z)IM leads to

L−1s ξm(z)h(z)[e](k) = Ds S h(z)[Θ̃Tω](k). (35)

To parameterize the unknown matrix Ls, we introduce

Θ∗0 = L−1s − I = θ∗ij , (36)

where θ∗ij = 0 for i = 1, 2, . . . ,M and j ≥ i. Then we have

ē(k) + [0, θ∗T2 η2(k), θ∗T3 η3(k), . . . , θ∗TM ηM (k)]T

= Ds S h(z)[Θ̃Tω](k), (37)

where

ē(k) = ξm(z)h(z)[e](k) = [ē1(k), . . . , ēM (k)]T , (38)
ηi(k) = [ē1(k), . . . , ēi−1(k)]T ∈ Ri−1, i = 2, . . . ,M,(39)
θ∗i = [θ∗i1, . . . , θ

∗
ii−1]T , i = 2, . . . ,M. (40)

Estimation error. From (37), we introduce the estimation
error signal

ε(k) = [0, θT2 (k)η2(k), θT3 (k)η3(k), . . . , θTM (k)ηM (k)]T

+Ψ(k)ξ(k) + ē(k), (41)

where θi(k), i = 2, 3, . . . ,M are the estimates of θ∗i , and
Ψ(k) is the estimate of Ψ∗ = Ds S, and

ξ(k)=ΘT (k)ζ(k)−h(z)[ΘTω](k), ζ(k)=h(z)[ω](k). (42)

From (37)–(42), we can derive that

ε(k) = [0, θ̃T2 (k)η2(k), θ̃T3 (k)η3(k), . . . , θ̃TM (k)ηM (k)]T

+Ds SΘ̃T (k)ζ(k) + Ψ̃(k)ξ(k), (43)
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where θ̃i(k) = θi(k) − θ∗i , i = 2, 3, . . . ,M , and Ψ̃(k) =
Ψ(k)−Ψ∗ are the related parameter errors.

Adaptive laws. With the estimation error model (43), we
choose the adaptive laws

θi(k + 1) = θi(k)− Γθiεi(k)ηi(k)

m2(k)
, i = 2, 3, . . . ,M,(44)

ΘT (k + 1) = ΘT (k)− Dsε(k)ζT (k)

m2(k)
, (45)

Ψ(k + 1) = Ψ(k)− Γε(k)ξT (k)

m2(k)
, (46)

where the signal ε(k) = [ε1(k), ε2(k), . . . , εM (k)]T is com-
puted from (41), 0 < Γθi = ΓTθi < 2Ii−1 (Γθi ∈
R(i−1)×(i−1)), i = 2, 3, . . . ,M , and 0 < Γ = ΓT < 2IM ,
and Ds is defined in (31) with γi > 0, i = 2, 3, . . . ,M ,
satisfying the condition 0 < DsU

TDi−1
s D∗UDs < IM are

adaptation gain matrices. The normalization signal is

m(k) =

(
1 + ζT (k)ζ(k) + ξT (k)ξ(k) +

M∑
i=2

ηTi (k)ηi(k)

)1/2

.

(47)

Stability analysis. From the adaptive laws (44)–(46), we
have the following desired stability properties.

Lemma 2: The adaptive laws (44)–(46) ensure that

(i) θi(k) ∈ L∞, i = 2, 3, . . . ,M , Θ(k) ∈ L∞, Ψ(k) ∈
L∞, and ε(k)

m(k) ∈ L
2 ∩ L∞;

(ii) θi(k+ i0)−θi(k) ∈ L2∩L∞, i = 2, 3, . . . ,M , Θ(k+
i0)−Θ(k) ∈ L2 ∩ L∞, and Ψ(k + i0)−Ψ(k) ∈ L2 ∩ L∞,
for any finite integer i0 > 0.

Proof: Consider a positive definite function

V =

M∑
i=2

θ̃Ti Γ−1θi θ̃i + tr[Ψ̃TΓ−1Ψ̃] + tr[Θ̃SΘ̃T ], (48)

which has a finite jump at ki, i = 1, 2, . . . , N − 1, i.e.,

V (ki + 1)− V (ki) <∞. (49)

For

Mη(k) = diag{0, ηT1 (k)Γθ1η1(k), . . . , ηTM (k)ΓθMηM (k)},
(50)

the time-increment of V in [ki−1, ki], i = 1, 2, . . . , N , is

V (θ̃i(k + 1), Ψ̃(k + 1)), Θ̃(k + 1)− V (θ̃i(k), Ψ̃(k), Θ̃(k))

≤ −α1
εT (k)ε(k)

m2(k)
(51)

for some constant α1 < 0. That is V (ki) ≤ V (ki−1), and
from (49), we can conclude that V (k) is bounded for [0,∞].
The last inequality in (51) is due to the conditions that 0 <
Γθi = ΓTθi < 2Ii−1, i = 2, 3, . . . ,M, 0 < Γ = ΓT < 2IM ,
and 0 < DsSDs = DsU

TD−1s D∗UDs < 2IM , and the
choice of m(k) in (47).

Therefore, from (51), θi(k) ∈ L∞, i = 2, 3, . . . ,M ,
Θ(k) ∈ L∞, Ψ(k) ∈ L∞, ε(k)

m(k) ∈ L
2 ∩ L∞ (using (43)).

From the adaptive laws (44)–(46) and the results of lemma
2(i), θi(k + 1)− θi(k) ∈ L2 ∩ L∞, i = 2, 3, . . . ,M , Θ(k +
1) − Θ(k) ∈ L2 ∩ L∞, and Ψ(k + 1) − Ψ(k) ∈ L2 ∩ L∞.
Finally, use of the inequality

‖ χ(k+i0)−χ(k) ‖2≤
i0−1∑
i=0

‖ χ(k+i+1)−χ(k+i) ‖2 (52)

allows us to prove the second part of lemma 2. ∇
These properties allow us to prove the following theorem.

