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Abstract— We develop a method for identifying SISO Ham-
merstein systems with an unknown static nonlinearity, linear
dynamics, white input noise and colored output noise. We use
least squares with a µ-Markov model to estimate the Markov
parameters of the linear time-invariant dynamical system. Since
the input to the linear system is not available, we use a substitute
(ersatz) nonlinearity to transform the input for use in the
regressor matrix. We prove that the Markov parameters of the
system can be estimated consistently up to a constant scalar
as the amount of data increases. This method is demonstrated
with several numerical examples.

I. INTRODUCTION

Block-structured nonlinear models, also known as gray-

box models, are widely used for system identification [1],

[2], [3]. Hammerstein and Wiener models, which consist of a

linear system cascaded with an input and output nonlinearity,

respectively, continue to attract considerable attention [4]-[9].

The range of techniques applied to these models is vast and

diverse [10], [11].

In the present paper we develop an alternative approach to

identifying Hammerstein systems. We assume that the input

nonlinearity and the linear system are both unknown; no

assumptions are made on either component of the model

except that the linear system is asymptotically stable. We

inject a realization of a white noise signal into the Hammer-

stein system, and we measure the resulting output. The initial

state of the linear system is arbitrary and unknown. We then

perform linear system identification by using the input and

output data.

The presence of the unknown input nonlinearity degrades

the accuracy of linear system identification. If the input

nonlinearity were known, then the input data could be trans-

formed by the nonlinear mapping, allowing the transformed

data to be used to identify the linear system. Since we

assume that the input nonlinearity is unknown, however, we

use an ersatz nonlinearity to transform the input data before

performing linear system identification. The purpose of the

present paper is to show that, if the ersatz nonlinearity is

chosen to be neither even nor odd and has zero integral

with respect to the probability distribution used to generate

the input signal, then the linear system can be identified

consistently as the amount of data increases. In the special

case that the input nonlinearity is known to be odd and

the probability density function of the input and its noise
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are symmetric, then the ersatz nonlinearity can be chosen

to be odd, for example, u. We emphasize that the ersatz

nonlinearity need not be an approximation for the true

nonlinearity. The true input nonlinearity can subsequently

be identified by means of input reconstruction [12], [13].

The contents of the paper are as follows: In Section

II, we formulate the problem. In Section III, we define

the µ-Markov structure and the identification architecture.

In Section IV, we analyze the consistency of the Markov

parameters obtained from the proposed method. In Section

V, we give some numerical examples. Finally, in Section V,

we give conclusions.

II. PROBLEM FORMULATION

Consider the Hammerstein structure shown in Figure 1,

where u0 is the input signal, H : R → R is the static

nonlinearity, H(u0) is the intermediate signal, y0 is the

output signal, and G is the asymptotically stable, SISO,

causal, discrete-time system

A(q)y0(k) = B(q)H
(

u0(k)
)

, (1)

where q is the forward shift operator, and A and B are

polynomials in q. Throughout the paper, we assume that the

nonlinearity H, and hence the intermediate signal H(u0), is

unknown. Furthermore, we assume that the measurement of

u0 is corrupted with additive white noise, and the measure-

ment of y0 is corrupted with additive white or colored noise.

The ARX model of (1) is given by

y0(k) =

n
∑

j=0

bjH
(

u0(k − j)
)

−
n
∑

j=1

ajy0(k − j). (2)

H G
u0 H(u0) y0

Fig. 1. Block-structured Hammerstein model where u0 is the input,

H
(

u0(k)
)

is the intermediate signal, and y0 is the output.

III. µ-MARKOV MODEL AND LEAST SQUARES

ESTIMATES

For all k ≥ 0, nmod ≥ n, µ ≥ 1, the signals y0(k) and

H(u0(k)) satisfy the µ-Markov model

y0(k) =

µ−1
∑

j=0

HjH(u0(k − j)) +

nmod+µ−1
∑

j=µ

b′jH(u0(k − j))

−

nmod+µ−1
∑

j=µ

a′jy0(k − j), (3)
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where H0, . . . , Hµ−1 are the first µ Markov parameters of

G. Note that the µ-Markov model is an overparameterization

of the ARX model (2), where µ Markov parameters are

explicitly displayed [14]. Furthermore, setting nmod = n
and µ = 1 gives the ARX model (2).

