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Abstract— In this paper, we propose a model predictive
control (MPC) algorithm for switched nonlinear systems under
average dwell-time switching signals. Assuming that a stabi-
lizing MPC controller exists for each of the subsystems, we
show that recursive feasibility of the repeatedly solved optimal
control problem and asymptotic stability of the closed-loop
switched system can be established if a certain average dwell-
time condition is satisfied. If the switching times are unknown
a priori and cannot be detected instantly, further application
of the MPC controller calculated for the previously active
subsystem might result in instability of the newly activated
subsystem. It is shown that if the switches can be detected fast
enough, then still ultimate boundedness in an arbitrarily small
region around the origin can be ensured, i.e., the proposed MPC
algorithm is inherently practically robust with respect to small
errors in the detection of the switching times.

I. INTRODUCTION

Over the last two decades, the concept of model predictive
control (MPC) has gained more and more attention, both
from a theoretical point of view as well as in various
applications. In MPC, the control action is computed by
minimizing a certain cost functional and the obtained optimal
input is then applied until the next sampling instant, where
the procedure is repeated again [1, 2]. One of the key
advantages of MPC is that with this control scheme, input
and state constraints can be explicitly taken into account.
A crucial problem is to guarantee closed-loop stability for
the controlled system, which e.g. can be achieved using a
terminal region and terminal cost function approach [1–3].
Recently, MPC algorithms have been developed for more
complex system classes, like hybrid systems (see, e.g., [4]),
time-delay systems (see, e.g., [5]), or distributed systems
(see, e.g., [6]).

Another important systems class which has gained a lot of
attention recently is the class of switched systems (see, e.g.,
[7], and the references therein). Switched systems consist of
a family of dynamical subsystems together with a switching
signal specifying at each time the active subsystem dynamics.
It is well known that a switched system does not necessarily
inherit the properties of its constituent subsystems. For
example, asymptotic stability of a switched system is not
necessarily established for arbitrary switching signals even
if all of the subsystems exhibit this property [7]. Thus when
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controlling a switched system, it is not necessarily enough to
design a stabilizing controller for each of the subsystems. In
order to ensure stability, different concepts in constraining
the switching have been proposed, like multiple Lyapunov
functions (introduced in [8]) with dwell-time [9] or average
dwell-time [10] switching signals. We will make use of the
latter approach in this paper.

Stabilization of switched nonlinear systems using MPC
was considered in [11], where Lyapunov-based predictive
controllers were developed for a switched system whose
switching signal has to be an a priori known, prescribed
schedule. Stability was established by using a variable pre-
diction horizon (up to the next switching time) and by
adding a transition constraint to the optimization problem,
which is assumed to be feasible for a reasonably chosen
switching schedule. These results were extended in [12] to
the case where the switching times are not exactly known,
but only to lie within certain a priori known small intervals.
In [13], the authors developed a robust model predictive
controller for discrete-time switched linear systems where
the switching signal is a design parameter which can be
optimized in order to ensure closed-loop stability. In [4],
model predictive control of discrete-time piecewise affine
systems was considered, which can be seen as a special
case of switched systems where the switching signal is state-
dependent.

In this paper, we consider the stabilization of switched
nonlinear systems with a general, time-dependent switching
signal via MPC. In contrast to [11, 12], the switching signal
does not have to be known a priori, and cannot necessarily
be used as a design parameter as in [13]. In particular,
we design an MPC controller for each of the subsystems,
and asymptotic stability of the closed-loop is established for
all switching signals satisfying a certain average dwell-time
condition. To this end, we will exploit some of the ideas
presented in [14], where an MPC algorithm for continuous-
time (non-switched) systems was developed which included
switches between different cost functionals in order to im-
prove performance. When considering switching signals with
a priori unknown switching times, a major problem is how
recursive feasibility of the repeatedly solved optimization
problem can be ensured. The problem is that feasibility
for all times cannot necessarily be guaranteed from initial
feasibility as in the standard case, because the feasibility
regions for the different subsystems are in general not
identical. Nevertheless, we show how recursive feasibility
can be established for a certain set of initial conditions, if
again the switching signal satisfies a certain average dwell-
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time condidion. Furthermore, we show that the proposed
MPC algorithm for switched systems is inherently practically
robust with respect to small errors in the detection of the
switching times. This means that recursive feasibility and
ultimate boundedness of the closed-loop trajectory in a
region around the origin can still be ensured if the switching
times cannot be detected instantly, but only within a small
interval after their occurrence.

