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Abstract— In this paper a graphical method is introduced for 

finding all proportional integral derivative (PID) controllers 

that satisfy a robust performance constraint for a given single-

input-single-output (SISO) linear time invariant (LTI) transfer 

function of any order with time-delay.  This problem can be 

solved by finding all achievable PID controllers that 

simultaneously stabilize the closed-loop characteristic 

polynomial and satisfy constraints defined by a set of related 

complex polynomials.  Inverse multiplicative modeling is used 

to describe the uncertainty of unstable perturbed system.  A 

key advantage of this procedure is that it only depends on the 

frequency response of the system and does not require the plant 

transfer function coefficients.  If the plant transfer function is 

given, the procedure is still appropriate.  Inverse multiplicative 

modeling often allows for designs with reduced 

conservativeness in the unstable pole uncertainty and it 

increases the size of the set of all PID controllers that robustly 

meet the performance requirements.  

I. INTRODUCTION 

roportional integral derivative (PID) controller have 
been extensively used in industrial and bioengineering 

applications.  There has been a significant effort to 
determine the set of all PID controllers that meet specific 
design goals.  As the target of this research is to develop 
design methods that can be applied in industry, these 
methods should have several key elements.  First, they 
should be applicable to a broad set of plants.  In order for the 
methods to be applicable in the process control industry, it is 
particularly important that they handle time-delays.  Ideally, 
the design methods should be simple to understand and easy 
to implement.  Methods that depend only on the frequency 
response of the system eliminate the need for a plant model, 
which may not be available in some applications.   

Not surprisingly, most of the early work in this area 
sought to find all PID controllers that stabilized the nominal 
plant model.  Bhattacharyya and colleagues did much of 
early work in this area, where knowledge of a system’s 
rational transfer function model was assumed [1] and [2].  
Many of these results depend on generalizations of the 
Hermite-Biehler theorem [3]. They developed results based 
on theorems by Pontryagin and a generalized Nyquist 
criterion [4].   The method introduced by Tan in [5] broke  

 
 
 
 
 
 
 

 
the numerator and denominator of the plant transfer function 
into even and odd parts.  In [6] and [7], a new method, 
which did not involve complex mathematical derivations, 
was used to solve the problem of stabilizing an arbitrary 
order transfer function when only the frequency response of 
the plant transfer function was known.  This work was 
extended in [8] to a unified approach involving delta 
operators that found the stability region for discrete-time or 
continuous-time PID controllers.  In [7], Saeki introduced a 
method for finding the number of unstable poles across the 
boundary of PID controllers.  

Beyond stability, investigators have also looked at 
performance and robustness.  The authors in [5], [6], and [8] 
found regions where the controllers were guaranteed to meet 
certain gain and phase margin requirements.  PID controllers 
that also satisfy gain crossover, phase crossover, and 
bandwidth requirements for double integrator systems with 
delay were found in [9].  In [10], Shafiei and Shenton found 
all PID controllers that placed the closed-loop poles in 
certain D-partitions.  In [11] and [12], the parameters of PID 
controller were determined using a metaheuristic algorithm. 
In [12], the metaheuristic algorithm was used to adjust the 
PID parameters to meet the performance requirement for a 
pouring task.  In [13], the authors used a fractional PID 
controller to meet the performance requirement for an active 
magnetic bearing system.  In this paper, an adaptive genetic 
algorithm was used to determine the PID controller 
parameters that optimized a multi-objective cost function. In 
[14], constrained pole assignment was used for design of PD 
controllers for a double integrator plant model with time 
delays or time constant.   

As these controllers must be implemented on real systems, 
design methods that deal with robustness are of particular 
importance.  In [15], [16], and [17], Saeki and colleagues 
looked at different methods for H∞  controller design of PID 

controllers.  Ho used a generalization of the Hermite-Biehler 
theorem for H∞  PID design [18].  Tantaris, Keel, and 

Bhattacharyya looked at a similar problem for first-order 
controllers [19].  In [20], Keel and Bhattacharyya looked at 
PID design given a weighted sensitivity and weighted 
complementary sensitivity constraint for plants with no poles 
or zeros on the jω  axis.  In [21], Ho and Lin looked at PID 

controller design for robust performance for a plant that was 
described by a rational transfer function.  Unfortunately, 
none of these methods that deal with robustness work 
directly with time-delays, which are prevalent in the process 
control industry.  In [22], Keel and Bhattacharyya did allow 
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for time-delays in the nominal model when they investigated 
the weighted sensitivity and robust stability problems.  
However, they did not consider the robust performance 
problem.   

