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Abstract— One of the main hypotheses supporting the de-
velopment of cooperative unmanned systems is that the de-
ployment of mobile assets (sensors, weapons) in groups is
expected to result in a more effective mission than if conducted
with a single asset. Few researches have tackled the design
of autonomous decision making for teaming UxVs (unmanned
air and ground vehicles) operating under degraded conditions,
even though it is common knowledge that real operations are
more often than not conducted in less-than-ideal conditions. We
consider a team of UxVs that have for mission to persistently
monitor an area. We want to ensure they perform as best as
possible assuming they are subject to a limited set of degraded
conditions. We propose a model to account for variable sensor
effectiveness as well as a method to optimize their placement
based on a cost balancing heuristic. Numerical simulation
suggests accounting for sensor effectiveness improves their
placement.

I. INTRODUCTION

A. Context

The development of unmanned vehicles (UxVs) has been

mainly motivated by the desire to carry out missions that are

too dull, dirty, or dangerous for humans. With advances in

automation tools, electronics, communications, material, and

propulsion, to name a few, unmanned vehicles offer a larger

realm of possibilities.

One underlying principle supporting the development of

new, innovative cooperative systems for teaming UxVs, is the

fact that a group of assets is expected to carry out a mission

more efficiently than a single individual. Before groups of

UxVs are used in an operational context and their potential as

a group is exploited, the vehicles and their onboard systems

must offer a minimum level of effectiveness, safety and

reliability under ideal and, importantly, non-ideal conditions.

A context of operation qualified as non-ideal refers to

carrying out a mission under degraded conditions. Such a

situation may refer to (1) the occurrence of onboard UxV

system and component malfunctions, (2) unmanned assets

being subject to hostile actions, and (3) the environment

adversely affecting the performance of the UxVs. To ensure

that a team of UxVs performs as well as possible under a

limited set of degraded conditions, we propose a method to

account for variable sensor effectiveness.

B. Persistent monitoring with a team of UxVs

We consider the task of persistently monitoring an area

to detect any change in the surroundings. We focus on
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the placement of the unmanned assets and the control of

their motion to achieve this placement. It is important to

emphasize that (1) we are not concerned with the use of the

information gathered by the team of UxVs, and (2) persistent

monitoring is a subset of a more complex task known as

persistent surveillance [1], [2].

We define the persistent monitoring (PM) mission as

follows. A team of UxVs with limited sensing capabilities

maintains information about a predetermined region for an

extended period of time. There are many key elements to

this definition. The first one is that the agents cooperate to

achieve the task. Secondly, sensing capabilities are limited

in the sense that sensor placement is not trivially achieved.

The information must be maintained, in that the environ-

ment must be sensed constantly, for instance by deploying

enough sensors. Finally, we want this monitoring to persist

through time, despite possibly degrading health conditions of

resource available to perform the task (i.e. sensors, vehicles,

communications).

The problem of ensuring persistent monitoring is related

to various monitoring problems that have been studied in

the past. A particular case takes place when all the sensors

can jointly cover the area. This coverage problem is often ad-

dressed through the locational optimization (LO) framework,

also known as Voronoi coverage [3]. LO is interested in

disseminating sensors throughout the environment to ensure

coverage of an area. When the quality of the sensors is

not high enough to ensure monitoring of the whole area at

once, researchers proposed to develop strategies to move the

robots (mobile sensors) in a way that optimizes a metric

that indicates the level of awareness the robots have about

their environment [4], [5]. While this approach allows for

specifying regions of varying interest, a limitation is that the

problem does not consider an awareness level that evolves

over time. Some researchers propose to determine patrol

routes [6], [7] that ensure monitoring of an area with a

set of mobile sensors. These techniques enable some sort

of persistence in the monitoring, with each vehicle follow-

ing a cycle in the region of interest. A notable limitation

with such technique is that it is not possible to specify

regions of varying importance or to account for a sensor

model that includes performance degradation with time, or

performance that depends on range or angle. Information-

theoretic approaches have also been proposed for monitoring

tasks [8], [9]. There, the objective is to control the UxVs

to optimize an information-theoretic criterion. While the

approach is decentralized and explicitly accounts for the

value of information, the health condition of the UxVs is

still not part of the problem.
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In all the aforementioned techniques, the vehicles’ health

conditions are not explicitly incorporated in the formulation

of the optimization problem. When sensors can cover the

whole area at once, coverage is likely to be the correct way

to decide on the placement of the mobile sensors. Yet, this

is true under nominal (healthy) conditions, with the past

research work not providing explicit support for enabling

persistence when agents, or UxVs, do not operate nominally

at all times.