Next, let nmod ≥ n and µ ≥ 1. Then the µ-Markov model

(3) of (1) can be expressed as

y0(k)= θµH(φµ0
)(k) + θuH(φu0

)(k)− θyφy0
(k), (4)

where

θµ
△
=

[

H0 · · · Hµ−1

]

,

θu
△
=

[

bµ · · · bnmod+µ−1

]

,

θy
△
=

[

aµ · · · anmod+µ−1

]

,

H(φµ0
)(k)

△
=

[

H(u0(k)) · · · H(u0(k − µ+ 1))
]T

,

H(φu0
)(k)

△
=

[

H(u0(k − µ))· · · H(u0(k−nmod−µ+1))
]T
,

φy0
(k)

△
=

[

y0(k − µ) · · · y0(k − nmod − µ+ 1)
]T
.

Furthermore, least squares estimates θ̂Hµ,ℓ, θ̂
H
u,ℓ, θ̂

H
y,ℓ of θµ,

θu, θy are given by
[

θ̂Hµ,ℓ θ̂Hu,ℓ θ̂Hy,ℓ

]

(5)

=argmin
[ θµ θu θy ]

‖Ψy0,ℓ−θµH(Φµ0,ℓ)−θuH(Φu0,ℓ)+θyΦy0,ℓ‖F ,

where || . ||F denotes the Frobenius norm,

Ψy0,ℓ
△
=

[

y0(nmod + µ− 1) . . . y0(ℓ)
]

,

Φy0,ℓ
△
=

[

φy0
(nmod + µ− 1) . . . φy0

(ℓ)
]

,

H(Φµ0,ℓ)
△
=

[

H(φµ0
)(nmod + µ− 1) . . . H(φµ0

)(ℓ)
]

,

H(Φu0,ℓ)
△
=

[

H(φu0
)(nmod + µ− 1) . . . H(φu0

)(ℓ)
]

,

and ℓ is the number of samples. In this case, if H(u0) is

persistently exciting, then limℓ→∞ θ̂Hµ,ℓ
wp1
= θµ.

IV. ERSATZ NONLINEARITY

Since H is assumed to be unknown, we cannot construct

H(Φµ0,ℓ) and H(Φu0,ℓ). Hence, it is not possible to solve the

least squares problem (5) for the coefficients of the µ-Markov

model. We thus consider a least squares problem of the form

(5) in which we replace the unknown nonlinearity H by a

nonlinearity N : R → R. The identification architecture is

shown in Figure 2. The ersatz nonlinearity N is not intended

to be an approximation of H. Rather, N serves as a substitute

for H that has the ability to render the solution of the least

squares problem useful for estimating the coefficients of the

µ-Markov model.

V. CONSISTENCY ANALYSIS

In this section, we investigate the effect of the choice of

the ersatz nonlinearity on the consistency of the estimates of

the µ-Markov parameters of G obtained from least squares

with a µ-Markov model structure. Here consistency refers to

the accuracy of the estimates as the number of data points

increases.

H G
H(u0)u0 y0

IDN w
v N (u)u y

Fig. 2. Identification of a Hammerstein system using the ersatz nonlinearity
N .

Let u0 and y0 satisfy (1). We use the following assump-

tions.

Assumption 5.1: u0 and v are realizations of the sta-

tionary white processes U0 and V , respectively.

Assumption 5.2: w is a realization of the stationary

white or colored process W .

Assumption 5.3: U0, W , and V are mutually indepen-

dent.

Assumption 5.4: U(k) = U0(k) + V (k).
Assumption 5.5: Y (k) = Y0(k) +W (k).
Assumption 5.6: θµ 6= 01×µ.

Assumption 5.7: For all k ≥ 0, E
[

N
(

U(k)
)]

= 0 and

E

[

H
(

U0(k)
)

N
(

U(k)
)]

6= 0.