In [23], [24], [25], [26], and [27] the authors of this papers 
developed techniques for finding all achievable PID 
controllers that simultaneously stabilize the closed-loop 
continuous-time system and satisfy an H∞  sensitivity, 

H∞ complementary sensitivity, weighted sensitivity, robust 

stability, or robust performance constraint, respectively.  In 
[28], [29], [30], and [31], this method was extended to a 
unified approach for continuous-time and discrete-time H∞  

sensitivity, H∞ complementary sensitivity, weighted 

sensitivity, or robust stability design of PID controllers, 
respectively.  

In this paper, we consider the robust performance problem 
for systems with inverse multiplicative uncertainty.  Inverse 
multiplicative modeling allows for designs where uncertain 
poles cross between the left-half plane and right-half plane. 
This method is applicable for a single-input-single-output 
(SISO) linear time invariant (LTI) proper transfer functions 
of any order with time delay.  This method does not require 
the rational plant transfer function model, but depends on the 
frequency response of the nominal system.  If the plant 
transfer function is known, we can apply the same procedure 
by first computing the frequency response. 

The remainder of this paper is organized as follows.  In 
Section II, the design methodology is presented.  In Section 
III, this method is applied to a numerical example. Finally, 
the results of this paper are summarized in Section IV. 

II. DESIGN METHODOLOGY 

Consider a SISO LTI system shown in Figure 1, where 
( )G s∆  represents the perturbed plant, ( )pG s  is the nominal 

plant, and ( )cG s  is the PID controller.  The reference input 

and the error signals are ( )R s  and ( )Z s , respectively.  SW  

is the sensitivity function weight, IW  is the inverse  

multiplicative weight, and ( ) 1I jω∆ ≤  is the uncertain 

perturbation [32].  The nominal plant transfer function can 
be written as  

 

   ( ) ( ) ,s
p oG s G s e

τ−=                                                     (1) 

 
where ( )oG s  is an arbitrary-order proper transfer function, 

and τ  is a constant time-delay.  The PID controller is 
defined as 

 

( ) ,i
c p d

K
G s K K s

s
= + +                                                 (2) 

 
where pK , iK , and dK  are the proportional, integral, and 

derivative gains, respectively. 

The transfer functions in Figure 1 can all be expressed in 
the frequency domain.  The nominal plant transfer function 
can be written in terms of its real and imaginary parts as 

 
( ) ( ) ( ) .p p pG j R j Iω ω ω= +                                           (3) 

 
The PID controller is defined in the frequency domain as 

 

( ) .i
c p d

K
G j K K j

j
ω ω

ω
= + +                                           (4) 

 
The sensitivity function weight SW  and the inverse 

multiplicative weight IW  are defined in terms of their real 

and imaginary parts as  
 

( ) ( ) ( ),S S SW j A jBω ω ω= +                                            (5) 

 
and 

 
( ) ( ) ( )I I IW j A jBω ω ω= + .                                            (6) 

 

 
Fig. 1   Block diagram of the system with inverse multiplicative 

uncertainty 

 
The deterministic values of pK , iK , and dK  for which 

the closed-loop characteristic polynomial is Hurwitz stable 
have been found in [6] and [7].  In this paper, the problem is 
to find all achievable PID controllers that satisfy the robust 
performance constraint of the feedback system in Figure 1 

for all ( ) 1I jω∆ ≤ .  The robust performance constraint for 

the SISO system in Figure 1 is given by 
 

( ) ( ) andSW j S j Sω ω γ ω∆ ∆≤ ∀                          (7) 

 
where 

( ) 1

( )