C. Degraded conditions and health

A wide array of degraded conditions can occur during

the course of a mission, such as (1) loss of efficiency

in sensing capabilities, (2) degraded communications, (3)

reduced ability to maneuver/move, (4) the need to refuel and

(5) the loss of one or more UxVs. In this paper, we focus

on (1). Degraded communications can be modeled through

limited range interactions; implications of those on Voronoi

coverage control are studied in [10].

Health management at the mission planning level has

been investigated by some researchers. For instance, [11]

proposes a centralized mission planning system to plan the

motion of a team of small unmanned vehicles, including a

centralized health manager. This system controls the deploy-

ment of vehicles so that a predetermined number of vehicles

remain deployed in a region of interest, despite refueling

needs, expressed as a stochastic fuel consumption model. As

opposed to a centralized health-aware system, we propose a

decentralized decision-making system that takes into account

degraded conditions. Centralized health management for a

team of UxVs has been considered in the context of a task

assignment problem in [12].

D. Proposed approach and contribution

In this paper we restrict ourselves to the problem of

placing vehicles when their sensors may have variable ef-

fectiveness (health). For such situations, we propose: (1) a

way to embed sensor health in the LO framework; (2) an op-

timization criterion; and (3) an algorithm method to optimize

the cost using that criterion. We model health by introducing

an additional parameter in the problem formulation. This

parameter influences the quality of sensing performed by

a sensor. The optimization procedure balances the loss in

coverage quality resulting from health degradation with other

nearby sensors. Simulation results suggest that the method

proposed results in improved sensor placement.

II. PROBLEM SETTING

Consider a set of robots, indexed by I, a set of cardinality

|I|. Assume the agents are located in Q ⊂ R2, a convex

subset of the Cartesian plane. The position of robot i is

pi ∈ Q. Let P =
(

p1, . . . ,p|I|

)

denote the position of all

UxVs. We use ∂Q ⊂ Q to denote the boundary of Q. For

simplicity, assume (pi = pj) ≡ (i = j).

A. Space Partitioning

We consider a partition {Q1, . . . ,Q|I|} of Q. By parti-

tion, we mean that ∪i∈IQi = Q and that the intersection

any two distinct elements Qi and Qj has zero area. Let

∆ij = ∂Qi ∩ ∂Qj be the frontier between Qi and Qj . We

say that i and j are neighbors when ∆ij is neither empty nor

a singleton set. Neighborhood is a symmetric relationship.

Similarly to [13], we consider generalized Voronoi dia-

grams, which are of the form:

Qi(P,w)=
{

q ∈ Q
∣

∣

∣
f(d(pi,q))−wi≤f(d(pj ,q))−wj

}

, (1)

where d(·, ·) is the Euclidean distance, f(·) : R → R is a

strictly increasing function and wi is a weight associated to

UxV i. The vector of all weights, w =
(

w1, . . . , w|I|

)

is

taken from set U :

U=
{

w ∈ R
|I|

∣

∣

∣
|wi−wj |≤f(d(pi,pj))−f(0),∀i, j ∈ I

}

.

The set U is compact [13] and describes the set of possible

weight assignments resulting in Qi ∋ pi. It is a restriction

of a more general case where w is taken from R|I|. We say

that pi is the generator of Qi. We now identify some specific

choices for f and w.

1) Voronoi diagram: The partition is a Voronoi diagram

[14] when f : x 7→ x2 and w = α1, α ∈ R. In this case, Qi

is the set of points which are closer to pi than to any other

generator. An important property is that for any q ∈ ∆ij ,

d(q,pi) = d(q,pj). Furthermore ∆ij is a line segment when

i and j are neighbors. Finally, for each P ∈ Q|I|, there is

one and only one corresponding Voronoi diagram.

