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Abstract

We develop an optimal controller synthesis algorithm for
decentralized control problems where control actions are
transmitted through TCP-like erasure channels. We con-
sider a simple two-player interconnected linear system
and Bernoulli distributed erasure channels. We recast
the problem to a centralized Partially Observed Markov
Decision Process (POMDP) under the fictitious player
framework, in which we construct an optimal controller
using belief states and value function recursions. Finally,
we provide explicit state space formulae for the optimal
decentralized controller.

1 Introduction

Decentralized control arises in a variety of engineering
branches, such as communication systems, sensor net-
works, vehicle coordinations, and flight formations. In
decentralized control, multiple controllers are coopera-
tively actuating a system to minimize a certain cost.
Contrary to centralized control, where only one controller
takes all measurements and decides all actions to actuate
a system, in decentralized control, each controller mea-
sures only partial information and decides partial actions.
Furthermore, because these subsystems are connected
over networks, it is critical to resolve issues of commu-
nication delay [1], data loss [2], and synchronization. In
this paper, we focus on data loss.

We consider the case when the control communication
channels of a interconnected system are vulnerable to
some Bernoulli distributed packet drops. At every time
instance, control actions generated by controllers are sent
to subsystems through control communication channels
suffering from packet drops. We consider a TCP-like pro-
tocol, where link conditions are known to the controllers
upon the next observation through acknowledgements.
This problem was addressed by [2] who proposed an ex-
plicit state space solution to a centralized TCP-like LQG
problem
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The design of a decentralized controller is dramatically
different from that of a centralized controller. Consider a
general linear dynamical system such as Linear Quadratic
Gaussian (LQG) control, which is known to have linear
solutions for centralized controllers. However, in the de-
centralized case, the problem is generally nonlinear or
intractable [9], unless there are some particular informa-
tion structures such as partial nestedness [3] or quadratic
invariance [6]. The problem under consideration in this
paper is neither partially nested nor quadratically invari-
ant, nor is the solution linear.

Without packet drops, our problem has been solved in
[8] using spectral factorization and in [7] using dynamic
programming. In this paper, we take an alternative ap-
proach to [7] in dynamic programming by using the fic-
titious player framework. Instead of solving the decen-
tralized problem directly, we first recast the problem to
a centralized problem from the perspective of a fictitious
player as suggested by Mahajan et al. [5], and simplify
it according to [10]. Given that the problem becomes
centralized, we can utilize the standard Markov decision
theory [4] to solve the problem using belief states and
value function recursions. Finally, we derive the corre-
sponding state space solution for the original decentral-
ized problem.

2 Problem Formulation

We consider two interconnected subsystems where the
dynamics of subsystem 1 may affect the dynamics of sub-
systems 2, but not vice versa. The system dynamics are
as follows:
[
z1t+1

z2t+1

]

=

[
A11 0
A21 A22

] [
z1t
z2t

]

+

[
B11 0
B21 B22

] [
N1

t 0
0 N2

t

] [
u1
t

u2
t

]

+

[
v1t
v2t

]

(1)

for t = 0, 1, . . . , T − 1. Let R denote real numbers and
E denote expectations. For all i ∈ {1, 2}, zit ∈ R

ηi is the
state of the subsystem i, ui

t ∈ R
λi is the action of player

i, and vit ∼ N(0,Σi
v) is independent Gaussian noise. The

initial condition z0 ∼ N(µs,Σs) is independent of noises.

We focus on the case when µs = 0 and Σs =

[
Σ1

s

Σ2
s

]

.

The link condition of the actuator channel i is mod-
eled by N i

t = diag(ni
t), where ni

t = (ni1
t , ni2

t , . . . , niλi

t ).
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n
ij
t ∼ Bernoulli(n̄ij) denotes the Independent and Iden-

tically distributed (I.I.D.) Bernoulli random binary vari-
able modeling the random information drop on j-th ac-
tuator of channel i at time t. The average transmis-
sion successful rate on the actuator channel of player i is
therefore N̄ i = EN i

t = diag(E(ni
t)).