1
for ( ) 1

1 ( ) ( ) 1 ( ) ( )c p I

S j

j
G j G j W j j

ω

ω
ω ω ω ω

∆

−

=

∀ ∆ ≤
+ + ∆

 
is the sensitivity function and γ  is a positive scalar.  It can 

be shown that this is equivalent to  

pG
cG  

IW  I∆

G∆

R

SW
Z 

 -      

-      

+ +
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( ) ( ) ( ) ( )
,

( ) ( ) ( )

S I

S I

W j S j W j S j

W j W j S j

ω ω ω ω
γ ω

ω ω ω

 + +
≤ ∀ 

 
 

        (8) 

 

where 
1

( )
1 ( ) ( )p c

S j
G j G j

ω
ω ω

=
+

 is the nominal 

sensitivity function. The complex functions in (8) can be 
written in terms of their magnitudes and phase angles as 

  
( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) , .

( ) ( ) ( )

S

I

S I

j W j S j
S

j W j S j
I

j W j W j S j
S I

W j S j e

W j S j e

W j W j S j e

ω ω

ω ω

ω ω ω

ω ω

ω ω γ ω

ω ω ω

∠

∠

∠

 +
 
 

+ ≤ ∀ 
 
 
 

 

                                                                                         (9) 
 

If (9) holds, then for each value of ω  we can write, 
 

( ) ( ) ( ) ( )
,

( ) ( ) ( )

S I

SI

j j
S I

j
S I

W j S j e W j S j e

W j W j S j e

θ θ

θ

ω ω ω ω
γ ω

ω ω ω

 + +
  ≤ ∀
 
 

        

                                                                                   (10) 
 

where ( ) ( )S SW j S jθ ω ω= −∠ , ( ) ( )I IW j S jθ ω ω= −∠ ,  and 

( ) ( ) ( )SI S IW j W j S jθ ω ω ω= −∠  for some [0, 2 )Sθ π∈ , 

[0,2 )Iθ π∈ , and [0,2 )SIθ π∈ .  Consequently, all PID 

controllers that satisfy (8) must lie at the intersection of all 
controllers that satisfy (10) for some [0, 2 )Sθ π∈ , 

[0,2 )Iθ π∈ , and [0,2 )SIθ π∈ . 

To find this region, for each value of [0, 2 )Sθ π∈  , 

[0,2 )Iθ π∈ , and [0,2 )SIθ π∈ we will find all PID 

controllers on the boundary of (10).  It is easy to show from 
(10) that PID controllers on the boundary must satisfy 

 
( , , , , ) 0,S I SIP ω θ θ θ γ =                                                 (11) 

 
where, 

( , , , , )

( ) ( )1
1 ( ) ( ) .

( ) ( )

S I

SI

S I SI

j j
S I

p c j
S I

P

W j e W j e
G j G j

W j W j e

θ θ

θ

ω θ θ θ γ

ω ω
ω ω

γ ω ω

=

 + +
 + −
 
 

 

By substituting (3), (4), (5), (6), cos sinSj
S Se j

θ θ θ= + , 

cos sinIj
I Ie j

θ θ θ= + , and cos sinSIj
SI SIe j

θ θ θ= +  into  

(11), the frequency response of this “modified” 
characteristic polynomial can be rewritten  

 

( )

( )( )

( )( )

( )

( )
( )

( , , , , )

1 ( ) ( )

( ) ( ) cos sin
1

( ) ( ) cos sin .

( ) ( )
cos sin

( ) ( )

S I SI

i
p p p d

S S S S

I I I I

S S
SI SI

I I

P

K
R jI K K j

j

A jB j

A jB j

A jB
j

A jB

ω θ θ θ γ

ω ω ω
ω

ω ω θ θ

ω ω θ θ
γ

ω ω
θ θ

ω ω

=

  
+ + + + −  

  

 + + +
 

+ + + 
 
 + 

+   +  

        

                                                                                       (12)     
                                                                                                                               

Note that (12) reduces to the frequency response of the 
standard closed-loop characteristic polynomial as γ → ∞ . 

