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Abstract— We address the problem of output feedback at-
titude control of a rigid body in quaternion coordinate space
through a modified PD+ based tracking controller. The control
law ensures faster convergence to the desired operating point
during attitude maneuver, while keeping the gains small for
station keeping, thus being less sensitive to measurement noise.
The angular velocity is estimated with a similar technique, thus
keeping the property of lower sensitivity to measurement noise.
A direct consequence is a drop in energy consumption and more
accurate estimation results when affected by sensor noise. More
precisely, we show uniform practical asymptotic stability of the

equilibrium point for the closed loop system in the presence
of unknown, bounded input disturbances. Simulation results
illustrate the performance improvement with respect to PD+
based output feedback control with static gains.

I. INTRODUCTION

Attitude control on the rotational sphere is an interesting
theoretical problem since, due to the parametrization of the
attitude for the unit quaternion, the mapping from S3 to
SO(3) is two-to-one on the manifold. From a more prac-
tical viewpoint, besides achieving stability in some sense,
control of a rigid body demands fast and accurate settling
using minimal effort. Thus, a wide number of controllers
have been developed during the past years, by focusing on
the enhancement of performance while guaranteeing robust
stability and minimizing the control effort.

Attitude tracking control naturally lies on a bulk of liter-
ature on tracking control of robot manipulators –cf. [1]. A
classic in robot control literature is the PD+ controller of
Paden and Panja –cf. [2] which, together with the Slotine
and Li controller –[3], was the first algorithm for which
global asymptotic stability was demonstrated. A PD+ based
controller for spacecraft was presented in [4], called model-
dependent control, and more recently for leader-follower
spacecraft formation in [5].

An angular velocity observer for rigid body motion was
presented in [6], while a passivity approach was considered
in [7] where the passivity properties were exploited in a
nonlinear controller to ensure asymptotic stability. In [8] two
different schemes were presented based on results for output
control of robot manipulators (cf. [9]). A different approach
was presented in the recent paper [10] working on SO(3)
directly where the associated singularities are worked around
by restricting the initial values based on gain conditions, and
furthermore, an uniform bound is guaranteed on the resulting
control torque.
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In this paper we use a modified PD+ based quaternion
feedback controller without angular velocity measurements
which, roughly speaking, includes nonlinear gains of expo-
nential growth. That is, the controller ensures fast conver-
gence of attitude and estimation error; on the other hand,
the control effort is reduced exponentially in a neighborhood
of the reference operating point. Consequently, very little
control effort is used in station-keeping tasks, especially in
the presence of sensor noise. Strictly speaking, we show
that the origin of the closed-loop system is uniformly practi-
cally asymptotically stable with respect to perturbations. Our
theoretical findings are validated in simulation for an Earth
orbiting spacecraft.

II. PRELIMINARIES

The cross product operator × between two vectors a and b

is written as S(a)b where S is skew-symmetric. The symbol
ω

c
b,a denotes angular velocity of frame a relative to frame

b, expressed in the frame c; Rb
a is the rotation matrix from

frame a to frame b; ‖ · ‖ denotes the Euclidean norm of
a vector and the induced L2 norm of a matrix. Coordinate
reference frames are denoted by F (·) where the superscript
denotes the frame in question; i denotes the inertial frame
while b denotes the body frame, and we denote R+ = {α ∈
R : α ∈ (0,∞)} as the set of all positive numbers. When
the context is sufficiently explicit, we omit the arguments of
functions.

A. Quaternions

The attitude of a rigid body is represented by a rotation
matrix R ∈ SO(3) fulfilling

SO(3) = {R ∈ R
3×3 : R⊤R = I, det R = 1}, (1)

which is the special orthogonal group of order three. Quater-
nions are used to parameterize members of SO(3) where the
unit quaternion is defined as q = [η, ǫ

⊤]⊤ ∈ S3 = {x ∈
R

4 : x⊤x = 1}, where η ∈ R is the scalar part and ǫ ∈ R
3

is the vector part. The rotation matrix may be described by
[11]

R = I+ 2ηS(ǫ) + 2S2(ǫ). (2)