2) Power diagram: This special case of (1) corresponds

to f : x 7→ x2 [15]. When compared to the Voronoi diagram,

the power diagram adds |I| extra degrees of freedom: one

can change w and obtain different space partitions, even for

fixed P . We leverage this fact in Section IV to account for

degraded sensor health. The power diagram has the useful

property that ∆ij is still a line segment, when i and j are

neighbors. The frontier between two cells is not always at

equal distance from the generators on either side of that

frontier. In this paper, we always use power diagrams, hence

we omit to note that Qi depends on f .

B. Graph, Generalized Delaunay Graph, Graph Laplacian

Consider a finite undirected graph G = (V, E), where

E ⊆ V2. Let Nv(G) = {w ∈ V | (v, w) ∈ E} be the set

of neighbors of v in G. The matrix of degrees is DG =
diag

(

[|Nv(G)|]v∈V

)

. The adjacency matrix is defined as

AG = [auv], where auv = 1 if (u, v) ∈ E and zero otherwise.

When G, is undirected, A is symmetric. Finally, the graph

Laplacian is defined as LG = DG −AG.

For all space partitions, we introduce the generalized

Delaunay graph. The Delaunay graph is a graph whose

vertices are I. There is an edge between i and j if and only if

i 6= j and ∆ij 6= ∅. Note that this neighborhood relationship

is symmetric and that the Delaunay graph is undirected. The

graph is connected if and only if Q is.
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III. LOCATIONAL OPTIMIZATION WITH SENSOR HEALTH

A. Cost function

Locational optimization is a framework to model area

coverage tasks. The quality of the coverage task is modeled

through a cost function. Minimizing this cost results in

increased surveillance quality. In this work, we introduce

a sensor health parameter that modifies cost to represent

varying health conditions. The quality of a sensor can vary

for various reasons such as weather conditions, in the case

of an outdoor vehicle.

The cost function has the following form:

J(P,H) =
∑

i

∫

Qi

φ(q)ψ(q,pi, hi) dq. (2)

In the previous definition, Qi is an element of a space

partition such as those described in Section II-A. Function

φ : Q → R≥0 gives the importance of q to the surveillance

task being carried out. A more important location corre-

sponds to larger value of φ. A time-varying φ can be used

to implement target tracking tasks [16].

On the other hand, ψ : Q×Q×H → R≥0 measures the

sensing quality of location q performed by an UxV located

at pi, with health hi. A smaller value of ψ corresponds to

better surveillance. This is translated in ψ being a decreas-

ing function of distance, i.e. (ψ(q,p, h) < ψ(q′,p, h)) ≡
(d(p,q) > d(p,q′)), for all q,q′ ∈ Q and h ∈ H. An

important difference between pi and hi is that pi is a

controlled variable while hi is not.

Often, ψ is chosen to be the squared distance. We divert

from this by choosing:

ψ(q,pi, hi) = hid(q,pi)
2, (3)

with H = R>0. Therefore, hi affects the performance of

vehicle i’s sensor. With all other variables constant, a smaller

hi results in a lower cost for vehicle i. The choice of ψ made

above is of course arbitrary, as one could choose another

parametrization. We present a principled way to improve the

cost, for any ψ which is a decreasing function of distance.

The regular locational optimization setting corresponds to

hi = 1 for all i ∈ I. When φ is constant over Q, the

Voronoi diagram is the space decomposition that achieves

minimum cost for any P . This is because each cell is the

set of points closest to its generator and ψ is a decreasing

function of distance. In this case, the boundary of the regions

corresponds to points where the sensing of the agents on

either side is equally bad. This is no longer true when

health is introduced, as the closest robot might not be the

one providing best information about the frontier. Instead,

it might be better to shift the frontier away from the most

effective sensor.

Computing cost using a space decomposition such as

Voronoi diagrams is a simplification because the sensors

do not stop sensing exactly at the boundary of their cell.

In a sense, the cost function is an upper bound on the

actual cost that could be achieved without that simplifica-

tion. For instance, if a vehicle’s sensor provides meaningful

information about points in another cell, some information

fusion process could occur and provide better information. A

study of various special cases of such interactions between

neighbors is given in [17]. The rationale behind adjusting the

frontier to minimize the cost can be interpreted as an attempt

to minimize an upper bound on the cost; i.e. assuming a

worst case scenario.