Expanding (12) in terms of its real and imaginary parts 
yields 

  
2( ) ( ) ( ) ( ),p p p i p d RR K I K I K Yω ω ω ω ω ω+ − =           (13) 

 
and 

 
2( ) ( ) ( ) ( ),p p p i p d II K R K R K Yω ω ω ω ω ω− + =          (14) 

 
where,   

( )

( )

( )

( )

1
( ) 1 ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( ) ( ) cos ( )sin ,

( ) ( ) cos ( )sin ,

( ) ( ) ( ) ( ) cos
( ) ,

( ) ( ) ( ) ( ) sin

( )

R S I SI

I S I SI

S S S S S

I I I I I

S I S I SI
SI

S I S I SI

S

Y

Y

A B

A B

A A B B

A B B A

ω ω α ω α ω α ω
γ

ω
ω β ω β ω β ω

γ

α ω ω θ ω θ

α ω ω θ ω θ

ω ω ω ω θ
α ω

ω ω ω ω θ

β ω

 
= − + + + 

 

= + +

= − +

= − +

 − + +
=  
 + 

=

( )

( )

( )sin ( ) cos ,

( ) ( )sin ( )cos ,

( ) ( ) ( ) ( ) cos
( ) .

( ) ( ) ( ) ( ) sin

S S S S

I I I I I

S I S I SI
SI

S I S I SI

A B

A B

A B B A

A A B B

ω θ ω θ

β ω ω θ ω θ

ω ω ω ω θ
β ω

ω ω ω ω θ

+

= +

 + +
=  
 − 

 

This is a three-dimensional system in terms of the 
controller parameters pK , iK , and dK .  First, the 

boundary of (12) will be found in the ( ,p iK K ) plane for a 

fixed value of dK .  After setting dK  to the fixed value dK� ,   

(13) and (14) can be rewritten as  
 

2

2

( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )

p p R p dp

p p i I p d

R I Y I KK

I R K Y R K

ω ω ω ω ω ω

ω ω ω ω ω ω

 +   
 =   
 −  −    

�

�
   

                                                                                   (15)  
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Solving (15) for all 0ω ≠ , [0, 2 )Sθ π∈ , [0,2 )Iθ π∈ , and 

[0,2 )SIθ π∈  gives the following equations: 

 

( )

( )

2

( , , , , )

1
( ) 1 ( ) ( ) ( )

1
( ) ( ) ( ) ( )

,
( )

p S I SI

p S I SI

p S I SI

p

K

R

I

G j

ω θ θ θ γ

ω α ω α ω α ω
γ

ω β ω β ω β ω
γ

ω

=

  
− + + + +  

  
  
 + +  

  

 

                                                                                       (16) 
 

( )

( )
2

2

( , , , , )

1
( ) ( ) ( ) ( )

1
( ) 1 ( ) ( ) ( )

.
( )

i S I SI

p S I SI

p S I SI

d

p

K

R

I

K

G j

ω θ θ θ γ

ω ω β ω β ω β ω
γ

ω ω α ω α ω α ω
γ

ω
ω

=

  
− + + −  

  
  
 + + +  

  +�

  

                                                                                       (17) 
 

where,
2 2 2( ) ( ) ( )p p pG j R Iω ω ω= + .  Setting 0ω =  in (15) 

we obtain 
 

0 (0) 0
,

0 (0) 0
pRi

Ii i

KX

X K

    
=    
    

                                            (18) 

 
and conclude that (0, , , , )p S I SIK θ θ θ γ  is arbitrary and 

(0, , , , ) 0i S I SIK θ θ θ γ = , unless (0) (0) 0p pI R= = , which 

holds only when ( )pG s  has a zero at the origin.  

The procedure can be repeated in the ( ,p dK K ) plane.  

After setting iK  to a fixed value iK� , (13) and (14) can be 

rewritten as 
 

2

2

( ) ( ) ( )

( )( ) ( )

p p R p ip

I p idp p

R I Y I KK

Y R KKI R

ω ω ω ω ω

ωω ω ω ω

 −  − 
  =   
  +     

�

�
.      (19) 

 
Solving (19) for all 0ω ≠ , [0, 2 )Sθ π∈  , [0,2 )Iθ π∈ , and 

[0,2 )SIθ π∈  gives the same expression as (16) for 

( , , , , )p S I SIK ω θ θ θ γ , and the following equation for 

( , , , , )d S I SIK ω θ θ θ γ : 

 

( )

( )

2 2

( , , , , )

1
( ) ( ) ( ) ( )

1
( ) 1 ( ) ( ) ( )

.
( )

d S I SI

p S I SI

p S I SI
i

p

K

R

I
K

G j

ω θ θ θ γ

ω β ω β ω β ω
γ

ω α ω α ω α ω
γ

ω ω ω

=

  
+ + +  

  
  
 + + +  

  +
�

        

                                                                                       (20) 
 

At 0ω = ,  iK�  must be equal to zero for a solution to exist.  