For convenience, we let

zt =

[
z1t
z2t

]

, ut =

[
u1
t

u2
t

]

, vt =

[
v1t
v2t

]

,

A =

[
A11 0
A21 A22

]

, B =

[
B11 0
B21 B22

]

,

Nt =

[
N1

t 0
0 N2

t

]

, N̄ =

[
N̄1 0
0 N̄2

]

.

We use the notation x1
0:t = (x1

0, . . . , x
1
t ) to refer to the

list of variables corresponding to the subsystem 1 from
time 0 to t. Similarly, x1:2

0:t = (x1
0, . . . , x

1
t , x

2
0, . . . , x

2
t ).

The objective of the problem is to minimize J (K) =

min
K

E

{
T−1∑

t=0

(
zTt Qzt + uT

t NtRNtut

)
+ zTTQT zT

}

, (2)

for some Q ≥ 0, QT ≥ 0, and R > 0. K = (g1, g2) with
g1 = (g10:T−1) and g2 = (g20:T−1) is a set of the control
policies of player 1 and player 2 such that the control
actions are defined by

u1
t = g1t (z

1
0:t, u

1
0:t−1, n

1
0:t−1),

u2
t = g2t (z0:t, u

2
0:t−1, n0:t−1).

(3)

That is, player 1 observes only current and past states of
subsystem 1, all his past actions, and all past channel 1
link conditions, while player 2 observes current and past
states of both subsystems, his past actions, and the past
link conditions of both channels.

3 Main Results

The main theorem of this paper, which gives a state space
solution for the optimal controller (3) that minimizes the
objective (2) for the system (1).

Theorem 1. Let Pt ∈ R
(η1+η2)×(η1+η2), Yt ∈ R

η2×η2 ,
and rt ∈ R satisfy the following recursions

Pt = Q+ATPt+1A−ATPt+1BN̄

×
(
E(Nt(R+BTPt+1B)Nt)

)−1
N̄BTPt+1A, (4)

Yt = Q22 +A22TYt+1A
22

−A22TYt+1B
22N̄2

(
E(N2

t (R
22 +B22,TYt+1B

22)N2
t )
)−1

× N̄2B22TYt+1A
22, (5)

rt = rt+1 + trace

([
P 11
t+1 P 12

t+1

P 21
t+1 Yt+1

]

Σv

)

, (6)

with PT = QT , YT = P 22
T , and rT = 0. Define Jt and Kt

to be

Kt =
(
E(Nt(R +BTPt+1B)Nt)

)−1
N̄BTPt+1A, (7)

Jt =
(
E(N2

t (R
22 +B22,TYt+1B

22)N2
t )
)−1

× N̄2B22TYt+1A
22. (8)

Let

AK
t (N1

t ) = A22 −B21N1
t K

12
t −B22N̄2K22

t , (9)

BK
t (N1

t ) = A21 −B21N1
t K

11
t −B22N̄2K21

t , (10)

where N1
t is known to controllers from observations. The

optimal controllers are

• Controller 1 has realization

ξt+1 = AK
t (N1

t )ξt +BK
t (N1

t )z
1
t

u1
t = −K11

t z1t −K12
t ξt

• Controller 2 has realization

ξt+1 = AK
t (N1

t )ξt +BK
t (N1

t )z
1
t

u1
t = −K21

t z1t −K22
t ξt − J(z2t − ξt)

where ξ0 = 0. The optimal cost minK J (K) is

T∑

t=1

trace

([
P 11
t P 12

t

P 21
t Yt

]

Σv

)

+ trace

([
P 11
0 P 12

0

P 21
0 Y0

]

Σs

)

.

We will develop the proof in the following sections.
The philosophy behind the proof is to first recast the
two player decentralized problem described in Section 2
into a centralized POMDP using the idea in Section 4.2.
With the problem being centralized, we are able to solve
the problem through the value function recursion as in
Lemma 2. In calculating the cost function and optimal
policy in the fictitious player problem, we solve the state
space formulae and the optimal cost of the original de-
centralized problem.

4 Preliminaries

In this paper, we solve the decentralized two-player TCP-
like LQG problem with state feedback through the ficti-
tious player framework in [5]. In order to explain our
results, we briefly present the idea of the fictitious player
framework (Model A) in [5] in Section 4.2. We simpli-
fied the idea for the case of only two players with state
feedback according to Theorem 1 in [10].