The inverse rotation can be performed by using the inverse
conjugated of q as q̄ = [η, − ǫ

⊤]⊤. The set S3 forms a
group with quaternion multiplication, which is distributive
and associative, but not commutative, and the quaternion
product of two arbitrary quaternions q1 and q2 is defined as
[11]

q1 ⊗ q2 =

[

η1η2 − ǫ
⊤
1 ǫ2

η1ǫ2 + η2ǫ1 + S(ǫ1)ǫ2

]

. (3)
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B. Kinematics and Dynamics

The time derivative of (2) can be written as [11]

Ṙa
b = S

(

ω
a
a,b

)

Ra
b = Ra

bS
(

ω
b
a,b

)

, (4)

and the kinematic differential equations can be expressed as
[11]

q̇i,b = T(qi,b)ω
b
i,b, (5)

where

T(qi,b) =
1

2

[

−ǫ
⊤
i,b

ηi,bI+ S(ǫi,b)

]

∈ R
4×3. (6)

The dynamical model of a rigid body can be described by
a differential equation for angular velocity, and is deduced
from Euler’s moment equation. This equation describes the
relationship between applied torque and angular momentum
on a rigid body as [12]

Jω̇
b
i,b = −S(ωb

i,b)Jω
b
i,b + τ

b (7)

(8)

where where τ b ∈ R
3 is the total torque working on the body

frame, and J ∈ R
3×3 is the spacecraft inertia matrix. The

torque working on the body is expressed as τ
b = τ

b
a + τ

b
d,

where τ
b
d is the disturbance torque, and τ

b
a is the actuator

(control) torque.

III. CONTROL OF RIGID BODY

A. Problem Formulation

The control problem is to steer the state qi,b(t) towards
a given reference trajectory qi,d(t) satisfying the kinematic
equation

q̇i,d = T(qi,d)ω
b
i,d. (9)

The tracking error in quaternion coordinates, q̃ = [η̃, ǫ̃⊤]⊤

is given by

q̃ := q̄i,d ⊗ qi,b =

[

ηi,dηi,b + ǫi,dǫi,b

ηi,dǫi,b − ηi,bǫi,d − S(ǫi,d)ǫi,b

]

,

(10)
and the quaternion velocities may be expressed as (cf. [13])

˙̃q = T(q̃)
(

ω
b
i,b − ω

b
i,d

)

. (11)

For the purpose of establishing meaningful stability proper-
ties we define the error functions

eq± = [1∓ η̃, ǫ̃⊤]⊤, eω = ω
b
i,b − ω

b
i,d. (12)

Moreover, we have

ėq± = Te(eq±)eω, (13)

where

Te(eq±) =
1

2

[

±ǫ̃
⊤

η̃I+ S(ǫ̃)

]

. (14)

Since measurements of the angular velocity is not available
we define an estimation error defined as eeω = ω

b
i,b − ω

b
i,e,

where super-/sub-script e denotes the estimated frame, to-
gether with an attitude estimation error defined as qe,b =
[ηe,b, ǫ

⊤
e,b]

⊤ = q̄i,e ⊗ qi,b, thus the error function is defined

as eeq = [1∓ ηe,b, ǫ
⊤
e,b]

⊤ with Teq in accordance.

Note that due to the redundancy implicit to the quaternion
representation, q̃ and −q̃ represent the same physical attitude
but correspond to different equilibria. That is; the two attitude
positions differ by a rotation of 2π rad about an arbitrary axis.
Furthermore, when quaternion coordinates are considered it
is not appropriate to speak of global stability properties since
the adjective global pertains to the case when the states are
elements of R

n –cf. [14] while quaternions evolve on the
manifold S3 which is a subset of R4; see also [15] for precise
definitions of stability and discussions.

B. Controller-Observer Design

We pose the following assumptions:

Assumption 3.1: The inertia matrix J is symmetric and
positive definite, and satisfies the inequality

βj ≤ ‖J‖ ≤ βJ , (15)

with βj , βJ ∈ R+.