Furthermore, as (0) 0pI =  for all real plants, 

(0, , , , )d S I SIK θ θ θ γ  is arbitrary and   

 

( )
1

1 (0) (0) (0)
(0, , , , ) .

(0)

S I SI

p S I SI
p

K
R

α α α
γ

θ θ θ γ

− − + +

=     

                                                                                       (21)   
 
Lastly, the solution is found in the ( ,i dK K ) plane.  After 

setting pK  to a fixed value of pK� , (13) and  (14) are 

rewritten as 
 

2

2

( ) ( ) ( )

( )( ) ( )

p p R p pi

d I p pp p Id

I I Y R KK

K Y I KR R X

ω ω ω ω ω

ω ωω ω ω

 −  −   =     −  −   

�

�
.          

                                                                                       (22) 
 

Although the coefficient matrix is singular, a solution will 
exist in two cases.  First, at 0ω = , (0, , , , )d S I SIK θ θ θ γ  is 

arbitrary and (0, , , , ) 0i S I SIK θ θ θ γ = , unless 

(0) (0) 0p pI R= = , which holds only when the plant has a 

zero at the origin.  In such a case, a PID compensator should 
be avoided as the PID pole cancels the zero at the origin and 
the system becomes internally unstable.  A second set of 
solutions occurs at any frequency iω , where 

( , , , , )p i S I SIK ω θ θ θ γ  (from  (16)) is equal to pK� .  At these 

frequencies, ( , , , , )d i S I SIK ω θ θ θ γ  and ( , , , , )i i S I SIK ω θ θ θ γ  

must satisfy the following straight line equation 
 

( )

( )

2

2

( , , , , )
( , , , , )

1
( ) ( ) ( ) ( )

1
( ) 1 ( ) ( ) ( )

.
( )

i i S I SI
d i S I SI

i

p i S i I i SI i

p i S i I i SI i

i p i

K
K

R

I

G j

ω θ θ θ γ
ω θ θ θ γ

ω

ω β ω β ω β ω
γ

ω α ω α ω α ω
γ

ω ω

= +

  
+ + +  

  
  
 + + +  

  

          (23)                                                                         
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III. EXAMPLE 

In this section, a numerical example is used to 
demonstrate the application of this method.  Consider the 
second order plant transfer function, where the feedback 
loop has an unknown pole location in a range of [ 0.1,0.3]− .  

The goal is to find all PID controllers that stabilize the 
system and satisfy the robust performance constraint in (8) 
where 1γ = .  The closed-loop step response is required to 

have an overshoot less than 40% and a settling time less than 
80 seconds. The sensitivity weight is chosen to satisfy the 
performance requirement for the closed-loop system is 

 
0.48( 0.26)

( )
( 0.1)S

s
W s

s

+
=

+
.                                               (24) 

  
The nominal model of the system is given by  
 

0.10.5 1
( ) ,

( )(2 1)
s

p

s
G s e

s sσ
−− +

=
+ +

                                      (25) 

 
where 0.1σ =  has been selected to be the mean value of the 
uncertain pole.  The inverse multiplicative weight  

 
0.2

( ) ,
0.1IW s

s
=

+
                                                        (26) 

 
is chosen to bound the inverse multiplicative errors.  Note, 
inverse multiplicative modeling allows for designs with 
unstable pole uncertainty.   

