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Abstract— This paper considers the optimal design of event-
triggered controllers under a non-traditional average-cost
criterion with costly observations. Determining the optimal
event-triggering law can be cast in the dynamic programming
framework. Due to the lack of a closed form solution for
the value function associated with the dynamic program, the
methods for calculating the optimal solution suffer from the
curse of dimensionality. Based on structural properties of the
optimal solution, we develop a novel approximative method
to reduce the dimensionality of the underlying optimization
problem from the state dimension of the regulated process to
the number of control inputs. As processes often consist of only
few inputs compared to the number of state variables, such
approach reduces the computational complexity significantly.
It is shown that the proposed approximative event-trigger
preserves the asymptotic behavior of the closed-loop system. A
conditions is derived, when the reduced event-triggering law
equals the optimal solution. We propose a measure to evaluate
the approximation accuracy of the developed order reduction
method.

Numerical simulations illustrate the obtained results and
validate the effectiveness of the proposed model reduction
method compared to the optimal solution.

I. INTRODUCTION

Recent advances in sensing, communications and embed-

ded systems have shifted the paradigms in the design of

distributed complex control systems. Therein, the efficient

utilization of communication and computational capabilities

is one of the key factors to increase control performance.

Examples for such systems can be found in a variety of

applications, including environmental monitoring, transporta-

tion networks and health care systems. In each of these

systems, the sensing and controlling components are spatially

distributed and exchange information over a resource con-

strained network. It has been shown by various researchers

that event-triggered exchange of information is more suitable

than time-triggered schemes, when resource constraints have

to be considered [1]–[4].

The design approach for event-triggered control and esti-

mation are often posed as optimization problems [5]–[11].

These are usually formulated in the framework of Markov

decision processes and solved by dynamic programming. Al-

though the underlying stochastic system is often assumed to

be linear and the cost function has a quadratic form, the value

function associated with the dynamic program does not admit

a closed-form solution in general due to the non-standard
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communication constraints. Brownian processes with initial

state zero and constrained number of transmissions are an

exception and have an analytical solution [5]. Hence, one

is in general restrained to discretize the state space and

apply the standard policy or value iteration [12]. As the

number of discretized grid points grows exponentially with

the dimensionality of the state space, such methods are only

applicable in practice if the number of state variables is

small. One way to counteract the curse of dimensionality is to

approximate the value function by a parameterized function.

In the context of event-triggered control, such approach has

been proposed in [10] using quadratic approximate value

functions. In this paper, we follow a different approach. The

idea is to reduce the state space to the subspace that is most

relevant for the event-trigger.

This paper addresses the problem of event-triggered con-

trol design for linear stochastic systems. The goal is to find

an event-triggered controller that meets the trade-off between

control performance and the average number of transmissions

from sensor to controller. Such trade-off is reflected in an

average-cost criterion, where the per-stage cost consists of

a quadratic control cost and a communication penalty. The

cost-function is inspired by work in [8] that derives optimal

event-triggering schemes for an estimator-based networked

control system. The main contribution of this paper is two-

fold. Built on results in [7] for finite horizon, we first show

that, under mild conditions, the calculation of the optimal

event-triggered controller for the average-cost criterion can

be separated into standard subproblems. Second, we show

that the structure of the optimal event-trigger admits an

approximative model-order reduction, where the reduced-

order system has a dimension equal to the number of control

inputs. As processes often consist of only few inputs com-

pared to the number state variables, such approach reduces

the computational complexity significantly. In some cases,

the reduced event-triggering law equals the optimal solution.

A condition for this is derived and we propose a measure

to evaluate the approximation accuracy of the developed

order reduction method. Furthermore, we present numerical

examples to evaluate the performance of our method.

The remainder of this paper is organized into four sections.

In section II, we introduce the stochastic system model and

describe the problem setting. Section III contains the main

results of this paper and is divided into two subsections.