Assumption 3.2: The disturbance moments τ
b
d are

bounded as

‖τ b
d(t)‖ ≤ βd, (16)

with βd ∈ R+.

Assumption 3.3: The desired angular velocity and the
desired angular acceleration are bounded, i.e.‖ωb

i,d(t)‖ ≤

βωb
i,d

∈ R+ and ‖ω̇b
i,d‖ ≤ βω̇b

i,d
∈ R+ ∀ t ≥ t0 ≥ 0.

Assumption 3.4: Let η̃(t0) ≥ 0 or η̃(t0) < 0, and assume
that sgn(η̃(t0)) = sgn(η̃(t)) ∀ t ≥ t0 ≥ 0. Moreover,
we assume that there exists a constant δη such that either
ηe,b(t) ≥ δη > 0 or ηe,b(t) ≤ −δη < 0 ∀ t ≥ t0 ≥ 0.

The desired angular velocity of the spacecraft is usually given
with reference to the inertial frame as ωi

i,d. By rotating to the
body frame we obtain

ω
b
i,d = Rb

iω
i
i,d (17)

hence,

ω̇
b
i,d = Ṙb

iω
i
i,d +Rb

i ω̇
i
i,d (18)

= −S(ωb
i,b)ω

b
i,d +Rb

i ω̇
i
i,d. (19)

We see that to evaluate the derivative of the reference ω̇
b
i,d

we need to know the actual velocity of the spacecraft ωb
i,b.

For control purposes we use the modified acceleration vector
(cf. [16])

ad = −S(ωb
i,d)ω

b
i,d +Rb

i ω̇
i
i,d (20)

= Rb
i ω̇

i
i,d. (21)

Proposition 3.1: Let Assumptions 3.1–3.4 hold. Let eq be
defined either by eq = eq+ or eq = eq− and eeq = eeq+
or eeq = eeq−, respectively. Either of the equilibrium points
(eq±, eω, eeq±, eeω) = (0,0,0,0) of the system (5) and (7),
in closed loop with the control law

τ
b
a =Jad − S(Jωb

i,e)ω
b
i,d (22)

− kpe
k1e

⊤

q eqT⊤
e eq − kde

−k2e
⊤

q eq
ω

b
d,e,
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with kp, kd, k1, k2 ∈ R+ as tuning parameters with con-
straints, and the observer

ż =ad + J−1
[

lpe
k3e

⊤

eqeeqT⊤
eqeeq (23)

− kpe
k1e

⊤

q eqT⊤
e eq

]

,

ω
b
i,e =z+ 2J−1ldT

⊤
eqeeq, (24)

with lp, ld, k3, k4 ∈ R+ constants to be defined, is Uniformly
Practically Asymptotically Stable (UPAS).

Remark 3.1: In [17] a PD+ based state feedback control
law was presented using exponential gains with the derivative

term as −kde
k2e

⊤

ω eω
ω

b
d,b. One difference is that in (22) the

damping has a relatively small effect on the system while the
solutions are located ‘far’ away from the equilibrium point,
and increase when the attitude error is going towards zero.
This helps in reducing overshoot.

Proof: Without loss of generality, we show stability of
the positive equilibrium points i.e., let eq = eq+, Te =
Te(eq+), eeq = eeq+ and Teq = Teq(eeq+). Let x :=
[e⊤q , e

⊤
ω , e

⊤
eq, e

⊤
eω]

⊤, thus the error dynamics can be written
on state space form ẋ = f(t,x) with

f(t,x) =







Teeω
J−1ξ1
Teqeeω
J−1ξ2






, (25)

where

ξ1 =S(Jωb
i,b)eω + S(Jeeω)ω

b
i,d − kpe

k1e
⊤

q eqT⊤
e eq (26)

− kde
−k2e

⊤

q eq (eω − eeω)− JS(ωb
b,d)ω

b
i,d + τ d,

and

ξ2 =S(Jωb
i,b)eω − kde

−k2e
⊤

q eqeω + S(Jeeω)ω
b
i,d (27)

+ kde
−k2e

⊤

q eqeeω − ld[ηe,b + S(ǫe,b)]eeω

− lpe
k3e

⊤

eqeeqT⊤
eqeeq + τ d.