4.1 Notations

In most cases, we use subscript to denote time index and
superscript i ∈ {1, 2} to denote subsystems. For exam-
ple, xi

t, u
i
t, and yit denote the state, action, and observa-

tion of subsystem i at time t, respectively. Convention-
ally, we let y0t denote the common observation at time
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t. For other cases, we use superscript k ∈ {1, 2, 3} to
denote the sub-time index in the fictitious player frame-
work. For example, skt denotes the fictitious state at time
tk. Conventionally, we use dummy superscript i to de-
note the subsystem index and k to denote the sub-time
index.

We use φ to denote the empty set and calligraphy capi-
tal letters, like X and S0

t , to denote sets. In POMDP, we
use the Sans-serif font to denote sample paths; For exam-
ple, we take xt as any sample path of xt. We use fΣ(x−µ)
to denote the Probability Density Function (PDF) for the
Gaussian random vector x with mean µ and covariance
Σ. For a set Y1, although the superscript denotes the
subsystem, we use the superscript over the parenthesis
(Y1)n or

∏n−1
t=0 (Y

1) to denote the n-fold Cartesian prod-
uct of the set, that is, (Y1)n = Y1 × · · · × Y1 n times.

The notations (a1, . . . , at) and
[
aT1 . . . aTt

]T
are inter-

changeable throughout the text. Finally, let

δ(a, b) =

{
1 if a = b,

0 elsewhere.

and Γ(a, b, c) = δ(a, b(c)) when b is a map. When
a = (a1, . . . , an) and b = (b1, . . . , bn) are two sets of
equal size, we overload the function δ(a, b) with δ(a, b) =
δ(a1, b1) · · · δ(an, bn). Conventionally, we define δ(φ, φ) =
1. Furthermore, we use da to denote da1 · · · dan com-
pactly in an integral.

4.2 The Fictitious Player Framework

Consider a discrete time system consists of a plant and
two players. Let xt ∈ X denote the state of the plant
and ui

t ∈ U i denote the control action of player i. The
plant follows the dynamic

xt+1 = lt(xt, u
1
t , u

2
t , w

3
t ),

where lt(·) is the plant function and w3
t ∈ W3 the process

noise. Let y0t ∈ Y0 denote the common observation and
yit ∈ Yi the private observations.

The observations are generated according to

yit = hi
t(xt, w

i
t) ∀i ∈ {0, 1, 2},

where hi
t(·) is the observation function and wi

t ∈ W i is the
observation noise. Let mi

t = (yi0:t, u
i
0:t) ∈ Mi

t denote the
set of private memory for player i, whereMi

t = (Yi)t+1×
(U i)t+1. Conventionally, we take mi

−1 = φ.

At each time t, after player i observes common obser-
vation y0t and private observation yit, he generates control
action ui

t and updates his private memory according to

ui
t = git(m

i
t−1, y

i
t, y

0
0:t),

mi
t = (yi0:t, u

i
0:t) = (mi

t−1, y
i
t, g

i
t(m

i
t−1, y

i
t, y

0
0:t)),

where git ∈ Gi
t is any control policy.

The objective is to select a set of control policies K =
(g1, g2) with gi = (gi0:T−1) such that it minimizes the

finite horizon cost J (K) = E

(
∑T

t=0 ρt(xt, u
1
t , u

2
t )
)

. This

problem is a non-classical POMDP since the observations
are different for each player.

Mahajan et al. suggested a framework to transform a
decentralized control problem into a centralized control
problem from the perspective of a fictitious player, with
respect to a fictitious plant, through sequential decom-
position in [5]. Consider a fictitious player who observes
common observations and determines maps ḡit ∈ Ḡi

t for
each player i such that ḡit(m

i
t−1, y

i
t) = git(m

i
t−1, y

i
t, y

0
0:t).

Each player i then generates his private action with
ui
t = ḡit(m

i
t−1, y

i
t) and updates his private memory upon

receiving private observation yit.