B. Centroidal configuration

To minimize (2), one simply has to take the derivative of

the cost, with respect to robot positions:

∂J

∂pi

= 2MQi
(CQi

− pi) (4)

where MQi
is the mass of Qi and CQi

its centroid, which

are defined as

MQ =

∫

Q

φ(q) dq, and CQ = M−1
Q

∫

Q

qφ(q) dq. (5)

The critical points of J correspond to the centroid of the

regions. The configuration in which all generators are at the

centroid of their region is called the centroidal configuration.

This configuration corresponds to a local minimum of the

cost function.

In this paper, we assume a vehicle can move to the centroid

of its cell by using the following control law:

u = ki(CQi
− pi), (6)

with ki ∈ R>0 a gain. A discussion about vehicle dynamics

are amenable to Voronoi coverage control is provided in [3].

A useful property of (6) is that it depends only on self

and neighbors’ positions to compute the Voronoi cell. This

is desirable in practice because the number of neighbors is

typically much less than the total number of vehicles.

IV. COST BALANCING

In Section III we extended the LO framework so that it

would allow for modeling UxVs whose sensors have variable

health level. We have also outlined that the Voronoi diagram

is not satisfactory in this setting.

We further motivate cost balancing with an example.

Suppose that two vehicles are performing a coverage task

and that under nominal conditions, they have identical sen-

sors. For some reason, one of these UxVs suffers from

degraded sensor performance, so that its region is covered

less efficiently. In agreement with the sensor model and the

cost function described in Section III, this is modeled as an

increased cost for that UxV. This increased cost is actually a

cost increase for the whole team, because the cost function

is the sum of all individual cost functions. By Equation (6),

we also know that this UxV would remain at the centroid of

its cell. The minimum of its cost function is larger, but its

location remains unchanged. Meanwhile, the cost incurred

by the other (still nominally operating) UxV on its own cell

has not changed. There is thus a difference between the cost

of two neighbors. Cost balancing provides a way to update

the boundary, by moving it towards the neighboring region of

higher cost, when there is a cost difference. The motivation
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for doing this is to further minimize the cost. We use a simple

optimization criterion, namely that the cost for covering each

cell is the same.

Before we describe how we account for variable sensor

health, we present recent related work upon which we build.

A. Spatial Load Balancing

Recently, a method was proposed to balance the mass of

the cells so that the masses (cf. Eq. (5)) match some given

objective [13]. We present this method before we modify it

to perform cost balancing.

Let m∗ ∈ Rn
>0 be a vector representing a feasible mass

assignment. An assignment is feasible if and only if:

||m∗||1 =

∫

Q

φ(q) dq.

For convenience, let

M(P,w) =
(

MQ1(P,w), . . . ,MQn(P,w)

)

be the vector of masses corresponding to weight assignment

w and UxV positions P . Also, let

F(P,w) = M(P,w) − m∗. (7)

An important result from [13] is that for fixed P , there

exists a w∗ ∈ Rn such that

F(P,w∗) = 0. (8)

Furthermore, the sequence

wk+1 = wk (9)

+ γdiag

(

∂F1(P,wk)

∂w1
, . . . ,

∂Fn(P,wk)

∂wn

)−1

F(P,wk)

converges to w∗, for fixed P . In the previous equation,

∂Fi

∂wj

=

∫

∆ij(P,w)

φ(q)nT
i (q)

∂q

∂wj

dq, (10)

where ni(q) is the outer normal to Qi at point q. A corollary

is that ∂Fi/∂wj is identically zero unless i and j are

neighbors.

B. Cost Balancing

The cost balancing mechanism is based on the existing

result presented in Section IV-A. Rather than being subject

to mass constraints, we pose the problem through cost

constraints and we propose a method to adjust weights

to satisfy these cost constraints. The focus is on online

adjustment of the parameters (w), based on the current costs.

More specifically, we are interested in achieving equal cost

for all robots. Ultimately, we also want to have the UxVs in

a centroidal configuration with respect to this uniform cost

partitioning.

For the sake of brevity, let ψi(q) = ψ(q,pi, hi). Then,

Ji(P,w) =

∫

Qi(P,w)

φ(q)ψi(q) dq,

where ψi was introduced assuming fixed hi and P . Note

that while we derive the equations for fixed P and h, these

variables may change, although not at the same time as w.