The rest of the proof consists in showing that the conditions
of [18, Theorem 10] hold1. Consider the Lyapunov function
candidate

V(x) = V (x) + λW (x) (28a)

V (x) =
1

2

[(kp
k1
ek1e

⊤

q eq − 1
)

+ e⊤ωJeω (28b)

+
( lp
k3
ek3e

⊤

eqeeq − 1
)

+ e⊤eωJeeω

]

,

W (x) = e⊤q TeJeω + e⊤eqTeqJeeω (28c)

which is positive definite and proper, as we show next. We
want to find functions α(x), α(x) ∈ K∞ such that α(x) ≤
V(x) ≤ α(x). For the upper bound function we write

V ≤
1

2

[

kp
k1

(

ek1‖x‖
2

− 1
)

+
lp
k3

(

ek3‖x‖
2

− 1
)

+ 2βJ‖x‖
2

]

+ λ2βJ‖x‖
2 (29)

≤max

{

kp
k1
,
lp
k3
, 2βJ , 4λβJ

}

(

emax{k1,k3}‖x‖
2

− 1 + ‖x‖2
)

.

(30)

1That is, with the obvious modifications. Strictly speaking, we cannot
show that the conditions on semi-globality of [18, Theorem 10] hold for
arbitrarily large initial conditions in view of the topology of S3.

We want to find a constant c such that ec‖x‖
2

− 1 ≥ ‖x‖2 that
is,

c ≥ sup
x∈R7

ln(‖x‖2 + 1)

‖x‖2
= 1

which in turn, leads us to define

α(x) := c1

(

ec2‖x‖
2

− 1
)

, (31)

where c1 := 2max {kp/k1, lp/k3, 2βJ , 4λβJ} and c2 :=
max{k1, k3, 1}. Now we find a quadratic lower bound on V .
For this we remark that

(

ek1e
⊤

q eq − 1
)

≥ k1e
⊤
q eq. (32)

This can be seen recalling that

ex =

∞
∑

n=0

xn

n!
≥ 1 + x . (33)

Similarly for ek3e
⊤

eqeeq − 1 hence we define α(x) := x⊤qmx

where qm > 0 is the smallest eigenvalue of

Q :=
1

2







kpI λTeJ 0 0

λJT⊤
e J 0 0

0 0 lpI λTeqJ

0 0 λJT⊤
eq J






. (34)

Next, we evaluate the total time derivative of V along the
closed-loop trajectories. To that end, we first compute the
derivative of V . We have

V̇ =− kde
−k2e

⊤

q eqe⊤ω eω + e⊤ωS(Jeeω)ω
b
i,d (35)

− eωJS(ω
b
b,d)ω

b
i,d + e⊤eωS(Jω

b
i,b)eω

+ eeωS(Jeeω)ω
b
i,d −

(

ldηe,b − kde
−k2e

⊤

q eq

)

e⊤eωeeω

+
(

e⊤ω + e⊤eω
)

τ d.

Since the matrix S(·) is linear in its arguments, we have [16]

‖S(Ja)b‖ ≤ βJ‖a‖‖b‖. (36)

By applying (36), Young’s inequality and Assumptions 3.1–
3.4 we have

e⊤ωS(Jeeω)ω
b
i,d ≤

1

2
βJβωb

i,d
(‖eω‖

2 + ‖eeω‖
2) (37)

eωJS(ω
b
b,d)ω

b
i,d ≤βJβωb

i,d
‖eω‖

2 (38)

e⊤eωS(Jω
b
i,b)eω ≤

1

2
βJ (‖eω‖

2 + ‖eeω‖
2)(‖eω‖+ βωb

i,d
)

(39)

eeωS(Jeeω)ω
b
i,d ≤βJβωb

i,d
‖eeω‖

2. (40)

Inserting the bounds (37)–(40) into (35), and applying the
fact that e⊤q eq < 2 for η̃ > 0 we obtain

V̇ ≤− φ(kd, ‖eω‖)‖eω‖
2 − ψ(kd, ld, ‖eω‖)‖eeω‖

2

+ βd(‖eω‖+ ‖eeω‖), (41)