The controller is centralized from the perspective of
the fictitious player. We now reformulate the (fictitious)
plant from the perspective of the fictitious player, where
all real players are part of the fictitious plant. Let skt be
the state of the fictitious plant, where

s1t = (xt,m
1
t−1,m

2
t−1) ∈ S1

t ,

s2t = (xt,m
1
t ,m

2
t−1) ∈ S2

t ,

s3t = (xt,m
1
t ,m

2
t ) ∈ S3

t ,

(11)

and S1
t = X ×M1

t−1×M2
t−1, S

2
t = X ×M1

t ×M2
t−1, and

S3
t = X ×M1

t ×M2
t . According to the sequential decom-

position, one time step t is decomposed into several sub-
time steps tk with k ∈ {1, 2, 3}, and the states evolve in
the order of s1t , s

2
t , s

3
t , s

1
t+1 and so on. At time t1, the state

evolves according to xt = lt−1(xt−1, u
1
t−1, u

2
t−1, w

3
t−1),

and the fictitious player measures a new common ob-
servation y0t . At time tk, the fictitious player deter-
mines optimal map ḡkt to be his control action. At
time t3, cost ρ̄3t (s

3
t ) = ρt(xt, u

1
t , u

2
t ) is incurred. The

objective of the fictitious player problem is to find op-
timal policy K̄ = (ḡ1, ḡ2) with ḡi = (ḡi0:T−1) such that

J̄ (K̄) = E

(
∑T

t=0 ρ̄t(s
3
t )
)

is minimized.

The fictitious player framework is, in fact, a cen-
tralized POMDP problem. From the perspective of
the fictitious player, he measures common observations
and determines control actions ḡkt without further con-
straints. This centralized framework allows us to define
belief states and value function recursions as a classical
POMDP. The information state given to the fictitious
player at time tk is the following:

Ikt =







(y00:t, ḡ
1
0:t−1, ḡ

2
0:t−1) k = 1,

(y00:t, ḡ
1
0:t, ḡ

2
0:t−1) k = 2,

(y00:t, ḡ
1
0:t, ḡ

2
0:t) k = 3,

(12)

and the belief state is πk
t = Pr(skt |I

k
t ). Furthermore, we

have the value function recursions as follows:

Lemma 2. The Value function recursions for the cen-
tralized fictitious player problem of the two-player decen-
tralized state feedback problem are as follows:

V 1
T+1(π̃

1
T+1) = 0,

4719



and for t = 0, . . . , T

V 3
t (π̃

3
t ) = E{ρ̄t(s

3
t ) + V 1

t+1(π
1
t+1) | π

3
t = π̃3

t }, (13)

V 2
t (π̃

2
t ) = inf

ḡ2

t

{
E(V 3

t (π
3
t ) | π

2
t = π̃2

t , ḡ
2
t )
}
, (14)

V 1
t (π̃

1
t ) = inf

ḡ1

t

{
E(V 2

t (π
2
t ) | π

1
t = π̃1

t , ḡ
1
t )
}
. (15)

Furthermore, the optimal cost minK̄ J̄ (K̄) = E(V 1
0 (π

1
0)).

Just like the framework for a classical POMDP, the set
of value function recursions provide an algorithmic proce-
dure to solve the optimal policy. However, this procedure
does not guarantee that the optimal policy is linear.

For every policy K in the decentralized problem, there
exists a unique control policy K̄ such that ḡit(m

i
t−1, y

i
t) =

git(m
i
t−1, y

i
t, y

0
0:t), and they achieve the same cost, and

vice versa. To prove this, we can list the POMDP tuples
for the centralized and decentralized problems, and show
that there is a bijection between the centralized and the
decentralized policies. Therefore, if there exists a policy
K that minimizes cost J (K), then the corresponding K̄

must also achieve the same optimal cost in the centralized
framework, and vice versa.

We simplify the fictitious states above according to two
facts. First, note that the map between (yi0:t, u

i
0:t) and

(yi0:t, ḡ
i
0:t) is bijective. Second, Theorem 1 in [10] sug-

gests that u2
t is a function of only (y00:t, y

2
t ) for our par-

ticular decentralized MDP problem, where y1t = 0 for all
t. Thus, we can define m1

t = (ḡ10:t) and m2
t = (y2t , ḡ

2
t )

and change Mi
t, G

i
t , and Ḡi

t accordingly. All statements
above now hold with u1

t = ḡ1t (ḡ
1
0:t−1) = g1t (ḡ

1
0:t−1, y

0
0:t)

and u2
t = ḡ2t (y

2
t ) = g2t (y

2
t , y

0
0:t). In fact, we will use this

definition for mi
t throughout the paper.