First, we derive structural properties of the optimal solution

and analyze the asymptotic behavior of the closed-loop

system. Second, the order-reduction method is developed. In

section IV, numerical simulations are conducted to validate
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the proposed method.

Notation. In this paper, the operators tr[·] and (·)T de-

note the trace and the transpose operator, respectively. The

expectation operator is denoted by E[·] and the conditional

expectation is denoted by E[·|·]. The null-space of a matrix A

is denoted by null[A] and the range of a Matrix A is denoted

by span[A]. The Euclidean norm of a vector and the matrix

norm induced by the Euclidean norm are denoted by ‖ · ‖2.

II. SYSTEM MODEL

We consider the following stochastic time-invariant

discrete-time system P

xk+1 = Axk + Buk + wk, (1)

where A ∈ R
n×n, B ∈ R

n×d. The variables, xk and uk

denote the state and the control input and are taking

values in R
n and R

d, respectively, the system noise wk

takes values in R
n and is an i.i.d. (independent identically

distributed) zero-mean Gaussian distributed sequence with

positive definite covariance matrix Cw = E[wkwT
k ]. The

initial state, x0 is Gaussian with mean x̄0 and covari-

ance Cx0
= E[(x0 − x̄0)(x0 − x̄0)

T].
System parameters and statistics are known to the event-

trigger and controller. It is assumed that the event-trigger E ,

situated at the sensor side, can observe the complete state and

decides, whether the controller C should be updated with the

current state. The controller is assumed to be situated at the

actuator side, which implies that only sensor and controller

must exchange information over the network. The system

model is illustrated in Figure 1. The event-trigger output

given by

δk =

{

1 update xk sent

0 otherwise

Hence, the interconnection of sensor and controller can be

stated as the following measurement equation, which differs

from the standard LQG formulation:

yk =

{

xk δk = 1

∅ δk = 0
(2)

where yk is the actual observation of the controller at time k.

The design objective is to find admissible control and

event-triggering policies that minimize the average-cost cri-

terion

J = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

xT
k Qxk + uT

k Ruk + λδk

]

, (3)

whose per-stage cost is composed of a quadratic control cost

term xT
k Qxk +uT

k Ruk and a communication cost term λδk.

The weighting matrix Q is positive definite and R is positive

semi-definite. The positive factor λ can be regarded as the

weight of penalizing information exchange between sensor

and controller. We assume that the pair (A,B) is controllable

and the pair (A,Q
1

2 ) is observable with Q = (Q
1

2 )TQ
1

2 . In

addition, it is assumed that the control policy and event-

triggering policy are stationary.

PC

N

E

yk xkuk

δk

Fig. 1. System model of the networked control system with plant P ,
event-trigger E , controller C and communication network N .

III. MAIN RESULTS

A. Asymptotic behavior

Before studying model reduction of the proposed problem,

this section describes the structure of the optimal solution

that minimizes the cost J given by (3) and analyzes its

asymptotic behavior. Finding the optimal policies that mini-

mize the cost function in (3) is a very hard problem. This is

due to the fact that the controller and event-trigger can be of

a very general form just restricting them to be causal and sta-

tionary. In addition, the different information patterns [13] of

event-trigger and controller prohibit a direct use of dynamic

programming. However, it is shown in [7] that minimizing

the cost function given by (3) for a finite horizon N can

be divided into separate subproblems. Therein, the optimal

control law is related to linear quadratic regulation and

the event-triggering law can be posed in the framework of

dynamic programming.

With the mild restriction to stationary policies, the re-

formulation techniques developed in [7] for finite horizon

problems also apply for the average-cost problem.

We then have the following theorem that facilitates our

subsequent analysis.

Theorem 1 ( Structure of the optimal controller [7]):

Let the event-trigger and controller be causal and stationary.

Then, the optimal control law minimizing (3) is given by

uk = −Lx̂C
k ,

where

L = −(BTSB + R)−1BTSA

S = AT(S − SB(BTSB + R)−1BTS)A + Q.