The remainder of this paper is structured as follows.
In Section II, preliminaries and the considered setup are
described. Section III contains the main results, including
the proposed MPC algorithm for switched systems as well as
feasibility and stability considerations. Section IV shows the
robustness property of the proposed algorithm with respect
to delays in the switch detection times. Some concluding
remarks are given in Section V.

II. PRELIMINARIES AND SETUP

Let R denote the field of real numbers. For any vector
x ∈ Rn, let ‖x‖ denote an arbitrary p-norm. For a set A ∈
Rn, denote its boundary by ∂A. A function α: [0,∞) →
[0,∞) is of class K if α is continuous, strictly increasing,
and α(0) = 0. If α is also unbounded, it is of class K∞.

Consider a family of subsystems

ẋ = fp(x, u) p ∈ P (1)

where the state x ∈ Rn, the input u ∈ Rm and P is a finite
index set. For every p ∈ P , fp(·, ·) is locally Lipschitz and
fp(0, 0) = 0, i.e., the origin is an equilibrium of the undriven
system. A switched system

ẋ = fσ(x, u) (2)

is generated by the family of subsystems (1) and a switching
signal σ(·), where σ : [0,∞) → P is a piecewise constant,
right continuous function which specifies at each time t the
index of the active subsystem.

According to [10] we say that a switching signal has
average dwell-time τa if there exist numbers N0, τa > 0
such that

∀T ≥ t ≥ 0 : Nσ(T, t) ≤ N0 +
T − t
τa

, (3)

where Nσ(T, t) is the number of switches occurring in the
interval (t, T ].

Denote the switching times in the interval (0, t] by
τ1, τ2, ..., τNσ(t,0) (by convention, τ0 := 0) and the index
of the system that is active in the interval [τi, τi+1) by pi.

Our goal is to asymptotically stabilize the origin of the
switched system (2) via MPC. We will do this under the
assumption that there exists a stabilizing MPC controller
for each of the subsystems. For this purpose, let each
of the subsystems of the family (1) be associated with a
certain performance criterion Jp to be minimized. In order
to design a stabilizing MPC controller for the subsystem
with index p, consider the following finite horizon open-loop
optimal control problem:

Problem 1: At time tk with x := x(tk) ∈ X , solve the
optimization problem

minimize
u(·)

Jp(x, u(·)) =
∫ tk+T

tk

Lp(x(τ ; tk), u(τ))dτ

+ Fp(x(t+ T ; tk)) (4)

subject to

ẋ(τ ; tk) = fp(x(τ ; tk), u(τ))
x(tk; tk) = x

u(τ) ∈ U ∀ τ ∈ [tk, tk + T ]
x(τ ; tk) ∈ X ∀ τ ∈ [tk, tk + T ]

x(tk + T ; tk) ∈ X fp .

(5)

In Problem 1, x(·; tk) denotes the predicted state trajectory
over the prediction horizon T , with initial condition x at time
tk, i.e., x(tk; tk) = x. The sets U ⊂ Rm and X ⊆ Rn are
the input and state constraint sets, respectively, and contain
the origin in their interior. Furthermore, U is assumed to
be compact. The terminal region X fp ⊆ X is a compact
set which contains the origin in its interior. The terminal
predicted state x(tk +T ; tk) is required to lie inside this set,
which is used to establish asymptotic stability. The stage
cost Lp is assumed to be continuous in (x, u) and positive
definite, i.e., there exists a function αp ∈ K∞ such that
Lp(x, u) ≥ αp(‖x‖) for all u ∈ U . The terminal cost Fp is
assumed to be a continuously differentiable, positive definite
function.