5 POMDP Formulation

We first define the states, the observations, and the ac-
tions for the decentralized POMDP. We incorporate nt

into the observations yt+1 so that the controller can uti-
lize nt. Thus, we incorporate nt into the states as follows:

xt =

{
z0 t = 0,
(z1t , z

2
t , n

1
t−1, n

2
t−1) 0 < t ≤ T.

(16)

We define the common observations to be

y0t =

{
z10 t = 0,
(z1t , n

1
t−1) 0 < t ≤ T.

(17)

where we denote y01t = z1t and y02t = n1
t−1. We define the

private observations to be y1t = φ and

y2t =

{
z20 t = 0,
(z2t , n

2
t−1) 0 < t ≤ T.

(18)

where we denote y21t = z2t and y22t = n2
t−1. By conven-

tion, we let y020 = n1
−1 = φ and y220 = n2

−1 = φ.

We now define the centralized POMDP. Let centralized
state skt and information state Ikt be as defined in (11)
and (12).

Definition 3. (Centralized POMDP) Define the central-
ized fictitious POMDP tuple (Ā, C̄, ρ̄) as follows:

1. Ā is a sequence Ā1
0, Ā

2
0, Ā

3
0, Ā

1
1, Ā

2
1, Ā

3
1, . . ., Ā

1
T ,

Ā2
T , Ā

3
T with Ā1

0 ∈ MS1

0

, and for t ≥ 1, Ā1
t : S1

t ×

S3
t−1 7→ [0, 1] such that Ā1

t (·, s) ∈ MS1

t
for all s ∈

S3
t−1. For all t ≥ 0, Āk

t : Sk
t × Sk−1

t × Ḡk−1
t 7→ [0, 1]

such that Āk
t (·, s, ḡ

k−1
t ) ∈ MSk

t

for all s ∈ Sk−1
t and

ḡk−1
t ∈ Ḡk−1

t with k ∈ {2, 3}.

2. C̄ is a sequence C̄0, . . . , C̄T with C̄t : Y
0×S1

t 7→ [0, 1]
such that C̄t(·, s) ∈ MY0 for all t ≥ 0 and s ∈ S1

t .

3. ρ̄ is a sequence ρ̄0, . . . , ρ̄T with ρ̄t : S
3
t 7→ R for all

t ≥ 0.

Definition 4. (Centralized Policy) A POMDP pol-
icy for the centralized fictitious player problem is a
sequence K̄ = (K̄1

0 , K̄
2
0 , K̄

1
1 , K̄

2
1 , . . . , K̄

1
T , K̄

2
T ), K̄1

t :

(Y0)t+1 ×
∏t−1

τ=0(Ḡ
1
τ × Ḡ2

τ ) 7→ [0, 1] and K̄2
t : (Y0)t+1 ×

∏t−1
τ=0(Ḡ

1
τ × Ḡ2

τ ) × Ḡ1
t 7→ [0, 1] such that for all t ≥ 0,

K̄1
t (·, y

0
0:t, ḡ

1:2
0:t−1) ∈ MḠ1

t

and K̄2
t (·, y

0
0:t, ḡ

1:2
0:t−1, ḡ

1
t ) ∈ MḠ2

t

for all y0τ ∈ Y0 and ḡiτ ∈ Ḡi
τ with τ ∈ {0, . . . , t}.

We label the entries of mi
t as m1

t = (q10:t) and m2
t =

(y2t , q
2
t ) to avoid confusion between the state variables qit

and the actions ḡit. Let bt(nt) be the PDF of nt, then
b(nt) = det(NtN̄ +(I −Nt)(I − N̄)) with the convention
that b(φ) = 1. Similarly, we define bi(ni

t) = det(N i
t N̄

i +
(I −N i

t )(I − N̄ i)) and bi(φ) = 1.

