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Abstract— A potential function based path planner for a
mobile robot to autonomously navigate an area crowded with
people is proposed. Path planners based on potential functions
have been essentially static, with very limited representation
of the motion of obstacles as part of their navigation model.
The static formulations do not take into account the possibility
of using predicted workspace configuration to augment the
performance of the path planner. The use of an elliptical region
signifying the predicted position and direction of motion of
an obstacle is proposed in this paper. The repulsive potential
caused by an obstacle is defined relative to this elliptical field.

An analytic switch is made when the robot enters this predicted
elliptical zone of the obstacle. The development of navigation
functions makes it possible to design a potential-based planner
which is guaranteed to converge to the target.

I. INTRODUCTION

The motivation for our work is to develop a robust vision-

based system for a mobile robot to be able to follow a human

leader in crowded environments. There are many challeng-

ing sub-problems which need to be solved before such a

system can be considered complete. One such sub-problem

is avoiding moving obstacles while navigating to a goal

position in the workspace. We propose a path planner which

incorporates probabilistic information in the framework of

traditional potential-based path planning to trace a more

optimal path to the goal. Computer vision (not discussed

in this paper) will be used to provide motion and position

information as input to the path planner proposed in this

paper.

The simple and effective idea behind a potential function

driven path planner is to attract the robot toward the target

while simultaneously repelling it from obstacles in its way.

These opposing potentials create a topology for navigating

the robot. The use of potential functions was proposed in a

seminal work by Khatib [1] and has since gained widespread

acceptance as a path planning technique for mobile robots.

Various potential function based planners ([2], [3]) have been

proposed to expand the initial concept.

Early potential field based path planners exhibited local

minima, places in the topology where the robot “gets stuck”

at a point other than the global minimum located at the

destination. Rimon and Koditschek [4] introduced a special

kind of a potential function, called the navigation function,

to counter this problem. They proved that the structure of the

navigation function guarantees a unique minimum at the goal

configuration, thus allowing the robot to “roll down” the gra-

dient of the field toward a guaranteed stop at the goal. Chen

et al. [5] demonstrated the navigation function approach for

multiple robots navigating to their respective goals in the

presence of both stationary and moving obstacles.

Even with moving obstacles, motion decisions for these

planners are taken without incorporating much, if any, in-

formation about how the obstacles are moving. This makes

their formulation inherently static in nature. Moreover, even

with convergence, the path is not guaranteed to be optimal.

There have been various attempts to maintain the frame-

work of potential functions while improving their alertness to

the behavior of objects in the workspace. Ge and Cui in [6],

[7] add a velocity term to the system state to enhance the path

planner with motion information, making it possible in to

track a moving object [6] and to reach a goal with obstacles

nearby [7]. In the latest of a series of papers [8], Melchior et

al. approach the problem of making dynamic potential field

calculations by employing the concept of fractional attractive

and repulsive forces. This derives from fractional calculus

and is a method of altering the potential of an obstacle based

on its level of danger to the robot traversing a path to goal.

Despite their successes, all potential function based plan-

ners assume a near-complete knowledge of the position and

velocity of the obstacles. Moreover, there is no framework

within which these planners can currently incorporate a

‘look-ahead’ feature, which allows the potential to be shaped

by extrapolating from the obstacle’s current trajectory. Pre-

diction and some modeling of uncertainty in prediction are

vital characteristics for a path planner designed to work in

practical, populated environments where objects will rarely

move along precise and deterministic trajectories. Navigating

through such populated environments or through crowds has

seen a great deal of recent interest in path planning literature,

where discrete path planners have been used. Techniques

used include reinforcement learning [9] and building proba-

bilistic maps based on obstacle motion prediction ([10], [11],

[12]).