The least-squares estimate x̂C
k at the controller is given by

x̂C
k =

{

xk δk = 1

(A − BL)x̂C
k−1

δk = 0

with x̂C
0 = x̄0 for δ0 = 0.

Using the optimal control law stated in Theorem 1 and an

identity presented in [14], the per-stage cost in (3) reduces

to

(xk − x̂C
k)TLT(R + BTSB)L(xk − x̂C

k) + λδk.
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We define the matrix

Γ = LT(R + BTSB)L (4)

and the estimation error ek at the controller conditioned

on δk = 0

ek = xk − E[xk|x̂
C
k−1, δk = 0].

By definition of Γ and ek, the optimization problem can be

formulated within the dynamic programming framework as

follows. Consider the discrete-time system

ek+1 = g(ek, δk, wk) = (1 − δk)Aek + wk (5)

with initial condition e0 = x0 − x̄0. The remaining objective

is to find the optimal event-triggering law π∗ defined by

δk = π∗(ek)

among all measurable mappings of the estimation error ek

on {0, 1} that minimizes

JE = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(1 − δk)eT
k Γek + λδk

]

. (6)

Remark 1: It can be observed immediately that JE is non-

negative, as Γ is positive semi-definite, and the minimum

of JE is upper-bounded by λ, as transmission on every time

step is an admissible law yielding average-cost JE = λ.

The above average-cost problem differs from the problem

statement in [8] by the fact that Γ is not positive definite

if the number of inputs is less than the dimensionality of

the state space. In the following, we are interested in this

particular case of d < n. In this case, there exists a subspace

of R
n, where ek does not contribute to the per-stage cost.

This subspace is spanned by the null-space of Γ. As it is

explained in the next subsection in more detail, the optimal

policy π∗(ek) does not transmit information, if ek is in the

null-space of Γ. In contrast to that, the work in [8] restricts

admissible event-triggering policies to transmit an update,

whenever the norm of ek exceeds an arbitrary large positive

constant. The restriction is a technical assumption to guar-

antee that the per-stage cost is bounded, which facilitates the

analysis. In order to obtain similar results for the following

analysis, we modify the set of admissible policies to satisfy

π(ek) = 1 for ‖Lek‖2 ≥ M, (7)

where M is a positive constant. The condition (7) ensures

that the per-stage cost of JE defined in (6) is bounded, while

allowing policies with π(ek) = 1 for ek ∈ null[Γ]. As M can

be chosen arbitrarily large, the condition (7) does not con-

stitute a severe restriction on the optimal policy. Along the

same lines as in [8], we can state that the optimal policy π∗

results from the Average-Cost Optimality Equation [15]

h(e) + JE∗
= min

δ∈{0,1}

(

(1 − δ)eTΓe + λδ

+ E[h(g(e, δ, w))|e, δ]
)

,

where e ∈ R
n and the bounded function h : R

n → R

is called the terminal cost. The value JE∗
is the optimal

average-cost. The optimal policy can be computed by appli-

cation of value or policy iteration [12].

We finish this paragraph by analyzing the stability proper-

ties of the process with state xk when applying the optimal

controller and event-trigger. Subsequently, the notion of

stability is given in terms of bounded moment. For that

reason, we give the difference equation of the closed-loop

system in the following rewritten form

xk+1 = (A − BL)xk + (1 − π∗(ek))BLek + wk

with appropriate initial condition. The stochastic pro-

cess (1 − π∗(ek))BLek has a bounded support for every k

because of (7). In fact, there exists a uniform bound for

the support due to Equation (7). Therefore, the augmented

system noise (1 − π∗(ek))BLek + wk has a bounded second

moment uniformly in k. As the matrix (A − BL) is Hur-

witz [14], it can be concluded that the process state xk has a

bounded second moment for k → ∞. The state estimate x̂C
k

at the controller can be regarded as an asymptotically stable

system, where the initial condition is reset to xk, if δk = 1.