Definition 5. The POMDP tuple (Ā, C̄, ρ̄) defined in
Definition 3 has the explicit form for the problem defined
in Section 2:

1. The state transition Ā

Ā1
0(z0) = fΣs

(z0 − µs) with z0 = x0 = s10,

Ā1
t (s

1
t , ŝ

3
t−1) = δ(m1:2

t−1, m̂
1:2
t−1) b(nt−1)

× fΣv

(

zt −Aẑt−1 −BNt−1

[
q̂1t−1(q̂

1
0:t−2)

q̂2t−1(ŷ
2
t−1)

])

,

Ā2
t (s

2
t , ŝ

1
t , ḡ

1
t ) = δ(xt, x̂t) δ(m

1:2
t−1, m̂

1:2
t−1)δ(q

1
t , ḡ

1
t ),

Ā3
t (s

3
t , ŝ

2
t , ḡ

2
t ) = δ(xt, x̂t) δ(m

1
t , m̂

1
t )

× δ(q2t , ḡ
2
t ) δ(y

21
t , z2t ) δ(y

22
t , n2

t−1).

2. The observation C̄

C̄t(y
0
t , s

1
t ) = δ(z1t , y

01
t ) δ(n1

t−1, y
02
t ).

3. The cost ρ̄

ρ̄T (s
3
T ) = zTTQT zT at t = T ; otherwise

ρ̄t(s
3
t ) = zTt Qzt

+

[
q1t (q

1
0:t−1)

q2t (y
2
t )

]T

E(NtRNt)

[
q1t (q

1
0:t−1)

q2t (y
2
t )

]

.
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where xt, y
0
t , y

2
t are given by (16), (17), (18), and

s1t = (xt,m
1
t−1,m

2
t−1), ŝ1t = (x̂t, m̂

1
t−1, m̂

2
t−1),

s2t = (xt,m
1
t ,m

2
t−1), ŝ2t = (x̂t, m̂

1
t , m̂

2
t−1),

s3t = (xt,m
1
t ,m

2
t ), ŝ3t = (x̂t, m̂

1
t , m̂

2
t ).

6 Estimation and the Belief States

Since controllers are separable in centralized problems,
the optimal controller can be calculated through belief
states and value function recursions.

Definition 6. Define the belief states

πk
t (s

k
t ) = Pr(skt | I

k
t ) for all k ∈ {1, 2, 3}, t ≥ 0,

where Ikt is given by (12).

In a centralized POMDP, we can derive the explicit
formulations for the belief states through Kalman filter.

Theorem 7. (Belief States of the Fictitious Player)
Consider the centralized fictitious player POMDP model
as given in Definition 5, the belief states are

π1
0(s

1
0) = δ(z10 , y

01
0 ) ζ0(z

2
0),

π2
0(s

2
0) = δ(z10 , y

01
0 ) ζ0(z

2
0) δ(q

1
0 , ḡ

1
0),

π3
0(s

3
0) = δ(z10 , y

01
0 ) δ(z20 , y

21
0 ) δ(q10 , ḡ

1
0) δ(q

2
0 , ḡ

2
0) ζ0(y

21
0 ),

and for t > 0,

π1
t (s

1
t ) = δ(q10:t−1, ḡ

1
0:t−1) δ(q

2
t−1, ḡ

2
t−1) ζt−1(y

21
t−1) b

2(y22t−1)

× δ(z1t , y
01
t ) ζt(z

2
t ) δ(n

1
t−1, y

02
t ) b2(n2

t−1),

π2
t (s

2
t ) = δ(q10:t, ḡ

1
0:t) δ(q

2
t−1, ḡ

2
t−1) ζt−1(y

21
t−1) b

2(y22t−1)

× δ(z1t , y
01
t ) ζt(z

2
t ) δ(n

1
t−1, y

02
t ) b2(n2

t−1),

π3
t (s

3
t ) = δ(q10:t, ḡ

1
0:t) δ(q

2
t , ḡ

2
t ) ζt(y

21
t ) b2(y22t )