Theorem 1: The multivariable MRAC scheme with the state
feedback control law (21) updated by the adaptive laws (44)–
(46), when applied to the plant (1), guarantees the closed-
loop signal boundedness and asymptotic output tracking:
limk→∞(y(k)− ym(k)) = 0, for any initial conditions.

This is proved using a small gain theory [12]. A key step
in the procedure is to express a filtered version of the output
y(k) in a feedback framework which has a small gain due to
the L2 properties of Θ(k+i0)−Θ(k), θi(k+i0)−θi(k) and
ε(k)
m(k) . The state feedback control u(k) depends on the states
x(k). So we must express it in terms of the output y(k) (and
the input u(k) itself through a dynamic block). This is done
using a state observer representation of the plant: x(k+1) =
(A−LC)x(k) +Bu(k) +Ly(k) + f0 for a gain matrix L ∈
Rn×M such that A−LC is stable (which is possible because
(A, C) is observable). Then, the analysis procedure in [12]
is used to conclude the closed-loop signal boundedness and
asymptotic output tracking: limk→∞(y(k)− ym(k)) = 0 for
the state feedback case. ∇

V. AIRCRAFT FLIGHT CONTROL APPLICATION

In this section, we will apply the above MRAC scheme
to the linearized NASA generic transport model (GTM)
under nominal and damaged conditions. The GTM model
contains several damage scenarios; in this study, we choose
the damage case with loss of outboard left wing-tip.

System description. We linearize the nominal and the
damaged GTM models at an operating point (x0, u0), where
x0 = [ub0, wb0, 0, θ0, 0, 0, 0, 0, ψ0]T , and u0 = [de0, dr0]T .
To obtain such an operating point, the nominal GTM is
trimmed at a wings-level steady-state flight condition with
the equivalent airspeed as 90 knots and roll angle as 0 radian.

The nominal and damaged linearized aircraft systems are
of the forms (8) and (9) respectively. We discretize the
continuous-time systems presented in [3] with sampling
interval T = 0.001 seconds to obtain the discrete-time
nominal and damaged aircraft systems

x(k + 1) = A1x(k) +B1u(k) + f01, y(k) = Cx(k). (53)
x(k + 1) = A2x(k) +B2u(k) + f02, y(k) = Cx(k). (54)

The exact expressions for A1, B1, C, A2, B2, f02 are omitted
owing to paucity of space.

Verification of design conditions. In Section III, the
invariance properties are obtained based on generic models.
In the simulation studies, we will further verify the design
conditions using numerical values. All zeros of G1(z) =
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C(zI −A1)−1B1 and G2(z) = C(zI −A2)−1B2 are inside
the unit circle, and G1(z) and G2(z) have full rank.

We can choose a common interactor matrix for both G1(z)
and G2(z) as ξm(z) = diag{(z − 0.5), (z − 0.5)}, such that
the high frequency gain matrix for the nominal case is

Kp1 = lim
z→∞

ξm(z)G1(z) = 10−6×
[
−0.5421 0

0 −0.2980

]
,

and the high frequency gain matrix for the damaged case is

Kp2 = lim
z→∞

ξm(z)G2(z) = 10−4×
[
−0.5264 −0.0076
0.0153 −0.3043

]
.

Signs of first leading principal minor of Kp1 and Kp2 (before
and after damage) are sign(∆11) = sign(∆21) = −1, and
signs of second leading principal minor are sign(∆21) =
sign(∆22) = 1. This verifies the sign invariance.

Reference model. From the common interactor matrix
ξm(z) for both nominal and damage cases, we choose the
transfer matrix of the reference model (2) as Wm(z) =
ξ−1m (z) = diag{1/(z − 0.5), 1/(z − 0.5)}.

Design parameters. Since the degree of ξm(z) is 1, we
choose the filter h(z) = 1/z. For the adaptive laws (44)–
(46), we choose Γθ2 = 1.5, Γ = diag{1.5, 1.5}, and Ds =
diag{−0.75,−1} due to sign invariance of principal minors.

Simulation results. The reference input is r(k) =
[8π/9, 15π/18]T . Applying the control law (21) with the
adaptive laws (44)–(46), we check that (Fig. 1) the output
y(k) = [θ(k), ψ(k)]T (solid) tracks the reference ym(k) =
[θm(k), ψm(k)]T (dotted) after damage at 300 seconds.

We verify the controller for varying reference
inputs as well. With the reference input r(k) =
[2.5 sin(0.015kT ), 2.5 sin(0.015kT )]T , we see that (Fig. 2)
the output tracks the reference after damage at 450 seconds.

The transient responses and the initial oscillations depend
on the gain parameters chosen.

Fig. 1. Aircraft outputs (solid) vs. reference outputs (dotted) (Case I).

VI. CONCLUSIONS

In this paper, we developed a discrete-time multivariable
state feedback for output tracking MRAC scheme for a
linearized aircraft model with damage. We linearized and
discretized both nominal and damaged aircraft systems at
a given operating point to obtain a discrete-time sequential
linear system with a dynamics offset. Study of the infinity

Fig. 2. Aircraft outputs (solid) vs. reference outputs (dotted) (Case II).

zero structure of the discretized system before and after
damage ensured that the invariance conditions for multi-
variable MRAC design were met. We designed an adaptive
state feedback digital controller to compensate the parametric
uncertainties and the offset, and make the signals of closed-
loop system bounded and the output signals track some
reference signals. A simulation study of the linearized system
obtained from the GTM model verified desired performance.
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