Denote the optimal input and state trajectories obtained by
solving Problem 1 by u∗p(τ ; tk) and x∗p(τ ; tk), respectively,
for tk ≤ τ ≤ tk + T , where the subscript p indicates that
the optimal input and state trajectories were obtained by
minimizing the cost functional Jp for the subsystem with
index p. Furthermore, denote the optimal value of the cost
functional Jp by Vp(x) := Jp(x, u∗p), and the set of all the
states for which Problem 1 has a solution, i.e., is feasible, by
Xp,T ⊆ X . In the MPC setup, the control input is defined in
the usual receding horizon fashion: only the first part of the
computed input trajectory u∗p up to the next sampling instant
tk+1 is applied to the subsystem, i.e.,

u(τ) = u∗p(τ ; tk) tk ≤ τ < tk+1, (6)

and then the procedure is repeated again.
In order to guarantee asymptotic stability of the (non-

switched) subsystem with index p in closed loop with the
implicit feedback controller defined by (6), the following
assumption is usually made (see, e.g. [1],[3]):

Assumption 1: Suppose there exists an auxiliary local
control law u = klocp (x), such that the terminal region X fp is
invariant with respect to the closed loop ẋ = fp(x, klocp (x)),
and the following holds:

klocp (x) ∈ U ∀ x ∈ X fp (7)

(Ḟp + Lp)(x, klocp (x)) ≤ 0 ∀ x ∈ X fp . (8)
Note that (8) implies the invariance condition for X fp , if this
set is chosen as a level set of the terminal cost function Fp.
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Remark 1: In the literature, many procedures have been
proposed on how to design the auxiliary control law klocp (x)
as well as the terminal region X fp and the terminal cost
function Fp such that Assumption 1 is satisfied; see, e.g.,
[2, 3, 15, 16]. �

III. MODEL PREDICTIVE CONTROL OF SWITCHED
SYSTEMS

In this section, we propose a model predictive control algo-
rithm for switched systems and show under what conditions
it is feasible for all times and asymptotically stabilizes the
origin of the considered switched system.

The proposed MPC algorithm for switched systems is
specified as follows:

Algorithm 1: MPC for switched systems.
0) Initialization: Set i = k = 0 and τ0 = t0 = 0.

Determine p0 = σ(0).
1) At time instant tk, measure the state x(tk).
2) Solve Problem 1 using the subsystem dynamics and the

cost functional with index pi.
3) Apply the first part of the computed optimal control

input u(τ) = u∗pi(τ ; tk), tk ≤ τ < tk+1. The
next sampling instant tk+1 is determined as tk+1 :=
min{tk + δ, τi+1}.

4) If tk+1 = τi+1, let i := i+ 1.
5) Let k := k + 1 and go to 1).
Remark 2: In Algorithm 1, the switching times τi don’t

have to be known a priori, but it is assumed that they can
be detected instantly. Namely, according to Step 3 of the
algorithm, the computed optimal control input at time tk is
applied until either δ time units have passed or a switch
occurs, and then Problem 1 is resolved. This means that
the time inbetween two sampling instances tk and tk+1

is smaller than the “nominal” sampling interval length δ,
whenever a switch occurs. We will show in Section IV how
the assumption that switches can be detected instantly can
be relaxed. �

Algorithm 1 yields the control law

u(τ) = kMPC
σ (τ) := u∗pi(τ ; tk),

τi ≤ tk ≤ τ < tk+1 ≤ τi+1,

and hence the switched closed-loop system

ẋ = fσ(x, kMPC
σ ). (9)

In the following, we will show that the proposed MPC
algorithm is recursively feasible for a certain set of initial
conditions and that the closed-loop system (9) is asymptoti-
cally stable if σ is a switching signal with average dwell-time
larger than some constant. We will start in Section III-A with
proving asymptotic stability of the closed-loop system (9),
which is done under the assumption that at every sampling
instant tk, Problem 1 in Step 2 of Algorithm 1 is feasible. We
will then discuss in Section III-B how this assumption can
be satisfied for a certain set of initial states. For proving
asymptotic stability, we make a compatibility assumption
on the optimal value functions Vp, and we require that in

between switching times, the optimal value function of the
active subsystem decays exponentially. These two assump-
tions are common in the switched systems literature in the
setting of multiple Lyapunov functions and average dwell-
time switching signals [7]. We will comment in Subsection
III-C on how these two assumptions can be satisfied in the
MPC context.

A. Stability

The following Theorem considers closed-loop stability
when applying Algorithm 1.