Assumption 5.8: For all k ≥ 0 and p ≥ −k, H
(

U(k)
)

,

N
(

U(k)
)

, H
(

U(k)
)

N
(

U(k+ p)
)

, N
(

U(k)
)

N
(

U(k+ p)
)

,

and W (k) have finite mean and variance.

Next, consider the least squares estimates θ̂µ,ℓ, θ̂u,ℓ, θ̂y,ℓ
of θµ, θu, θy , given by
[

θ̂µ,ℓ θ̂u,ℓ θ̂y,ℓ
]

(6)

= argmin
[ θµ θu θy ]

‖Ψy,ℓ − θµN (Φµ,ℓ)− θuN (Φu,ℓ) + θyΦy,ℓ‖F ,

where N , u, and y replace H, u0, and y0, respectively in

(5). Specifically

Ψy,ℓ
△
=

[

y(nmod + µ− 1) . . . y(ℓ)
]

,

N (φµ)(k)
△
=

[

N (u(k)) . . . N (u(k − µ+ 1))
]T

,

N (φu)(k)
△
=

[

N (u(k − µ)) . . . N (u(k−nmod−µ+1))
]T
,

N (Φµ,ℓ)
△
=

[

N (φµ)(nmod + µ− 1) . . . N (φµ)(ℓ)
]

,

N (Φu,ℓ)
△
=

[

N (φu)(nmod + µ− 1) . . . N (φu)(ℓ)
]

.

Definition 5.1: θ̂µ,ℓ is semi-consistent if there exists

nonzero α ∈ R such that

lim
ℓ→∞

θ̂µ,ℓ
wp1
= αθµ.

Theorem 5.1: Let assumptions 5.1-5.8 hold. Then θ̂µ,ℓ
is semi-consistent.

Proof 5.1: The µ-Markov model (4) of (1), can be

expressed in terms of the regression matrices by

Ψy0,ℓ = θµH(Φµ0,ℓ) + θuH(Φu0,ℓ)− θyΦy0,ℓ. (7)
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By assumption 5.5, we have that

Ψy,ℓ = θµH(Φµ0,ℓ) + θuH(Φu0,ℓ)− θyΦy0,ℓ +Ψw,ℓ, (8)

where

Ψw,ℓ
△
=

[

w(nmod + µ− 1) . . . w(ℓ)
]

.

Furthermore, θ̂µ,ℓ, θ̂u,ℓ, and θ̂y,ℓ satisfy

Ψy,ℓN (Φµ,ℓ)
T (9)

=
[

θ̂µ,ℓN (Φµ,ℓ) + θ̂u,ℓN (Φu,ℓ)− θ̂y,ℓΦy,ℓ

]

N (Φµ,ℓ)
T.

Hence, from (8) and (9), it follows that
[

θµH(Φµ0,ℓ) + θuH(Φu0,ℓ)− θyΦy0,ℓ +Ψw,ℓ

]

N (Φµ,ℓ)
T

=
[

θ̂µ,ℓN (Φµ,ℓ) + θ̂u,ℓN (Φu,ℓ)− θ̂y,ℓΦy,ℓ

]

N (Φµ,ℓ)
T.

(10)

Next, assumptions 5.1-5.5 imply that, for all p > −k, we

have that

E

[

H
(

U0(k)
)

N
(

U(k+p)
)]

=E

[

H
(

U0(k)
)]

E

[

N
(

U(k+p)
)]

= 0.

Hence,

lim
ℓ→∞

1

ℓ
H(Φµ0,ℓ)N (Φµ,ℓ)

T

wp1
= E











H
(

U0(k)
)

N
(

U(k)
)

. . . H
(

U0(k)
)

N
(

U(k′)
)

...
. . .

...

H
(

U0(k
′)
)

N
(

U(k)
)

. . .H
(

U0(k
′)
)

N
(

U(k′)
)











,

= E

[

H
(

U0(k)
)

N
(

U(k)
)]

Iµ, (11)

and

lim
ℓ→∞

1

ℓ
N (Φµ,ℓ)N (Φµ,ℓ)

T

wp1
= E











N
(

U(k)
)

N
(

U(k)
)

. . . N
(

U(k)
)

N
(

U(k′)
)

...
. . .

...