× δ(z1t , y
01
t ) δ(z2t , y

21
t ) δ(n1

t−1, y
02
t ) δ(n2

t−1, y
22
t ),

where ζt(z) is a PDF on z such that E(z) = µt and
cov(z) = Σt with ζ0(z) = fΣ2

s
(z − µ2

s), i.e. µ0 = µ2
s,

Σ0 = Σ2
s, and

µt+1 = A21y01t +A22µt

+B21 diag(y02t+1)ḡ
1
t (ḡ

1
0:t−1) +B22N̄2ū2t , (19)

Σt+1 = Σ2
v +A22ΣtA

22T +B22 cov(N2
t u

2
t | I

1
t+1)B

22T,

where ū2t = Ey2

t
(ḡ2t (y

2
t ) | I

1
t+1).

Proof. Prove by Induction using the POMDP formula
in Corollary 5. The full formulation for ζt+1(z

2
t+1) is

ζt+1(z
2
t+1) =

∫

ζt(y
21
t )b2(y22t )fΣ2

v
(z2t+1 −A21y01t

−A22y21t −B21 diag(y02t+1)ḡ
1
t (ḡ

1
0:t−1)−B22N̄2ḡ2t (y

2
t ))dy

2
t

The proof is omitted here due to space constraints.

7 Controller and the Value Function Re-

cursion

In a centralized POMDP, there is a standard procedure
for value function recursions through dynamic program-
ming. We will repeat the procedure to our centralized
fictitious player problem. While the procedure to the re-
cursions is standard, the difficulties lies in exploiting the
structure of the value functions so that the recursions are
remain tractable as we progress recursively.

Theorem 8. (Fictitious Controller) Consider the cen-
tralized fictitious player POMDP tuple as given in Def-
inition 5 and the belief states as given in Theorem
7, let V k

t be as given in Lemma 2, then V 1
t (π

1
t ) =

∫
σ1
t (s

1
t )π

1
t (s

1
t )ds

1
t where

σ1
t (s

1
t ) =

[
zt

z2t − µt

]T [
Pt

Yt − P 22
t

] [
zt

z2t − µt

]

+ rt,

and Pt, Yt, and rt are defined by recursions (4), (5), and
(6), respectively, with PT = QT , YT = Q22

T , and rT = 0.
The optimal cost minK̄ J̄ (K̄) =

T∑

t=1

trace

([
P 11
t P 12

t

P 21
t Yt

]

Σv

)

+ trace

([
P 11
0 P 12

0

P 21
0 Y0

]

Σs

)

,

and the optimal controllers are

ḡ1t (ḡ
1
0:t−1) = −K11

t z1t −K12
t µt, (20)

ḡ2t (z
2
t ) = −K21

t z1t −K22
t µt − Jt(z

2
t − µt), (21)

with constant matrices Kt and Jt as given in (7) and (8).
µt in (19) then becomes a function of (z10:t, n

1
0:t−1) by

µt = AK
t−1(N

1
t−1)µt−1 +BK

t−1(N
1
t−1)z

1
t−1, (22)

where AK
t (N1

t ) and BK
t (N1

t ) are functions of N
1
t as given

in (9) and (10).

Proof. Prove by backward induction by using Lemma
2. Suppose V 1

t+1(π̃
1
t+1) =

∫
σ1
t+1(s

1
t+1)π̃

1
t+1(s

1
t+1)ds

1
t+1.

Let Wt = Yt − P 22
t for all t. By (13), we have V 3

t (π̃
3
t ) =∫

σ3
t (s

3
t )π̃

3
t (s

3
t )ds

3
t where σ3

t (s
3
t ) equals

∫













σ̂3

t
(zt,ut)

︷ ︸︸ ︷






zt
ut

z2t − µt

u2
t − ū2

t







T

[
α

β

]







zt
ut

z2t − µt

u2
t − ū2

t






+ rt













× δ(u1
t , ḡ

1
t (ḡ

1
0:t−1))δ(u

2
t , ḡ

2
t (y

2
t ))dut,

with rt = trace(Pt+1Σv) + trace(Wt+1Σ
2
v) + rt+1 and

α =

[
Q+ATPt+1A ATPt+1BN̄

N̄BTPt+1A E(Nt(R+BTPt+1B)Nt)

]

,

β =

[

A22TWt+1A
22 A22TWt+1B

22N̄2

N̄2B22TWt+1A
22

E(N2
t (B

22,TWt+1B
22)N2

t )

]

.
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By (14) and after some calculations, we have

V 2
t (π̃

2
t ) =

∫

inf
u2

t

(

σ̂3
t (zt, ut)|z1

t
=y01

t
,z2

t
=y21

t
,u1

t
=ḡ1

t
(ḡ1

0:t−1
)

)

× ζt(y
21
t ) b2(y22t )dy2t .