φ(kd, ‖eω‖) = kde
−2k2 − βJ

(

6βωb
i,d

+ ‖eω‖
)

ψ(kd, ld, ‖eω‖) = ldδη − kd −
1

2
βJ (2βωb

i,d
+ ‖eω‖)
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That is, V̇ is negative semidefinite for bounded values of eω
and sufficiently large gains. Hence, the total time derivative
of V along the closed-loop trajectories yields

V̇(x) ≤= −x⊤P(ωb
i,b)x + 2βd‖x‖ (42)

where P = [pij ], i, j = 1, 2, 3, 4 with

p11 =λTekpe
k1e

⊤

q eqT⊤
e (43a)

p12 =p⊤
21 =

λ

2
Te

[

kde
−k2e

⊤

q eqI− S(Jωb
i,b)

− JS(ωb
i,d)

]

(43b)

p13 =p⊤
31 = 0 (43c)

p14 =p⊤
41 =

λ

2
Te

[

S(ωb
i,d)J− kde

−k2e
⊤

q eqI

]

(43d)

p22 =φ(kd, ‖eω‖)−
λ

2
[η̃I+ S(ǫ̃)]J (43e)

p23 =p⊤
32 =

λ

2

[

kde
−k2e

⊤

q eqI− S(Jωb
i,b)

]

T⊤
eq (43f)

p24 =p⊤
42 = 0 (43g)

p33 =λTeq lpe
k3e

⊤

eqeeqT⊤
eq (43h)

p34 =p⊤
43 =

λ

2
Teq

{

S(ωb
i,d)J+ ld [ηe,bI+ S(ǫe,b)]

− kde
−k2e

⊤

q eqI
}

(43i)

p44 =ψ(kd, ld, ‖eω‖)−
λ

2
[ηe,bI+ S(ǫe,b)]J. (43j)

Now, we claim that

e⊤q TeT
⊤
e eq ≥

1

8
e⊤q eq. (44)

To see this we first notice that

e⊤q TeT
⊤
e eq =

1

4
ǫ̃
⊤
ǫ̃. (45)

Also, in view of (12) we have

1

8

(

(1− η̃)2 + ǫ̃
⊤
ǫ̃

)

=
1

8
e⊤q eq . (46)

Assume that

1

4
ǫ̃
⊤
ǫ̃ <

1

8

(

(1− η̃)2 + ǫ̃
⊤
ǫ̃

)

, (47)

which is equivalent to

(1− η̃)2 > ǫ̃
⊤
ǫ̃ . (48)

In view of the quaternion constraint ǫ̃⊤ǫ̃ = 1− η̃2 inequality
(48) holds if and only if 2η̃(1 − η̃) > 0. In its turn, the latter
holds only if η̃ < 0 or η̃ > 1. However, this does not hold
by assumption i.e., η̃ ∈ [0, 1]. We conclude that (47) does not
hold. Therefore, from (45)–(48) we obtain that (44) holds. A
similar reasoning is used for eeq . We conclude that there exist
lower and upper bounds pij,m and pij,M on the norms of the
sub-blocks pij of P respectively, such that, after applying the
triangle inequality repeatedly, we obtain

x⊤Px ≥
1

2
(p11,m‖eq‖

2 + p22,m‖eω‖
2

+ p33m‖eeq‖
2 + p44m‖eeω‖

2). (49)

Now, for any given ∆ω let eω ≤ ∆ω . Hence ωb
i,b = eω+ω

b
i,d

satisfies ‖ωb
i,b‖ ≤ ∆ with ∆ := ∆ω + βωb

i,d
. It follows that

(49) holds, that is, P is positive if defining

k⋆p :=2jM∆, (50)

l⋆p :=2
[

jm(∆ + βωb
i,d
) + ld

]

, (51)

we set the gains kp > k⋆p , lp > l⋆p, and

λ ≤min

{

φ(kd,∆ω)

kd +
1
2jM (1 + 2∆+ βωb

i,d
)
,

ψ(kd, ld,∆ω)

kd +
1
2jM (1 + 2βωb

i,d
+ ld)

, 1

}

.