N
(

U(k′)
)

N
(

U(k)
)

. . .N
(

U(k′)
)

N
(

U(k′)
)











,

= E

[

N
(

U(k)
)

N
(

U(k)
)]

Iµ, (12)

where k′
△
= k − µ + 1. Similarly, from independence and

causality it follows that

lim
ℓ→∞

1

ℓ
H(Φu0,ℓ)N (Φµ,ℓ)

T wp1
= 0nmod×µ, (13)

lim
ℓ→∞

1

ℓ
Φy0,ℓN (Φµ,ℓ)

T wp1
= 0nmod×µ, (14)

lim
ℓ→∞

1

ℓ
Ψw,ℓN (Φµ,ℓ)

T wp1
= 01×µ, (15)

lim
ℓ→∞

1

ℓ
Φy,ℓN (Φµ,ℓ)

T wp1
= 0nmod×µ, (16)

lim
ℓ→∞

1

ℓ
N (Φµ,ℓ)N (Φµ,ℓ)

T wp1
= 0µ×µ. (17)

Hence, from (10)-(17), it follows that

E

[

H
(

U0(k)
)

N
(

U(k)
)]

θµ (18)

wp1
= E

[

N
(

U(k)
)

N
(

U(k)
)]

lim
ℓ→∞

θ̂µ,ℓ,

where from Assumption 5.7, E
[

N
(

U(k)
)

N
(

U(k)
)]

is the

variance of N
(

U(k)
)

. 2

Let P
(

U0(k)
)

denote the probability density function of

U0(k). We consider two cases in the absence of noise:

Case A. H odd, N odd, and P
(

U0(k)
)

symmetric.

In this case,

lim
ℓ→∞

1

ℓ
N (Φµ,ℓ)N (Φµ,ℓ)

T wp1
= βIµ,

where β
△
= E

[

N
(

U(i)
)

N
(

U(i)
)]

6= 0. Next, if

lim
ℓ→∞

1

ℓ
H(Φµ0,ℓ)N (Φµ,ℓ)

T wp1
= αIµ 6= 0µ×µ,

then it follows from (18) that

lim
ℓ→∞

θ̂µ,ℓ
wp1
=

α

β
θµ.

Case B. H even and P
(

U0(k)
)

symmetric.

In this case,

lim
ℓ→∞

1

ℓ
N (Φµ,ℓ)N (Φµ,ℓ)

T wp1
= βIµ,

where β
△
= E

[

N
(

U(i)
)

N
(

U(i)
)]

6= 0. Next, If N is odd,

then

lim
ℓ→∞

1

ℓ
H(Φµ0,ℓ)N (Φµ,ℓ)

T wp1
= 0µ×µ

Hence, it follows from (18) that

lim
ℓ→∞

θ̂µ,ℓ
wp1
= 01×µ.

If N is neither even nor odd and E

[

N
(

U(k)
)]

= 0, then

α
△
= E

[

H
(

U0(i)
)

N
(

U(i)
)]

can be nonzero. For the case

in which α 6= 0, it follows from (18) that

lim
ℓ→∞

θ̂µ,ℓ
wp1
=

α

β
θµ.

Example 5.1: Let H(x) = x3, N (x) = x, v = 0 and

let U0(k) be uniformly distributed with density function

P
(

U0(k)
)

=

{

1
2a , |U0(k)| ≤ a,
0, |U0(k)| > a.

Then

E

[

H
(

U0(k)
)

N
(

U(k)
)]

=
1

2a

∫ a

−a

U4
0 (k) dU0(k) =a4/5,

E

[

N
(

U(k)
)

N
(

U(k)
)]

=
1

2a

∫ a

−a

U2
0 (k) dU0(k) =a2/3.

Finally, it follows from (18) that

lim
ℓ→∞

θ̂µ,ℓ
wp1
=

3a2

5
θµ.
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VI. NUMERICAL EXAMPLES

Consider the system

A(q) = (q − 0.3)(q − 0.8)(q2 + 0.04),

B(q) = (5q − 1)(q2 − 2.4q + 1.69),

and define the normalized Markov parameters

H ′
i
△
=

Hi

Hj
,

where Hj is the first nonzero Markov parameter. For this

system, j = 2. The estimated Markov parameters Ĥi,

obtained from θ̂µ,ℓ, are normalized by Ĥ2 to obtain Ĥ ′
i . In

the following simulations, we overestimate the model order

and assume the relative degree is zero. The least squares

estimates are computed for 200 independent realizations of

U . We also define the error metric

ε =
1

200

200
∑

i=0

|H ′
i − Ĥ ′

i|

|H ′
i|

.