We are interested in finding a weight assignment w∗ that

achieves equal cost for all robots. The constraint we pose on

the costs (the analogue of m∗) is

J∗
i (P,w∗) = J∗

j (P,w∗),∀i ∈ I, j ∈ Ni(P,w
∗), (11)

where Ni(P,w
∗) is the set of neighbors of i in the partition,

given P and w. However the total cost is not known a priori

and it can change with health and position. Because of this,

we cannot explicitly state feasible cost assignments. We thus

state the desired cost assignment as a function of neighbors’

costs. An equivalent statement to (11) is

J∗
i (P,w∗) = |Ni(P,w

∗)|−1
∑

j∈Ni(P,w∗)

J∗
j (P,w∗),∀i ∈ I. (12)

In words, we want the cost incurred by each UxV to match

its neighbors’ average cost. When the Delaunay graph is

connected, it is easy to show that (11) and (12) are equivalent.

To state the analogue of (7), we would need to know J∗
i .

We cannot know this quantity unless we know w∗, which is

what we are looking for. Instead, we approximate of J∗
i by

using the current w rather than w∗. This yields the following

alternate criterion:

Gi(P,w)

= |Ni(P,w)|−1
∑

j∈Ni(P,w)

[Ji(P,w) − Jj(P,w)] . (13)

≈ Ji(P,w) − J∗
i (P,w∗).

If it exists, a w such that Gi(P,w) = 0 entails w∗ = w.

The existence of a such w∗ is discussed later in this section.

Similarly to (10), we have that:

∂Ji

∂wj

=

∫

∆ij(P,w)

φ(q)ψi(q)ni(q)
∂q

∂wj

dq. (14)

This is obtained by substituting φ(q) by φ(q)ψi(q) in (10).

We can now obtain

|Ni(P,w)|
∂Gi

∂wi

=
∑

j∈Ni(P,w)

[

∂Ji

∂wi

(P,w) −
∂Jj

∂wi

(P,w)

]

(15)

=
∑

j∈Ni(P,w)

∫

∆ij

φ(q)
[

ψi(q) + ψj(q)
]

nT
i (q)

∂q

∂wi

dq.

(16)

The last line is obtained by substituting (14) in (15) and

by then using the fact that ni(q) exists and is equal to

−nj(q) for almost all q ∈ ∆ij . For of power diagrams,

nT
i (q)∂q/∂wi = 1 for all i ∈ I.

We can now state an algorithm similar to (9) to balance

the cost across neighboring cells as

wk+1 = wk

+γ diag

(

∂G1(P,wk)

∂w1
, . . . ,

∂Gn(P,wk)

∂wn

)−1

G(P,wk)
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Since |Ni(P,w)| appears in both the inverted diagonal matrix

and G, they cancel out, to yield:

wk+1 = wk+γ
(

I|I| ◦ (LJ[J ] (P,wk))
)−1

LJ(P,wk), (17)

where L is the graph Laplacian of the Delaunay graph

corresponding to the partition induced by (P,wk), J is the

current cost vector, J[J ] is the Jacobian matrix of J and ◦ is

the Schur product. Factoring out the graph Laplacian matrix

outlines that the dependency between the components of w

has the same structure as the Delaunay graph: it only requires

communication with neighbors in the partition.

Existence of a w∗ that achieves cost constraints (12) can

be proved using the same scheme ([13, Proposition IV.4]) as

the existence proof for for mass constraints (8).

We must ensure that w ∈ U . This can be achieved by

forcing wi to the interval
[

max
j∈Ni

{wj − f(d(pi,pj)}, min
j∈Ni

{wj + f(d(pi,pj)}

]

.

The choice of γ in eq. (17) must be made so that the

increments to w are small enough that it remains in U .

C. A Distributed Algorithm

In [13], the Move-to-center-and-compute-weight (MCCW)

method is proposed to optimize both the weights and the

robots position. The idea is to alternate moving to the

centroid (i.e. optimizing P using a control law such as (6))

and optimizing the regions (i.e. optimizing w using (9)).