 
 
Equations (16) and (17) are used in the ( ,p iK K ) plane 

for a fixed value of 1.5dK =� .  As discussed previously, the 

PID stability boundary of the nominal system can be found 
by setting γ = ∞  in (16) and (17).  All PID controllers that 

satisfy the robust performance constraint in (8) are found by 
setting  1γ =  in (16) and (17) for some [0, 2 )Sθ π∈  , 

[0,2 )Iθ π∈ , and [0,2 )SIθ π∈ , and then finding the 

intersection of all regions. 
The region that satisfies the robust performance constraint 

and the nominal stability boundary is shown in Figure 2.  
The intersection of all regions inside the nominal stability 
boundary of the ( ,p iK K ) plane is the robust performance 

region.   
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Fig.  2   Nominal stability boundary and robust performance region in 

the ( ,p iK K ) plane  

 

To verify the results, an arbitrary controller from this region 
is chosen, giving us the PID controller 

 
0.09

( ) 0.78 1.5cG s s
s

= + + .                                           (27)                 

 
Substituting (24), (25), (26), and, (27) into (8) gives 

( ) ( ) ( ) ( )
0.98

( ) ( ) ( )

S I

S I

W j S j W j S j

W j W j S j

ω ω ω ω

ω ω ω

 + +
≤ 

 
 

.  As the 

magnitude of robust performance system is less than one, the 
design goal is met.  

The second method uses (16) and (20) in the ( ,p dK K ) 

plane for a fixed value of iK� , which follows the same 

procedure as the ( ,p iK K ) plane.   

The third method is applied in the ( ,i dK K ) plane for a 

fixed value of 0.5pK =� .  Plots of ( , , , , )p S I SIK ω θ θ θ γ  at 

γ = ∞  and ( , , , , )p S I SIK ω θ θ θ γ  (from (16)) for values of 

[0, 2 )Sθ π∈ , [0,2 )Iθ π∈ , and [0,2 )SIθ π∈  are shown in 

Figure 3.  For each curve, the iω s are the frequencies at 

which the chosen value for 

( , , , , ) 0.5p i S I SI pK Kω θ θ θ γ = =� .  Each iω  for this chosen 

constant coefficient of pK�  is substituted into (23) to find the 

required boundaries.  In addition, we have the boundary at  
(0, , , , ) 0i S I SIK θ θ θ γ = . 

5004



0 1 2 3 4 5 6

0

1

2

3

4

5

6

Kp-Fixed

 
Fig. 3   Plots of ( , , , , )p S I SIK ω θ θ θ γ  versus ω  

 

The region that satisfied the robust performance constraint 
and the nominal stability boundary is shown in Figure 4.  
The intersection of all regions inside the nominal stability 
boundary of the ( ,i dK K ) plane is the robust performance 

region.  To verify the results, an arbitrary controller from 
this region is chosen, giving us the PID controller  

 
0.03

( ) 0.5 1.44cG s s
s

= + + .                                      (28) 
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Fig. 4   Nominal stability boundary and robust performance region in the 

( ,i dK K ) plane  

 

Substituting (24), (25) , (26), and (28) into (8) gives 

( ) ( ) ( ) ( )
0.93

( ) ( ) ( )

S I

S I

W j S j W j S j

W j W j S j

ω ω ω ω

ω ω ω

 + +
≤ 

 
 

.  As the 

magnitude of robust performance system is less than one, the 
design goal is met. 

Step responses of the closed-loop system with the PID 
controller in (28) and various pole between [ 0.1,0.3]− are 

shown in Figure 5.  As can be seen, the closed-loop step 
responses all have an overshoot less than 40% and a setting 
time less than 80 seconds.  The maximum setting time is 

53.4 seconds and the maximum percent overshoot is 27%, 
which correspond to the stable pole location at -0.3 and the 
unstable pole location at 0.1, respectively. 
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Fig. 5   Step response of the closed loop system for various pole 

locations 

IV. CONCLUSION 

A graphical technique was introduced for finding all 
achievable PID controllers that satisfy the robust 
performance constraint of a single-input-single-output 
(SISO) linear time invariant (LTI) transfer function of an 
arbitrary-order with time-delay.  Inverse multiplicative 
modeling was used to describe the uncertainty of unstable 
perturbed system.  This method required only the frequency 
response of the nominal system.  A numerical example with 
time-delay and an unknown pole that may be in the right-
half or left-half plane was presented to demonstrate the 
application of this method.  Inverse multiplicative modeling 
allowed for designs where uncertain poles cross between the 
left-half plane and right-half plane.  
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