By taking derivative with respect to u2
t inside infu2

t
(·)

and set to zero, we have the following

ū2
t = −(F 22)−1(F 21u1

t +H21z1t +H22µt), (23)

u2
t = −(F 22)−1F 21u1

t − E−1(β22(F 22)−1H22 − β21)µt

− (F 22)−1H21z1t − E−1(β21 +H22)z2t , (24)

where ū2
t = Ey2

t
(u2

t ) and

F = α22 = E(Nt(R+BTPt+1B)Nt),

H = α21 = N̄BTPt+1A,

E = E(N2
t (R

22 +B22TYt+1B
22)N2

t ) = β22 + F 22.

Then, V 2
t (π̃

2
t ) =

∫
σ2
t (s

2
t )π̃

2
t (s

2
t )ds

2
t where σ2

t (s
2
t ) =

∫
σ̂3
t (zt, ut)|(24)δ(u

1
t , ḡ

1
t (ḡ

1
0:t−1))du

1
t . Similarly, by (15),

V 1
t (π̃

1
t ) = inf

u1

t

{∫

σ̂3
t (zt, ut)|(24)δ(z

1
t , y

01
t )ζt(z

2
t )dzt

}

.

By taking derivative with respect to u1
t inside infu1

t
{·}

and set to zero, we have u1
t as in (20) where

Kt = F−1H =

[
K11

t K12
t

K21
t K22

t

]

.

By plugging (20) back to (24) and let Jt = E−1(β21 +
H22) be as given in (8), we have u2

t as in (21). Fi-
nally, by plugging (20) and (21) back to V 1

t , V
1
t (π̃

1
t ) =

∫
σ1
t (s

1
t )π̃

1
t (s

1
t )ds

1
t with σ1

t (s
1
t ) as given in the theorem.

The optimal cost is straightforward by calculating
minK̄ J̄ (K̄) = Ey0

0

(V 1
0 (π

1
0)) with µs = 0. By plugging

(20), (23), and (17) into (19), we have the recursion (22).

We are now ready to prove the main Theorem.

Proof. (Theorem 1) Given the optimal centralized ficti-
tious player policy as in Theorem 8, the rest is to show
the corresponding decentralized cost and policy. Accord-
ing to Section 4.2, we know that for any policy K̄ in the
fictitious centralized problem, there exists a decentral-
ized policy K with the same cost. Given that (20) and
(21) are optimal policies with the optimal cost

T∑

t=1

trace

([
P 11
t P 12

t

P 21
t Yt

]

Σv

)

+ trace

([
P 11
0 P 12

0

P 21
0 Y0

]

Σs

)

for the centralized problem, the optimal cost of the decen-
tralized problem must be the same, and the correspond
decentralized policies must be u1

t = g1t (ḡ
1
0:t−1, y

0
0:t) =

ḡ1t (ḡ
1
0:t−1) and u2

t = g2t (z
2
t , y

0
0:t) as in (20) and (21). Also,

note that the recursion for µt and ξt are exactly the same.
This completes the proof.

8 Conclusion

In this paper, we derived the explicit state space formulae
for a decentralized two-player problem under TCP-like
erasure channels with state feedback. We first character-
ize the problem as a decentralized POMDP and recast it
as an centralized POMDP in the fictitious players frame-
work. By calculating the belief states and the value func-
tion recursions, we solved the estimator and the optimal
controller for the decentralized problem.

The main Theorem of this paper is a generalization of
the main results in [7] and a decentralization of the main
results in [2]. We showed that the optimal decentralized
controllers for both players require an estimator of the
state of the subsystem 2 conditioned on the information
given to player 1.
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