Theorem 1: Suppose that Assumption 1 holds for all p ∈
P , and that at every sampling instant tk, Problem 1 in Step
3 of Algorithm 1 is feasible. Furthermore, assume that there
exist constants µ ≥ 1 and λs > 0 such that for all x ∈ XT
and all p, q ∈ P we have

Vp(x) ≤ µVq(x), (10)

and along the closed-loop trajectories of (9) it holds that

Vpi(x(t2))− Vpi(x(t1)) ≤ −λs
∫ t2

t1

Vpi(x(s))ds (11)

τi ≤ t1 ≤ t2 < τi+1, ∀i = 0, 1, . . .

Then the closed-loop system (9), obtained by applying Algo-
rithm 1, is asymptotically stable, if σ(·) is a switching signal
with average dwell-time

τa >
lnµ
λs

. (12)

�

Before proving Theorem 1, we will shortly comment on
the assumptions made herein.

Remark 3: Assumption (10) implies that the optimal
value functions somehow have to be compatible; this condi-
tion is quite common in the considered setting of multiple
Lyapunov functions for a switched system (see, e.g., [10]),
and ensures that the ratio of the new value function to the
old one at the switching times is bounded by µ. We will
show in Section III-C how this assumption can be satisfied
in the MPC context. �

Remark 4: For the case where the optimal value function
Vp(x) is continuously differentiable in x, condition (11)
transforms into

V̇pi(x(t)) ≤ −λ0Vpi(x(t)),
∀ τi ≤ t < τi+1, ∀i = 0, 1, . . .

(13)

which is usually used in the switched systems literature
(cf. [10]). However, as the optimal value function is often
not continuously differentiable or even discontinuous due to
the input and state constraints, we use the more general
form (11). Either way, the decay rate of Vpi during the
interval [τi, τi+1) is less than or equal to an exponential
decay rate, and thus it holds that

Vpi(x(τi+1)) ≤ e−λs(τi+1−τi)Vpi(x(τi)). (14)

�
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Remark 5: Note that (11) only has to hold for the sub-
system with index pi which is active during the time interval
[τi, τi+1). For all other p ∈ P , Vp also can increase in
this time interval. We will show in Section III-C how this
assumption can be satisfied if Assumption 1 holds for all
p ∈ P . �

Proof of Theorem 1: To prove asymptotic stability of the
closed-loop system (9), obtained by applying Algorithm 1,
consider the function Vσ(t)(x(t)). According to Remark 4,
for any two switching times τi, τi+1, equation (14) is satis-
fied. Thus, together with (10) we obtain

Vσ(τi+1)(x(τi+1)) ≤ µVσ(τi)(x(τi+1))

≤ µe−λ0(τi+1−τi)Vσ(ti)(x(τi))

Iterating this inequality from i = 0 to i = Nσ(t, 0) and
using (3) yields [10]

Vσ(t)(x(t)) ≤ µNσ(t,0)e−λ0tVσ(0)(x0)

= eNσ(t,0) ln(µ)−λ0tVσ(0)(x0)

≤ µN0e(ln(µ)/τa−λ0)tVσ(0)(x0)

≤ µN0e−λtVσ(0)(x0) =: ce−λtVσ(0)(x0) (15)

for some λ ∈ (0, λs) if the average dwell-time τa satisfies
the bound (12). As Vp(0) = 0 and Lp(x, u) ≥ αp(‖x‖)
for all p ∈ P , x ∈ XT and u ∈ U , there exists a function
α1 ∈ K∞ such that Vp(x) ≥ α1(‖x‖) for all p ∈ P and
x ∈ XT . Thus, (15) translates into

‖x(t)‖ ≤ α−1
1

(
ce−λtVσ(0)(x0)

)
, (16)

which proves that x(t) asymptotically converges to the
origin. Asymptotic stability can then be concluded from this
and the fact that for all p ∈ P , Vp is continuous at the
origin [3], which implies that for any ε > 0 we can find
a δ > 0 such that ‖x0‖ ≤ δ ⇒ ‖x(t)‖ ≤ ε for all t ≥ 0
according to (16). �

B. Feasibility

Theorem 1 proves asymptotic stability of the closed-loop
system (9) under the assumption that at every sampling
instant tk, Problem 1 in Step 2 of Algorithm 1 is feasible.
In the following, we will show how to calculate a set of
initial states for which this assumption holds. First, note that
inbetween two switches, standard arguments can be used to
prove recursive feasibility, i.e., by showing that the endpiece
of the optimal input calculated at the previous sampling
instant concatenated with the auxiliary local control law is
a feasible input [3]. However, in general this is not true
anymore at the switching times τi, as Problem 1 has to
be recalculated for a different subsystem and a different
performance criterion than at the previous sampling instant.
Hence the major problem is that the regions Xp,T , for which
Problem 1 for the subsystems with index p ∈ P are feasible,
are not necessarily identical.