An extension to the navigation function based path planner

[4] which allows obstacle positions as well as their motions

to be characterized with a probabilistic region we call a

position field is described in this paper. The shape of the

field conveys information about the predicted position of

the obstacle and the confidence in this prediction. The

position field is formulated to maintain the simplicity of

the navigation function based framework while enhancing

its effectiveness in avoiding obstacles and reaching its target.

We propose an elliptical position field and keep the current

robot position at one focus of the ellipse, while specifying the

predicted position to lie at the other focus and computing the

potential relative to this predicted position. The size of the

major and minor axes of the ellipse encapsulate information
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about the predicted direction of motion and the confidence

in this prediction respectively. In keeping with the properties

of navigation functions, the proposed path planner ensures

that the robot stays within its workspace, avoids collisions

with obstacles, and reaches its destination.

II. PROBLEM FORMULATION

The robot is assumed to start inside the 2D workspace,

which is circular. The position of the target within the

workspace is known to the robot. The position and velocity

of obstacles in the workspace are measurable, though their

velocity at a future time instant may be known with a degree

of uncertainty. This degree of uncertainty is influenced by

two factors:

• Knowledge of the history of motion of an object

• Model of the object’s motion within the workspace

It is assumed that the above information about uncertainty

is conveyed to the path planner by a filtering or estimation

algorithm, working with camera or laser range-finder inputs.

Physical dimensions of both the robot and obstacles are

known, though the dimensions of obstacles could be approx-

imated by a circular zone which envelops all the points on

each obstacle. The initial configuration is such that the robot

is not in physical contact with either the workspace boundary

or with any of the obstacles.

Given the above, the following are the path-planning

objectives:

• Objective 1 The robot should remain within its

workspace at all times.

• Objective 2 The robot should avoid collisions with

moving and stationary obstacles.

• Objective 3 The robot should reach its destination.

III. REVIEW OF PREVIOUS CONTROLLER

DEVELOPMENT

To address the problem of robot navigation through an

environment with obstacles, we will modify the navigation

function method first proposed by Rimon et al. [4] and later

modified by Chen et al. [5].

A. Model Development

Let the robot be defined by its position in the workspace

q(t) and a circular envelope of radius r which completely

contains the robot, where q(t) ∈ R
2, r ∈ R

+, and t is time.

It is assumed [5] that the robot can be described by the

following kinematic model

q̇ = u, (1)

where u(t) ∈ R
2 is the control input to the robot. The static

destination of the robot is represented by q∗, where q∗ ∈ R
2

and is assumed to be within the workspace.

Two functions, called beta functions, are designed to repel

the robot from the boundary of the workspace and from

obstacles inside the workspace. Both functions require the

use of a curve called the smooth bump function, defined

in [13].

Using the bump function, a boundary function is defined,

the purpose of which is to repel the robot from the workspace

boundary as it gets close to it. Denoted by β0 : R
2 → R

+
0 ,

it is a function satisfying

β0 (q) =



































1
2

[

1 + cos
(

π
f(q)−h

1−h

)]

if h ≤ f(q) < 1

0 if f(q) ≥ 1

1 if f(q) < h.
(2)

The first condition implies that the robot has sensed the

boundary but is not touching it, the second that the robot has

touched the workspace boundary, and the final term indicates

that the robot is far away from the workspace boundary. The

function f is defined as

f(q) =
1

ro0 − r
‖q − qo0‖ , (3)

where r is the radius of the robot, ro0 is the radius of the

workspace, and qo0 ∈ R
2 is the center of the workspace. The

parameter h is defined as

h =
ro0 − rs

ro0 − r
, (4)

where rs is the sensing range of the robot. Since r < rs <

ro0, 0 ≤ h < 1.

For each of the n obstacles, the repulsive potential with

respect to the robot is called βi and is defined as βi : R
2 →

R
+
0 , i = 1, 2, · · · , n, a function such that βi(q) = 0 means

that the robot has made contact with the ith obstacle. In

earlier literature [4], [5], the obstacle beta is computed using

a simple distance formula between the robot’s position and

the obstacle’s position in the workspace:

βi(q) = ‖q − qoi‖
2
− (r + roi)

2, (5)

where qoi ∈ R
2 is the center and roi ∈ R

+ the radius of the

ith obstacle. When the robot and obstacle touch, the value of

βi goes to zero as per the requirement of the beta function.