Thus,

V̇ ≤ −pm‖x‖2 + 2βd‖x‖, (52)

where pm(∆) > 0 is a lower bound on the smallest eigen-

value of P(∆). The derivative V̇ < 0 for all x ∈ H := {x ∈
S3 × R

3 : δ ≤ ‖x‖ ≤ ∆}, where δ := 2βd/pm. Given any
positive constants δ⋆, ∆⋆ such that δ⋆ < ∆⋆, we have that
there exists ∆ > δ > 0 such that

α−1 ◦ α(δ) =

√

c1(∆)
(

ec2δ2 − 1
)

qm
≤ δ⋆ (53)

since δ decreases while c1 and qm increases monotonically
with the gains, and c2 is independent of δ, c1 and qm, and

α−1 ◦ α(∆) =

√

√

√

√

ln
(

qm∆2+1
c1(∆)

)

c2
≥ ∆⋆ (54)

since while ∆ increases, c1 and qm increases monotonically
with the gains, and c2 is independent of ∆, c1 and qm.
In accordance with [18, Theorem 10], all the conditions
are satisfied and we conclude that the equilibrium point
(eq, eω, eeq, eeω) = (0,0,0,0) of the closed loop system is
UPAS with in some sense a semi-global property for one part
of the state.

The proof for the negative equilibrium points eq−,
Te(eq−) and eeq−, Teq(eeq−) follows along similar lines
hence, the equilibrium points (eq±, eω, eeq±, eeω) =
(0,0,0,0) are UPAS.

�

For purpose of comparison we have the following propo-
sition for a similar controller and estimator structure without
variable gains.

Proposition 3.2: Assume that all assumptions made in
Proposition 3.1 hold. Then the set of equilibrium points
(eq±, eω, eeq±, eeω) = (0,0,0,0) of the system (5) and (7),
in closed-loop with the control law

τ a = Jad − S(Jωb
i,e)ω

b
i,d − kpT

⊤
e eq − kdω

b
d,e, (55)

with kp, kd,∈ R+ considered as constant gains, and the
observer

ż =ad + J−1
[

lpT
⊤
eqeeq − kpT

⊤
e eq

]

, (56)

ω
b
i,e =z+ 2J−1ldT

⊤
eqeeq, (57)
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with lp, ld ∈ R+ considered as constant gains, are UPAS.

The proof is omitted, but follows along the same lines as
Proposition 3.1.

Remark 3.2: Note that instead of using ω
b
i,d in the modi-

fied acceleration vector (20), the estimated angular velocity
ω

b
i,e might be utilized. This will lead to added restrictions for

the ld gain, but might result in better performance when the
estimation error has converged.

IV. SIMULATION RESULTS

We present simulation results for a spacecraft in an elliptic
LEO. The simulations were performed in Simulink using a
fixed sample-time Runge-Kutta ODE4 solver with 10−2 s
step size. The moments of inertia were chosen as J =
diag{4.35, 4.33, 3.664} kgm2, and the spacecraft orbit was
chosen with perigee at 600 km, apogee at 750 km, inclination
at 71◦, and the argument of perigee and the right ascension of
the ascending node at 0◦.

Simulations were performed using (22)–(24) and (55)–(57)
for sake of comparison, to show the improved performance
using variable gains. To evaluate and compare the perfor-
mance of the controllers we use the functionals

Jq=

∫ tf

t0

ǫ̃
⊤
ǫ̃dt, Jeq=

∫ tf

t0

ǫ
⊤
e,bǫe,bdt, Jp=

∫ tf

t0

τ
b,⊤
a τ

b
adt,

where t0 and tf defines the start and end of the simulation
window, respectively. The functionals Jq and Jeq describes
the integral functional error of the attitude between body and
desired frame, and body and estimated frame, respectively,
while Jp describes the integral of the applied control torque.