However, recursive feasibility of Algorithm 1 can be
established by other means. Namely, denote by XT the set

of all initial states for which Algorithm 1 is feasible for all
times. Clearly, XT ⊆ ∪p∈PXp,T . Define Vmax as

Vmax(x0) := cVσ(0)(x0). (17)

According to (15), it holds that

Vσ(t)(x(t)) ≤ Vmax(x0) ∀t ≥ 0, ∀x0 ∈ XT . (18)

Thus recursive feasibility of Algorithm 1 can be established
if for all p ∈ P , the sublevel set Ωp(x0) := {x ∈ X :
Vp(x) ≤ Vmax(x0)} is contained in Xp,T , as then the closed-
loop trajectory (9) is inside the feasible set Xσ(t),T for all
t ≥ 0. We thus arrive at the following result:

Lemma 1: Suppose Assumption 1 holds and (10)–(12)
are satisfied. Then

ΨT := {x0 ∈ X : Ωp(x0) ⊆ Xp,T , ∀p ∈ P} ⊆ XT . (19)

�
Remark 6: The estimate ΨT , obtained via (19), might be

quite conservative. A larger set Ψ̄T ⊇ ΨT of initial states
for which Algorithm 1 is feasible for all times can be found
as follows. Suppose that in the interval [0, τs], no switches
occur, i.e., Nσ(t, 0) = Nσ(t, τs) for all t ≥ τs. Then, by
following the same steps as in (15), we obtain

Vσ(t)(x(t)) ≤ e−λstVσ(0)(x0) t ∈ [0, τs)

Vσ(t)(x(t)) ≤ c̄e−λtVσ(0)(x0) t ≥ τs (20)

where

c̄ := µ(N0− τsτa ) = cµ−
τs
τa < c.

Now define V̄max(x0) := c̄Vσ(0)(x0) and Ω̄p(x0) := {x ∈
X : Vp(x) ≤ V̄max(x0)}. Furthermore, analogously to (19),
let

Ψ̃T = {x0 ∈ X : Ω̄p(x0) ⊆ Xp,T , ∀p ∈ P}.

However, the set Ψ̃T is not necessarily contained in XT ,
as it is not necessarily contained in the union of the sets
Xp,T . This is the case because c̄, in contrast to c, is possibly
smaller than 1, and Vp(x(t)) ≤ c̄Vmax(x0) is only valid for
t ≥ τs, according to (20). However, as for t ∈ [0, τs] no
switches occur, x(t) stays in the set Xσ(0) during this time
interval. Thus an estimate Ψ̄T of the set of initial states for
which Algorithm 1 is feasible for all times is given by the
intersection of the set Ψ̃T with the union of the sets Xp,T ,
i.e.,

Ψ̄T = Ψ̃T ∩ {∪p∈PXp,T } ⊇ ΨT . (21)

�
Remark 7: The set ΨT in (19), and analogously also Ψ̄T

in (21), might be difficult to calculate. However, determining
whether a given initial condition x0 together with an initial
index p0 = σ(0) is feasible can be done as follows. Namely,
compute Vmax(x0) according to (17). Then, if for all points
x ∈ ∂Xp,T we have Vp(x) ≤ Vmax(x0), it follows that
Ωp(x0) ⊆ Xp. If this holds for all p ∈ P , the given initial
contition is feasible and hence belongs to the set ΨT . �
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Remark 8: There are other situations than the one de-
scribed in Remark 6, in which a less conservative estimate
for the set XT can be found. Namely, if the sets Xp,T
coincide for all p ∈ P , which e.g. is the case if all states
in the state constraint set X are feasible for all p ∈ P ,
i.e., Xp,T = X , recursive feasibility follows from initial
feasibility by standard arguments. Also, if there is some
freedom in the design of the switching signal as in [13],
this can be used to construct a larger estimate of the set of
initially feasible states. �

C. Matching value functions with exponential decay rates

In this section, we show how the constant µ in the
matching condition (10) for the Lyapunov functions as well
as the exponential decay rate λs for the optimal value
functions in (11) can be found in the MPC context. Due
to space restrictions, only the ideas are presented, but some
of the details in the calculation are left out.