We discuss the weaknesses of this formulation and propose

an improvement in Section IV.

B. Robot Navigation

The navigation function, which encapsulates the forces

experienced by the robot, is defined in [4] as

ϕ (q) =
Ks ‖q − q∗‖

2

[

‖q − q∗‖
2κ

+ G (q)
]1/κ

, (6)

where κ ∈ R
+ is a positive constant parameter and Ks ∈ R

+

is a scale factor used to establish correspondence between the

geometry of the potential field and the units of the coordinate

system occupied by the robot. G(q) , G0G1 ∈ R, and the

scalar functions G0, G1 ∈ R are defined as follows
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G0 (q) = β0(q) (7)

G1 (q) =

n
∏

i=1

βi (q) , (8)

where β0 and βi were defined in (2) and (5), respectively.

The convergent path planner was designed in [5] based on

the kinematic model in (1)

u = −K

(

∂ϕ

∂q

)T

, (9)

where K is a a vector of gains and ∂ϕ
∂q ∈ R

1×2 is the partial

derivative of ϕ (q) from (6) with respect to q (t).

IV. DEVELOPMENT OF ELLIPTICAL OBSTACLE

FUNCTION

The original definition of βi satisfies the requirements of

the beta function and has the favorable property that beta

changes quadratically as the robot moves toward the obstacle.

This rate of change ensures that the robot’s approach to

an obstacle’s current position is strongly repelled. However,

this definition does not account for the manner in which an

obstacle has been moving or is expected to move. It does

not convey the level of threat posed by an obstacle to the

robot’s approach to the goal. For example, even if the current

position of the obstacle is not between the robot and the goal,

is there a chance that the obstacle will move in between the

robot and target at a later instant?

A. Using an Ellipse to Create a Position Field

Fig. 1. Transition of the ellipse from the stationary assumption (red circle)
to increasing estimates of the velocity of the object (blue ellipses). As
the estimated speed increases, the ellipse begins to skew in the estimated
direction of motion.

In our formulation, the original beta function for obstacles

in (5) is modified to incorporate information about the motion

and expected future state of an obstacle. As we shall see in

the simulations, this new formulation makes the robot more

responsive to the threat posed by the motion of an obstacle,

and it skews the gradient of the navigation function in such

a way that the region in which the obstacle may be expected

to appear is avoided by the robot. To begin the discussion,

consider a standard ellipse

(x − he)
2

a2
+

(y − ke)
2

b2
= 1 (10)

centered at (he, ke) and fully containing the obstacle. In this

work we assume the ellipse is aligned with the coordinate

axes, but it could easily be rotated to make the approach

general. The predictive position field is defined using the

lengths of the major axis 2a and the minor axis 2b of the

ellipse. When the obstacle is either known to be stationary

or nothing is known about its motion, the ellipse collapses

into a circle the size of the obstacle to indicate no motion

information. As we learn (based on estimates from the vision

system) the motion of the obstacle, the circle is skewed in

the direction of motion. Therefore, the direction of the major

axis indicates the estimated direction of motion, and the

length of the major axis indicates the estimated speed. The

length of the minor axis then indicates the uncertainty in the

direction estimate. Thus, various scenarios are captured by

the construction of this elliptical field, enabling it to explain

the influence of predictive fields in potential field based path

planning. Typical evolution of the elliptical field is illustrated

in Fig. 1.

It is beyond the scope of this paper to discuss the methods

of arriving at values of a and b. Without losing the generality

of the approach, we can assume that sensors and algorithms

working in parallel with the path planner can track objects

and provide suitable values of a and b to guide the model

development for this work.