We introduce measurement noise as σBn = {x ∈ R
n :

‖x‖ ≤ σ} and add a suitable amount to the error functions
according to ẽq = (eq + 0.01B4)/‖eq + 0.01B4‖. Since
we are applying a slightly elliptic LEO, we only consider
the disturbance torques which are the major contributors to
these kind of orbits; namely, gravity gradient torque [12], and
torques caused by atmospheric drag [19] and J2 effect [20].
The J2 effect is caused by non-homogeneous mass distribu-
tion of a planet, and the torques generated by atmospheric
drag and J2 are induced because of rbc = [0.1, 0, 0]⊤ m
displacement of the center of mass. All disturbances are con-
sidered continuous and bounded. For our simulations we have
chosen the initial conditions as qi,b = qi,e = [0.3772, −
0.4329, 0.6645, 0.4783]⊤, ωb

i,b = [0.1, 0.2, − 0.3]⊤ rad/s,

z = [0 0 0]⊤, t0 = 0 s and tf = 15 s. The control laws were
tuned to achieve similar performance for sake of comparison
thus using parameters kp = 10, kd = 7, lp = 100, ld = 75,
and k1 = k2 = k3 = 1 for (22)–(24), and kp = 49, kd = 11,
lp = 240 and ld = 150 for (55)–(57). The spacecraft were
commanded to follow smooth sinusoidal trajectories around
the origin with velocity profile

ω
i
i,d = [3.2 cos(2× 10−3t), 0.12 sin(1× 10−3t), (58)

− 3.2 sin(4 × 10−3t)]⊤ × 10−6 rad/s.

In the following, we summarize our simulation results for
the attitude maneuver described above, comparing results
between the control laws presented in Proposition 3.1 and
3.2, where the performance functionals are presented in Table

I, attitude error, angular velocity error of the dynamics and es-
timation error and integral of the control torque are depicted
in Figure 1 and the control torque are depicted in Figure
2. The performance functionals show that both controllers
have similar performance as should be expected based on the
tuning of the controller gains. Two differences are that the
controller with variable gains utilizes higher angular velocity

throughout the maneuver because of the e−k2e
⊤

q eq term which
means that the damping is reduced while the attitude error has
not yet converged –cf. Remark 3.1, while the instantaneous
maximum control torque is smaller since controller gains are
smaller compared to using static gains.

Simulation results for one orbital period (5896 s) is pre-
sented in Table II and as can be seen by looking at the
performance functionals, the control law using variable gains
is less effected by sensor noise from a energy consumption
point of view compared to the control law using static gains,
and it follows that the states are less affected as can be seen
in Figure 3. This is because as eq ≈ 0, the controller gains

are kpe
k1e

⊤

q eq ≈ kp and similar for kd and lp, and since the
gains in general are smaller for (22)–(24) compared to (55)–
(57) for similar performance during a maneuver, the noise has
less effect on the performance functionals. From Figure 4 we
see similar behavior for the observer; the noise has less effect
on both attitude and angular velocity between estimated and
body frame.

TABLE I

VALUES OF PERFORMANCE FUNCTIONALS FOR ATTITUDE MANEUVER

Jq Jeq Jp

Static gains 0.778 0.013 96.3

Variable gains 0.800 0.013 96.1
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Fig. 1. Attitude, angular velocity and angular velocity estimation error,
and power consumption using PD+ based output feedback with static and
variable gains during spacecraft attitude maneuver.

V. CONCLUSION

We solved the attitude tracking control problem for a rigid
body via PD+ based output feedback control. The controller
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Fig. 2. Control torque for PD+ based output feedback with static and
variable gains during spacecraft attitude maneuver.
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Fig. 3. Attitude and angular velocity error for static gains (left) and variable
gains (right).
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Fig. 4. Attitude and angular velocity estimation error for static gains (left)
and variable gains (right).

TABLE II

VALUES OF PERFORMANCE FUNCTIONALS FOR ATTITUDE MANEUVER

OVER ONE ORBITAL PERIOD (5896 s)

Jq Jeq Jp

Static gains 0.785 0.014 236.9

Variable gains 0.803 0.013 156.7

stabilizes the system in a practical sense as it is illustrated

through numerical simulation.
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