Unless otherwise specified, v(k)=0 and w(k)=0 for all k.

A. H(u) = u3, N (u) = u

Let U be white and have the uniform pdf

P
(

U(k)
)

=

{

1
20 , |x| < 10,
0, |x| > 10.

(19)

Figure 3 indicates that all of the Markov parameter estimates

are consistent up to a scalar multiple.
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Fig. 3. Consistency of the Markov parameters obtained from the µ-
Markov model with the Hammerstein nonlinearity H(u) = u3 and the
ersatz nonlinearity N (u) = u.

B. H(u) = sin(u), N (u) = sign(u)

Let U be white and have the uniform pdf (19). Figure

4 indicates that all of the Markov parameter estimates are

consistent up to a scalar multiple.

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

ε
(%

)

Number of samples.

Ĥ
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Fig. 4. Consistency of the Markov parameters obtained from the µ-Markov
model with the Hammerstein nonlinearity H(u) = sin(u) using the ersatz
nonlinearity N (u) = sign(u).

C. H(u) = u2, N (u) = −5 + |u|

Let U be white and have the uniform pdf (19). Figure

7 indicates that all of the Markov parameter estimates are

consistent up to a scalar multiple.

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

ε
(%

)

Number of samples.

Ĥ
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Fig. 5. Consistency of the Markov parameters obtained from the µ-Markov
model with the Hammerstein nonlinearity H(u) = u2 using the ersatz
nonlinearity N (u) = −5 + |u|.

D. H(u) = u3, N (u) = ueu
2/2

Let U be white and have a Gaussian pdf with mean zero

and unit variance. Figure 6 indicates that all of the Markov

parameter estimates are consistent up to a scalar multiple.
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Ĥ
′

4

10
2

10
3

10
4

10
5

10
0

10
1

10
2

ε
(%

)

Number of samples.

Ĥ
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Fig. 6. Consistency of the Markov parameters obtained from the µ-Markov
model with the Hammerstein nonlinearity H(u) = u3 using the ersatz

nonlinearity N (u) = ueu
2/2.

E. Comparison with the standard correlation method

In this example, we compare the method proposed in this

paper with the correlation method [10], where the model

structure considered is the infinite impulse response(IIR)

model

y(k) =

∞
∑

j=0

Hju(n− j). (20)

Assuming there is no noise in the system, the initial con-

ditions are zero, and U(k) is stationary white noise, semi-

consistent estimates of the Markov parameters can be ob-

tained using

βĤi = E
[

Y (k + i)N
(

U(k)
)]

,

where β = E
[

N
(

U(k)
)

U(k)
]

.

For this example, let H = u2, N = −5 + |u| and v = 0.

Let U have the uniform pdf (19) and let the initial conditions

be non-zero, specifically, let y(0) = 40.93 + H0u(0) =
40.93. Figure 7 indicates that the Markov parameters ob-

tained from IIR model ((20)) are biased.

VII. CONCLUSIONS

We considered the use of a substitute nonlinearity in

the least squares identification of Hammerstein systems

with a µ-Markov model. We proved that, under certain

assumptions, using this ersatz nonlinearity yields estimates

of the Markov parameters of the system consistently up to

a scalar multiple, which is semi-consistency. This method is

demonstrated on several examples, including a system with

a signum Hammerstein nonlinearity. Future research will

focus on techniques for constructing the ersatz nonlinearity

to optimize the rate of convergence of the Markov parameter

estimates.
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Fig. 7. Consistency of the Markov parameters obtained from the µ-Markov
model and the IIR model with the Hammerstein nonlinearity H(u) = u2

using the ersatz nonlinearity N (u) = −5+ |u|. This figure shows that the
estimates obtained from the IIR model are biased.
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