Therefore, bounded moment stability of xk also implies

that x̂C
k is stable in terms of bounded moment. Since the

evolution of the overall system can be described by the two

variables xk and x̂C
k , we conclude that the closed-loop system

is bounded moment stable.

B. Order Reduction

The calculation of the optimal control gain L is of mi-

nor computational complexity compared to the problem of

finding the optimal event-triggering law π∗. Therefore, our

focus is on the numerically efficient calculation of π∗. This

section develops an approach for diminishing computational

complexity to find π∗ by model order reduction. We will

observe in the following that the underlying problem admits

an order reduction to the number of inputs, while approxi-

mating the optimal solution very closely. In some situations,

it is even possible to sustain the optimal solution through

order reduction.

The main idea is based on the observation that the weight-

ing matrix Γ is of reduced rank, if d < n. Hence, only a

projected part of the estimation error ek contributes to the

per-stage cost given by (6). On the other hand, the projected

signal of ek in the null-space of Γ may still influence the

evolution of the complete signal ek. Our conjecture is that

the impact of ek in the null-space of Γ is negligible for most

systems.

In order to obtain the reduced optimization problem, we

consider the eigenvalue decomposition of Γ

Γ =
[

U‖ U⊥

]

[

∆ 0
0 0

] [

UT
‖

UT
⊥

]

,

where ∆ contains all non-zero eigenvalues with corre-

sponding eigenspace U‖; the null-space of Γ corresponds

to span[U⊥]. The matrix [U‖ U⊥] is chosen to be orthonor-

mal.
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We split up the estimation error into two components e⊥k
and e

‖
k, i.e.

ek = e⊥k + e
‖
k,

where e⊥k ∈ null[Γ] and e
‖
k ∈ span[ΓT]. Only the signal e

‖
k

contributes to the per-stage cost of JE given by (6). Subse-

quently, we propose an approximative model of the evolution

of e
‖
k in a lower dimensional space using orthogonal projec-

tion. The reduced estimation error is defined as

ered
k = UT

‖ ek = UT
‖ e

‖
k

evolving according to the following dynamics

ered
k+1 = (1 − δk)Arede

red
k + wred

k , (8)

with

Ared = UT
‖ AU‖,

wred
k = UT

‖ wk

and initial state ered
0 = UT

‖ (x0 − x̄0). The noise process wred
k

is Gaussian with zero-mean and covariance matrix UT
‖ CwU‖.

Given the dynamics in (8) and the rewritten average-cost

criterion from (6)

JE = lim sup
N→∞

1

N
E

[

N−1
∑

k=0

(1 − δk)
(

ered
k

)T
∆ered

k + λδk

]

,

(9)

the optimal solution π∗
red(e

red
k ) minimizing (9) yields an

approximative solution to our initial problem. Taking the re-

striction given by Equation (7) into account, we observe that

admissible event-triggering policies πred have to transmit an

update to the controller, whenever the norm of ered
k exceeds

the constant M . This implies that closed-loop stability is

preserved, although the reduced difference equation in (8)

may give a coarse approximation of the real estimation

error ek.

The structure of the reduced event-trigger is depicted in

Figure 2. It consists of a copy of the state estimator at the

controller, a one-step time-delay unit T, transformation UT
‖

and optimal event-triggering law π∗
red. The difference be-

tween state estimate of the controller assuming no transmis-

sion has occurred at time k and the current state is trans-

formed by UT
‖ to obtain ered

k . The reduced event-triggering

law π∗
red decides whether to update the controller with the

current state xk based on the current reduced estimation

error. It should be noted that the proposed scheme also

reduces the online calculation of the decision variable δk,

as the dimensionality of the search space decreases to d. In

contrast to that there is no benefit in memory usage, as both

reduced and optimal event-triggers have to store the complete

state estimate of the controller.