B. Constraints on the size of the ellipse

The elliptical position field is a probabilistic estimate of

where we expect the obstacle to be at a future time instant.

This estimate should obviously contain the current position

of the obstacle, so its radius should not extend outside the

perimeter of the ellipse. If the obstacle of radius ro is placed

at the focus of the ellipse, then this means that the radius of

the obstacle should be less than the periapsis (the smallest

radial distance) of the ellipse:

ro ≤ a −
√

a2 − b2, (11)

which rearranging terms yields a constraint on the length of

the minor axis:

b ≥
√

ro (2a− ro). (12)

The limiting case of (11) is when the ellipse is a circle, i.e.,

a = b. This leads to the following constraint on the length

of the major axis:

a ≥ ro. (13)

C. Making the Elliptical Field Relevant to βi

Now that the elliptical field has been defined to capture

motion trends of an object, the potential in (5) needs a

redefinition to give the ellipse importance in this formulation.

It needs to be noted that the ellipse is a probabilistic

region for the presence of the obstacle, and it is possible

that the robot finds itself this ellipse. This is not explicitly

forbidden, as long as the robot does not touch the measured

(or deterministic) position of the obstacle. βi should go to

zero on physical contact between the robot and obstacle, and

the robot should be repelled from the obstacle both inside

and outside the ellipse.

The requirements for the beta redefinition are
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(a) Various positions of the robot (indicated by the green intersecting
circles) as it approaches the obstacle along a straight line. The left
focus of the ellipse (red) is the actual obstacle position, the right focus
(black) is the most likely predicted position. Points of intersection
with the ellipse are calculated and the point closer to the robot is
selected for βe computation.
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(b) The analytical switch between the βc and βe curves takes place
when the robot touches the elliptical field. When the robot is outside
the elliptical field, the quadratic βe curve determines the overall β.
Inside the field, only the circle β, caused by the current position of
the obstacle, takes effect.

Fig. 2. The variation in obstacle beta (b) as the robot approaches an
obstacle (a).

• The elliptical position field should provide the obstacle’s

repulsive force when the robot is outside the ellipse.

• The circular formulation from (5) should come into play

only when the robot is inside the ellipse.

From the above list, a modified beta function is proposed

as follows:

βi =







0 robot touches the boundary of an obstacle

βci
robot is inside the ellipse

βei
robot is outside the ellipse

(14)

where βei
is the beta function for the robot with respect to

the ellipse around the ith obstacle. The obstacle is located at

one focus of the ellipse defined in (10). Let this position be

qoi
. The obstacle is expected to move along the major axis

in the direction of motion to arrive at its predicted position

q′oi
at a future time instant t′. Then βei

is defined as

βei
(q) =

∥

∥q − q′oi

∥

∥

2
− (r + dei

)2 + δ, (15)

where dei
is the distance from the predicted obstacle position

q′oi
to the point qrei

where the line joining the robot position

q and the predicted position of the obstacle q′oi
intersects

the ellipse. Note that if we set δ = 0, this formula for βei

guarantees that it goes to zero when the robot touches the

outside of the ellipse. The curve described by this formula

(with a nonzero δ) can be seen in the right half of Fig. 2(b).

We will see later how to define δ.

The requirement for the overall beta βi is that it should

be defined up to the point of contact with the obstacle. To

satisfy this, the constant δ allows βei
to reduce to a non-zero

minimum at the point where the robot touches the ellipse.

This constant is also the value of βci
at the point where the

robot touches the ellipse. As the robot continues to move into

the ellipse toward the target, βci
reduces to zero as desired.

The βci
curve should be continuous with respect to the βei

curve to make the resultant beta differentiable throughout its

domain.