A procedure on how to calculate λs was presented in [14].
The idea is that inbetween switching times, by following
standard MPC stability proofs (see, e.g., [3]), one obtains
that along the closed-loop trajectory of (9), the following is
valid:

Vpi(x(t2))− Vpi(x(t1)) ≤ −
∫ t2

t1

Lpi
(
x(s), kMPC

σ (s)
)
ds

∀ τi ≤ t1 ≤ t2 < τi+1, ∀i = 0, 1, . . .

Thus, if one can show that for all x ∈ Xp and all u ∈ U it
holds that

Lp(x, u) ≥ λ0,pVp(x) (22)

for all p ∈ P and some λ0,p > 0, we obtain the desired
result (11) with

λ0 = min
p
λ0,p. (23)

Equation (22) is established by finding some function Tp(x)
which is both an upper bound for λ0,pVp(x) and a lower
bound for Lp(x, u), i.e., Lp(x, u) ≥ Tp(x) ≥ λ0,pVp(x).
In [14], two possibilities of how to determine such a function
Tp(x) are described, either through worst case estimates, or,
less conservative, if some feasible input trajectory is known
such that the stage cost Lp can be upper bounded along the
corresponding predicted trajectory. For further details, the
reader is referred to [14].

A similar idea can be used to find the constant µ in (10).
Namely, if for all p ∈ P it holds that Vp ≤ µp,2W (x) and
Vp ≥ µp,1W (x) for some function W (x), then for any p, q ∈
P we obtain

Vp(x) ≤ µp,2W (x) ≤ µp,2
µq,1

Vq(x). (24)

Thus (10) is satisfied with

µ := max
p,q∈P, p 6=q

µp,2
µq,1

.

The function W (x) and the constants µp,2 and µp,1 can
be found as follows. An upper bound for Vp can be found

as described above. For the lower bound Vp ≥ µp,1W (x),
note that Vp(x), i.e., the optimal value of the cost functional
for the constrained finite horizon optimal control problem
(4)–(5), is greater or equal than the optimal value V ucp (x)
of the cost functional for an unconstrained finite horizon
optimization problem. Thus V ucp is a lower bound for Vp.
For linear systems, for example, V ucp is given by V ucp =
x′Pp(0)x, where Pp is the solution to the corresponding
Riccati differential equation [17]. If an expression of V ucp (x)
cannot be found, a more conservative lower bound for Vp can
be found via worst-case estimates, similar to the procedure
described in [14] for worst-case estimates for an upper
bound.

Remark 9: Note that in order to satisfy the compatibility
condition (10) via the above described procedure, the func-
tion W (x) in (24) has to be the same for all p ∈ P . This
can be fulfilled if the cost functionals Jp are of the same
type and thus compatible, i.e., if they are e.g. all quadratic
or quartic. �

IV. DELAY IN SWITCH DETECTION

As mentioned above, it might be unrealistic to assume that
a switch between two subsystems occurring at time τi can
be detected instantly, if the switching signal is not known a
priori. Rather, the time τ ′i when this switch can be detected,
lies within a certain interval [τi, τi + ε], for some ε > 0.

Remark 10: For clarity of presentation, we assume that
all switches can be detected, and furthermore in order of their
occurrence. However, the subsequent results also hold for
the case where some switches of a fast switching sequence,
where several switches occur within an interval of length ε,
cannot be detected at all. �

In the following, we will show that Algorithm 1 still works
if the true switching times τi are replaced by the switch
detection times τ ′i , i.e., Problem 1 is not resolved as soon as
a switch occurs, but only as soon as it is detected. However,
in this case not asymptotic stability of the closed-loop can be
established, but only ultimate boundedness in an (arbitrarily
small) region around the origin. This means that Algorithm 1
is inherently practically robust with respect to errors in the
detection of the switching times. The modified algorithm is
thus given as follows:

Algorithm 2: Execute Algorithm 1 with τi+1 in Step 3
and 4 of Algorithm 1 substituted by τ ′i+1.