Remark 2: We observe from the definition of Γ in (4) that

its range coincides with the range of LT, as (R+BTSB) is

invertible. Therefore, the dimension of span[Γ] is equal to the

column-rank of LT, which is at most d. This implies that the

proposed method reduces the state space associated with the

T

UT

‖

Est.

π∗
red

E[xk|x̂
C
k−1, δk = 0]

ykxk

ered
k

δk

yk−1

Fig. 2. Structure of the reduced event-trigger with a copy of the state esti-
mator of the controller (Est.), a one-step time-delay unit T, transformation
U

T

‖
and optimal event-triggering law π

∗
red.

dynamic program by at least n−d dimensions. As technical

processes often consist of only few inputs compared to the

dimensionality of their state space, the underlying reduction

algorithm is able to decrease computational complexity sig-

nificantly for many technical systems.

Remark 3: It should be stated that the established theory

of state projection methods in model order reduction, e.g.

from [16], is of limited use in our context, because the

system given by (5) is highly non-linear with respect to

the decision variable δk and the system may be unstable

without having stable modes. Another aspect, in which our

approach differs from standard methods in model order

reduction, is that asymptotic properties need not to be taken

into account. This is reasoned by the resetting property of

the underlying system, i.e. whenever δk = 1 the error ek

is reset by ek+1 = wk. Obviously, such resetting property is

preserved by our order reduction.

The next lemma gives a condition, when the reduced

policy recovers the optimal policy.

Lemma 1 (Perfect Reduction): If the projector P defined

by

P = U‖U
T
‖

and the system matrix A satisfy

UT
‖ PA = UT

‖ AP,

then the optimal policy π∗ and the reduced optimal pol-

icy π∗
red embedded in R

n are equivalent.

Proof: The evolution of the projected estimation er-

ror ered
k under the original dynamics given by (5) can be

computed as

ered
k+1 = UT

‖ ek+1

= (1 − δk)UT
‖ Aek + UT

‖ wk

= (1 − δk)UT
‖ U‖U

T
‖ Aek + UT

‖ wk

Taking the condition of above lemma into account, we have

ered
k+1 = (1 − δk)UT

‖ AU‖U
T
‖ ek + UT

‖ wk,

By substituting ered
k = UT

‖ ek, we obtain the difference

equation (8). Hence, the random variable ered
k is a sufficient
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statistics for obtaining the initial problem minimizing (6)

under dynamics (5). This concludes the proof.

Remark 4: There is an intuitive interpretation why Γ has

a rank deficiency, when d < n. The null-space of Γ is

equivalent to the null-space of L. If ek ∈ null[Γ] = null[L],
then the current control input uk does not differ, when

an update is sent or not. Hence, the transmission can be

postponed in case of ek ∈ null[Γ] in order to yield better

state estimates at a future time step.

Remark 5: The approach of model order reduction for

event-trigger design has also been suggested in [11] for linear

discrete-time systems with limited controls for the special

case that the system matrix takes the form αI , input matrix B

has full rank and the weighting matrix of the quadratic cost

function is of rank 1.

As commutativity of arbitrary matrices is a quite restrictive

assumption, the condition given in Lemma 1 holds only for

specific systems. But it can serve as an indicator for how

well the optimal event-triggering law is approximated by

the reduced policy. In this work, we propose the following

measure to give an indicator of the approximation accuracy

of the order-reduced algorithm

ρ =
‖UT

‖ (AP − PA)‖2

‖A‖2

(10)

assuming the system matrix A to be non-zero. When d < n,

the assumption of A 6= 0 is already covered by the con-

trollability assumption of the tuple (A,B). Obviously, the

measure ρ is non-negative. The measure ρ is equal to 0, if

and only if the condition in Lemma 1 is satisfied. This means

that we have perfect reduction for ρ = 0. On the other hand,

the measure ρ is bounded by 1 as shown in the following

ρ =
‖UT

‖ (AP − PA)‖2

‖A‖2

=
‖UT

‖ AP − UT
‖ U‖U

T
‖ A)‖2

‖A‖2

=
‖UT

‖ (AP − A)‖2

‖A‖2

≤
‖UT

‖ ‖2‖A‖2‖P − I‖2

‖A‖2

= 1.