The requirements of the function βci
are:

• The function should reach its maximum value at

the boundary of the ellipse, i.e., when
∥

∥q − q′oi

∥

∥ =
(r + dei

).
• The function should reach its minimum value of zero

when the robot and the obstacle touch, i.e., when

‖q − qoi
‖ = (r + roi

).
• The maximum value of the function should be given by

the βci
value when the robot touches the ellipse along a

straight line approach to the obstacle. Let this point be

qrei
. This gives δ a constant value relative to the line of

approach δ = ‖qrei
− qoi

‖
2
+ (r + roi

)
2
. This constant

value is added to the ellipse beta when the robot is

outside the ellipse, and accounts for the movement of

the robot inside the elliptical position field.

• Additionally, the addition of delta to βei
ensures that

the obstacle beta constraint, i.e., beta goes to zero

only when the robot and obstacle physically touch, is

satisfied even with the addition of the ellipse to the

formulation.

This is accomplished by using a mirror image of the bump

function described in [13], since the highest point on the

curve needs to be further away from the x axis.

Given the above constraints, let the following terms be

defined:

rb = ‖qrei
− qoi

‖ − (roi
+ r)

hc = roi
+ r

δ = ‖qrei
− qoi

‖
2
− (r + roi

)
2
,

where the notations represent:

• rb - range of the bump function, or the x coordinate

where it attains its maximum

• hc - zero point of the bump function relative to distance

of the robot from obstacle
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• δ - maximum value of the bump function, added to the

ellipse beta

An additional point has to be made about qrei
. When we

are outside the ellipse, the point of intersection of the robot

and the ellipse is simply the point closest to the robot of

the two possible points of intersection. When we calculate

the bump function value, we are inside the ellipse and the

definition of the point of intersection needs a slight change.

As we move closer and closer to the obstacle, it is possible

that the point of intersection on the other side of the obstacle

is the nearer point of intersection. This changes δ for the

bump function and the desired shape of the β curve is lost

because of this. To ensure this does not happen, we introduce

the unit vector from the obstacle to the robot, n̄rei
. The point

of intersection is then defined as the one which is along the

vector n̄rei
.

The bump function is then defined as:

βci
(x) =











1 rb ≤ x

0 0 ≤ x < hc

δ
2

[

1 − cos
(

π x−hc

rb−hc

)]

hc ≤ x < rb

(16)

The bump function then gets the following values. At x =
hc, the obstacle and robot touch and βci

goes to zero. At

x = rb, the elliptical position field and the robot touch and

βci
gets its maximum value of δ. Beyond rb, the maximum

value of the βci
term, δ, adds to the βei

term which begins

to dominate the overall β function. Therefore the value of

βei
approaches δ instead of 0 as the robot moves towards

the ellipse.

With these definitions for βci
(16) and βei

(15), the overall

definition of βi (14) is consistent with the requirements of

the obstacle function. See Fig. 2.

V. SIMULATION RESULTS

We used Simulink (Mathworks Inc., Natick, MA) to

simulate the proposed path planner in such a way that it

would be possible to directly compare our method against

previous results from Chen et al. [5]. This is made possible

by the fact that when the position field is forced to a circle the

size of the obstacle, the equation in (15) reduces to (5). Our

hypothesis was that the predictive position fields would make

it possible for the robot to converge to the target following

a more optimal trajectory than that followed by purely static

workspace information. Moreover, the predictive look-ahead

should make it possible for the robot to stay away from the

predicted path of the obstacle, thus lowering its chances of

a collision with the obstacle.

We tested our approach using two hypothetical scenarios:

1) An obstacle initially obstructs the straight line path

from robot to goal, but it begins to move out of the

way as the simulation progresses.

2) An obstacle is initially at a distance from the straight

line trajectory from robot to goal, but it moves to

obstruct the path as the simulation progresses.

−30 −20 −10 0 10 20 30

−30

−20

−10

0
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30

→

(a) The motion of the robot using the formula-
tion from [5], when it does not have predictive
information to guide its path.