When applying Algorithm 2, during the time intervals
[τi, τ ′i) where the switch at time τi has not been detected
yet, the optimal input trajectory computed for the previously
active system is applied to the newly active system, which
might result in an unstable closed-loop system. According to
the above considerations, for each switch, the length of this
time interval, given by κi := τ ′i − τi, is bounded above by
κi ≤ ε. With this it holds that for any t ≥ 0, the fraction
of the interval [0, t] where the closed-loop system (9) is
unstable, denoted by Tu(t, 0), is bounded above by

Tu(t, 0) ≤
Nσ(t,0)∑
i=0

κi ≤ Nσ(t, 0)ε. (25)
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The following Theorem considers feasibility and stability
issues of the closed-loop system (2) when applying Algo-
rithm 2, the proof of which is omitted in this conference
paper for space reasons.

Theorem 2: Suppose that Assumption 1 holds for all p ∈
P . Furthermore, assume that there exist constants µ ≥ 1 and
λs, λu > 0 such that for all x ∈ XT and all p, q ∈ P , (10) is
satisfied, and along the closed loop trajectory of (9) it holds
that

Vpi(x(t2))− Vpi(x(t1)) ≤ −λs
∫ t2

t1

Vpi(x(s))ds (26)

τ ′i ≤ t1 ≤ t2 < τi+1, ∀i = 0, 1, . . .

and

Vpi(x(t2))− Vpi(x(t1)) ≤ λu
∫ t2

t1

Vpi(x(s))ds (27)

τi ≤ t1 ≤ t2 < τ ′i , ∀i = 0, 1, . . .

If σ(·) is a switching signal with average dwell-time

τa >
lnµ+ (λs + λu)ε

λs
, (28)

then the closed-loop system (9), obtained by applying Algo-
rithm 2, is asymptotically stable. If (26)–(27) only hold for
all ‖x‖ ≥ ν for some ν > 0, then there exists a function
γ ∈ K∞ such that the closed-loop system (9) is ultimately
bounded in Bγ(ν)(0)1. Furthermore, an estimate of the set of
initial states for which Algorithm 2 is feasible for all times,
can be calculated as proposed in Lemma 1. �

Remark 11: For the case when ε = 0, i.e., the switches
can be detected instantly, (28) reduces to τa > lnµ/λs,
which is the result obtained in Theorem 1. Furthermore, for
any switching signal with average dwell-time satisfying (12),
we can find an ε > 0 such that also (28) is satisfied. One can
show that for each ν > 0, we can find λs and λu such that
(26)–(27) hold for all ‖x‖ ≥ ν. This means that the closed-
loop system can be ultimately bounded in an arbitrarily
small region around the origin for small enough ε, i.e., the
proposed MPC algorithm for switched systems is inherently
practically robust with respect to errors in the detection of
the switching times. �

Remark 12: The setup of Theorem 2 can be viewed as a
special case of the setting in [18], where asymptotic stability
for switched systems including unstable subsystems was
considered. There, asymptotic stability was proven for the
case that the average dwell-time satisfies the inequality

τa >
lnµ

λs(1− ρ)− λuρ
, (29)

where ρ > 0 is a constant such that ρ < λs/(λs + λu)
and such that Tu(t, 0) ≤ τ0 + ρt for some τ0 > 0. For the
setting considered in this paper, we obtain from (25) that
Tu(t, 0) ≤ Nσ(t, 0)ε ≤ N0ε+ ε

τa
t =: τ0 + ρt. Plugging this

into (29) and rearranging terms yields condition (28). �

1For y ∈ Rn and a > 0, denote by Ba(y) the ball of radius a centered
at y, i.e., Ba(y) := {x ∈ Rn : ‖x− y‖ ≤ a}.

V. CONCLUSION

In this paper, we proposed a novel MPC algorithm for
switched nonlinear systems. We showed that if the switch-
ing signal satisfies a certain average dwell-time condition,
asymptotic stability of the closed loop can be established.
Furthermore, we illustrated how an estimate of the set of
initially feasible states can be obtained. Finally, we showed
that the proposed MPC algorithm is inherently practically
robust with respect to small errors in the detection of the
switching times.
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