IV. NUMERICAL VALIDATION

In this section, we validate our results from the previous

section by numerical simulations. Two different systems with

a 2-dimensional state space and a scalar input are considered.

Figures 3 and 5 illustrate the effect of model order reduction

on the resulting event-trigger. The coordinates e1 and e2

are the elements of the estimation error e. If e exceeds the

indicated thresholds, a state update is sent to the controller.

The system underlying Figure 3 is given by

A =

[

0.65 0.95
0.5 0.15

]

, B =

[

0.7
0.7

]

, Q = QN =

[

2 1
1 2

]

,

R = 0.5, Cω = Cx0
=

[

1.5 0.5
0.5 1.5

]

, λ = 200,

(11)
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reduced

e
1

e2

U‖U⊥

δ = 1

δ = 0

δ = 1

Fig. 3. Comparison of optimal and reduced event-triggering policy of
system (11). The lines indicate the thresholds.

0 500 1000 1500 2000 2500
0
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200

250

 

 

optimal event−triggered scheduler

reduced event−triggered scheduler

J
E

λ

Fig. 4. Performance evaluation of optimal and reduced event-triggering
policy of system (11).

and the reduced event-trigger obviously approximates the

optimal event-trigger very well. Figure 4 shows the per-stage

cost caused by the optimal event-trigger and the reduced

event-trigger.

Figure 5 shows the same comparison for the system

A =

[

0 −1
1 0

]

, B =

[

0.7
0.7

]

, Q = QN =

[

2 1
1 2

]

,

R = 0.5, Cω = Cx0
=

[

1.5 0.5
0.5 1.5

]

, λ = 100;

(12)

There is a significant difference in the optimal event-

trigger and the reduced event-trigger. Figure 6 shows the
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Fig. 5. Comparison of optimal and reduced event-triggering policy of
system (12). The lines indicate the thresholds.

0 100 200 300 400
0

10

20

30

40

50

60

 

 

optimal event−triggered scheduler

reduced event−triggered scheduler

J
E

λ

Fig. 6. Performance evaluation of optimal and reduced event-triggering
policy of system (12).

per-stage costs caused by both event-triggers for various λ

and it is obvious that the proposed approach does not work

very well for this system. These numerical results are also in

accordance with the proposed indicator ρ with respect to the

approximation quality. While system (11) yields a ρ of 0.12,

which is an indicator for an accurate approximation of the

optimal solution, system (12) has a ρ of 1, which can be

regarded as the worst case setting with respect to ρ.

The jittering of the graph for JE caused by the reduced

event-trigger in Figures 4 and 6 is due to the fact that JE

is determined with a Monte Carlo experiment for this event-

trigger.

It should be stated that a series of simulations with

randomly generated systems has been conducted to validate

the presented approach. Most of these systems show similar

approximation accuracy as given for system (11), whereas

the resulting approximation quality of system (12) is ob-

served only sparsely.

V. CONCLUSIONS

This paper derives a novel method for the approximative

design of optimal event-triggered controllers. In contrast to

standard approaches to overcome the curse of dimensionality,

this method takes advantage of the structure within the

underlying problem. Our results show that this method seems

to be very promising, if the number of process inputs is

smaller than the dimension of states. Another benefit of

the approximative approach is that stability is preserved.

The proposed indicator for the approximation quality of the

reduced event-trigger reflects the performance decrease very

accurately.

Future research is concerned with advanced order reduc-

tion schemes that enhance the approximation accuracy of the

reduced event-trigger and with the investigation of bounds on

the performance decrease of the approximative scheme.
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