−30 −20 −10 0 10 20 30

−30

−20

−10

0

10

20

30

→

(b) The motion of the robot using our pro-
posed approach with the elliptical beta func-
tion, which guides the robot behind the obsta-
cle using the predicted position of the obstacle

Fig. 3. Two obstacles, one moving and one stationary, occupy the
workspace as the robot moves from the start position to its goal at the
top of the figure, marked by the rectangle. The moving obstacle moves
from left to right (as marked by the arrow). Without predictive information
(a), the robot first attempts to move in the direction of danger (in front
of the moving obstacle) and takes a longer path. The path of the robot is
represented by a succession of smaller circles. The path is more optimal as
predictive information is added (b).

Both cases are tested with and without the predictive

position field surrounding the obstacle. The setup of the

workspace is described as follows:

• Robot with boundary sensing zone rs = 5 and radius

r = 1 is initially located at (−10,−20).
• Goal is located at (−10, 20).
• Stationary obstacle with radius ro1 = 3 is located at

(−20, 8). The stationary nature of the obstacle causes

the predictive position field around it to shrink to a circle

with the same radius as the obstacle.

• The workspace is centered at (0, 0) with a radius of

ro0 = 35.

• The predictive position field of the moving obstacle of

radius ro2 = 3 is described by an ellipse with parameter

a = 8 in both cases.

In Scenario 1, the obstacle starts at (−20, 0) and travels 20
units in the workspace at a constant velocity. The sense of its

motion is such that it is moving out of the way of the robot’s
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(a) The motion of the robot using the formu-
lation from [5]
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(b) The motion of the robot using our pro-
posed approach with the elliptical beta func-
tion, which prevents the robot moving toward
the path of the obstacle

Fig. 4. The motion of the robot in a setup similar to Fig. 3 except that
this time, the obstacle moves from right to left (as marked by the arrow).
Without predictive information (a), the robot first attempts to move in the
direction of danger (in front of the obstacle) and takes a longer path. The
robot goes around the obstacle as predictive information is added (b).

path to goal. Without the use of a predictive position field,

we observe that the robot (in Fig. 3(a)) tries to move around

the obstacle. This causes it to move toward the path of the

obstacle and forces a correction in its path approximately

midway through its trajectory. However, when the position

field is added, the path planner is able to sense that the more

optimal path to goal would actually be behind the obstacle,

as seen in Fig. 3(b). The trajectory traced as a result is much

more intuitive than the first case. A similar improvement was

observed in Scenario 2 (see Fig. 4).

The scale factor Ks from the navigation function (6) is set

to a constant value of 1e10 for our simulations, resulting in

velocities of around 1 unit/sec for the robot. The gains from

the navigation (6, 9) are set at κ = 4.5 and K = 1.2. The

gains κ and K remain unchanged regardless of the position

of the goal and of the obstacles. However, they need to be

tuned on changing the number of obstacles in the workspace

for the robot to converge to goal.

Results from multiple trials corroborated the hypothesis

that the robot was able to successfully converge to the goal

while improving on its trajectory to goal after the elliptical

position field was defined for obstacles in the workspace.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to encode probabilistic

data and motion information into the conventional formu-

lation of potential fields. A path planner with a predictive

position field has been shown to work favorably for moving

obstacles. However, it is essential to recognize that the

elliptical shape of the position field is not a prerequisite

for predictive path planners to work within the framework

of navigation functions. It will be interesting to investigate

other geometric representations of position fields which may

be capable of more accurately representing the behavior of

specific categories of obstacles. This will change the obstacle

beta function, but the overall framework of the solution will

stay unchanged. This flexibility to new geometric models is

one of the strengths of potential field based planners which

we will continue to investigate. One of the deficiencies of this

method is sensitivity to parameter values in the system. With

automatic parameter estimation and tuning, we will be able to

make the planner more flexible to dynamic environments and

get closer to realizing a mobile robot capable of navigating

through crowds.
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