It is also proved that doing this results in converges to a

generalized centroidal configuration. In such a configuration,

the analogue of (2) (without health) is at a local minimum

and the mass constraints are satisfied.

In order to adjust the position online, we adjust the

weights when the robots are at the centroid, similarly to

the MCCW method described above. Although using this

method ensures convergence to a centroidal configuration

with equal cell costs, we do not know if balancing cost

while in a near-centroidal configuration has an effect on the

total cost of the configuration the vehicles will converge to.

To balance the costs, UxV i needs only share the cost on

its cell, Ji =
∫

Qi
ψi(q)φ(q) dq, and the cost on the frontier

∫

∆ij
ψi(q)φ(q) dq with each of its neighbors (j ∈ Ni).

The computations required to implement cost balancing

are not significantly more difficult to carry out than those

required to perform standard Voronoi coverage. In the latter

case, every vehicle must be able to compute the mass and

centroid of its cell (eq. (5)). To implement cost balancing,

each vehicle must also compute the cost of each frontier

with a neighbor. The latter is a one dimensional integral,

and is therefore not significantly harder to compute than

the centroid and mass, which are two dimensional integrals

defined on the same quantities, namely φ and ψ. A useful

special case is that where φ is a strictly positive constant

function. In this case, the centroid and mass of each region

are easily computed because each region is a polygon. The

frontier costs are also conveniently expressed in terms of the

length of the sides of the region.

V. SIMULATION

A. Simulation Setup

We present simulation results of the method proposed

in Section IV. Three vehicles with different sensor health

conditions ([h1 h2 h3] = [1 3 9]) were randomly placed on

a unit square φ(q) = 1. The health states were held

fixed throughout the simulation. Vehicles are initially in

a centroidal configuration. The cost balancing gain was

set to γ = 1 · 10−3 and the weights were initialized to

w(0) = 0, which corresponds to a Voronoi diagram. In these

simulations, time is discrete and the time unit is a time step.

B. Simulation Results and Discussion

Figures 1 and 2 show the behavior of the vehicles for

healthy and degraded conditions respectively. Cost balancing

achieves equal cost as shown in Figures 1(c) and 2(c). This

results in some unequal weight assignment among Vehicles,

which is shown in Figures 1(b) and 2(b).

With equal health variables, the Voronoi diagram does

not correspond to a configuration where all cells have equal

weight. This fact is highlighted by Figure 1(a). In fact, when

all vehicles have equal sensor health, cost balancing results in

a higher total cost than the use of a plain Voronoi diagram, as

shown in Figure 2(c). However, having each cost matching

the average cost also lowers the cost incurred by the less

effective sensor. Balancing cost can therefore be interpreted

as a trade-off between less effective and more effective

sensors. When some sensors are much less effective than

others, this tradeoff can result in a significant improvement

over the use of a Voronoi diagram as shown in Figure 2(c).

The proposed approach may fail to optimize the costs if

φ(q) = 0 for all q at some frontier ∆ij . In this case, a

difference between the cost incurred by i and j, might not

result in a change of either wi or wj . In such situations, it is

possible that updates to wi or wj occur through interaction

with other neighbors and that at some point, ∆ij will have

moved so that the integral on ∆ij becomes non-zero. A

pathological case of this is when all the frontiers of a robot

have a zero cost. The proposed cost balancing strategy will

not adjust the frontiers for that agent. A way to counter this

is to let φ(q) > 0 for all q.

VI. CONCLUSIONS AND FUTURE WORKS

We presented a way to model variable sensor effectiveness

through health and to optimize the placement of such sensors.

The method has the benefits of begin computationally effi-

cient and to depend only on local information. When sensor

effectiveness is unequal, simulations showed that cost balanc-

ing achieves lower total cost than Voronoi coverage, while

providing only little degradation under nominal conditions.

Future works includes integrating the method described

here in a system that accounts for other ways in which the

performance of one or many vehicles can be degraded, such

as a variable number of agents, variable communication ca-

pabilities and movement capabilities. We are also interested

in adding a mission planning component to the system.
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Fig. 1. Cost balancing under nominal conditions (h1 = 1, h2 = 1, h3 = 1).
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Fig. 2. Cost balancing under degraded conditions (h1 = 1, h2 = 3, h3 = 9).
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