
  

  

Abstract—Multivariate statistical analysis techniques are 
applied to insulin infusion set failure detection (IISF), a 
challenging problem faced by individuals with type 1 diabetes 
that are on continuous insulin infusion pump therapy. Bivariate 
classification (BC), principal component analysis (PCA), and a 
combined approach were applied to simulated glucose 
concentrations for 10 patients, based on a nonlinear 
physiological model of insulin and glucose dynamics. The PCA 
algorithm had fewer false alarms than BC, while detecting most  
drifting (ramp) infusion set failures before complete failure 
occurred.  

I. INTRODUCTION 
Diabetes mellitus is a metabolic disease characterized by the 
inability of the pancreas to regulate blood glucose levels 
within a normal range (70–150 mg/dL). Diabetic patients 
have little or no endogenous insulin production (type 1 
diabetes), or a combination of insulin resistance and 
insufficient pancreatic insulin release (type 2 diabetes). 
Individuals with type 1 diabetes mellitus (T1DM) must 
receive insulin, either in the form of boluses (shots) or from 
continuous insulin infusion pumps. The development of a 
closed-loop artificial pancreas, which would use continuous 
glucose monitoring (CGM) signals and adjust the infusion 
rate of continuous subcutaneous insulin infusion pumps, is a 
major research thrust by a number of groups throughout the 
world. Challenges in the creation of a closed-loop artificial 
pancreas are reviewed in [1-4], while [5] reviews algorithms 
associated with CGM technology. 

A common problem encountered by diabetic patients on 
continuous insulin therapy is insulin infusion set failure, 
IISF, when Teflon catheters or steel needle infusion sets are 
worn for long periods of time (more than three days). 
Common causes of IISF include blocked or dislodged sets, 
inflammation, or insulin leakage back to the skin 
surface. IISF can cause the glucose to rise to hyperglycemic 
levels, even as the control algorithm (or individual) has 
administered the calculated insulin infusion rate, because the 
requested insulin was not effectively delivered. Prolonged 
hyperglycemia in poorly controlled diabetes is associated 
with long-term complications in eyes, kidneys, nerves, heart, 
and blood vessels. 

The goal of fault detection and isolation is well-known; 
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detect the malfunction of the safety specific system and take 
any measures to avoid catastrophes, damages, injuries or 
simply the system breakdown. There exist several alternative 
ways to detect and isolate failures. The comprehensive 
surveys performed by Venkatasubramanian et al. [6-8] 
indicate that fault detection and diagnosis methods can be 
categorized as: (i) quantitative model-based, (ii) qualitative 
model-based, and (iii) process data history-based methods. 
Much of the focus is on complex, large-scale chemical 
process systems. Frank [9] and Isermann [10] provide 
reviews, with selected applications, of quantitative model-
based fault detection and diagnosis techniques. Both reviews 
distinguish between abrupt (or sudden) faults, and slowly 
developing (drifting) faults. Using fault detection algorithms 
to detect IISF within as short a time as possible could allow 
an alarm to be activated to warn the patient to take action. 

The major challenge of fault detection in insulin infusion, 
particularly compared to most manufacturing systems, is the 
limited number of measurements that are available: (i) 
continuous glucose signals from the CGM, (ii) insulin 
infusion rates. Multivariate statistical analysis has been used 
as a process data history method that could help in such a 
situation [11]. 

Principal component analysis (PCA) is a dimension 
reduction method in multivariate statistical analysis	
   for	
  
computing	
  linear	
  latent	
  variables. It has been successfully 
employed in numerous areas including data compression, 
feature extraction, image processing, pattern recognition, 
signal analysis, and process monitoring [12]. Thanks to its 
simplicity and efficiency in processing different amounts of 
process data, PCA is recognized as a powerful statistical 
process monitoring tool and widely used in the process 
industry for fault detection and diagnosis [8]. Recent 
developments in the PCA technique include adaptive process 
monitoring using, for instance, recursive implementation of 
PCA [13], fast moving window PCA [14] or kernel PCA 
[15].  

This article presents preliminary results using a 
multivariate statistical analysis approach for dynamic IISF 
detection in an artificial pancreas framework. The proposed 
algorithms employ bivariate classification and PCA 
approaches and have been evaluated in silico, using a 
simulation environment with virtual diabetic subjects. The 
Food and Drug Administration (FDA) approved University 
of Virginia/Padova T1DM Simulator [16, 17], which uses 
subcutaneous insulin delivery, has been used to develop and 
test the algorithms. 
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The paper is structured as follows: section II briefly 
describes the initial settings and the detection algorithms 
development. The results obtained in the simulation 
scenarios are presented and discussed in section III; and 
finally some conclusions are drawn in section IV. 

II. METHODS 

A. Initial Settings 
The UVa/Padova T1DM simulator [16, 17], was modified 

to simulate infusion set failures in the second day of a three 
day scenario, with three regular meals each day. The IISF 
were simulated as ramp insulin infusion delivery 
degradations from 100% to 0% in a six hour period, for a 
patient classified as the average child (see Fig. 1) and 10 
other simulated child patients. This ramp infusion 
degradation was introduced at midnight (12:00 a.m.) when 
no meals are present, at noon (12:00 p.m.) simultaneous with 
the lunch meal and at 4:00 p.m., two hours before the dinner 
meal, causing changes in the glucose time courses (Fig. 2). 
The CGM signal was sampled every five minutes. 

  
Fig. 1.  Simulated insulin set failures as a ramp delivery degradation starting 

at midnight, at noon and at 4:00 p.m. for the simulated average child. 

B. Bivariate Classification 
As	
  can	
  be	
  observed	
   in	
  Fig.	
  2,	
   the	
  IISF	
  causes	
  a	
  change	
  

in	
  the	
  plasma	
  glucose	
  time	
  course	
  slope	
  (SLOPE)	
  while	
  it	
  
is	
   assumed	
   that	
   the	
  normal	
   insulin	
   infusion	
   is	
  delivered	
  
(insulin	
  on	
  board,	
  IOB).	
  In	
  this	
  case,	
  for	
  all	
  the	
  simulated	
  
patients	
  the	
  plasma	
  glucose	
  slope	
  was	
  calculated	
  for	
  any	
  
point	
   considering	
   the	
   least	
   squares	
   estimation	
   of	
   the	
  
slope	
  over	
  a	
  45	
  min	
  window:	
  

 

€ 

Si = (xi − x i)
T (xi − x i) / (xi − x i)

T (Ti −T i)[ ] (1) 
	
  
Where Si is the estimated slope at the i-point, xi and Ti are 

vectors containing the last 45 min data (10 points) for 
plasma glucose and daily time, respectively. Finally and 

 stand for the vectors mean values. 
	
  

 
Fig. 2.  Plasma Glucose responses for three simulated ramp set failures. 

	
  
To apply the BC algorithm, two classes are assumed: 

“normal” and “faulty” classes. The idea is to find a way to 
separate both classes. It is evident that neither variable, 
SLOPE nor IOB by its own is useful to separate the two 
classes. Assuming that the simulated average child 
represents the mean response of the diabetic children 
population, a scatter plot using these two variables allows a 
discrimination of both classes (bivariate classification).  

 
Fig. 3.  Bivariate Classification, the “faulty” region is considered for all 

elements over L1 and L2. 

The proposed approach uses the boundary region for the 
“faulty” class (defined as the region where only faulty 
elements are present), as a threshold to detect when any 
patient glucose time course enters the “faulty region” (see, 
L1 and L2 in Fig. 3). For	
  any	
  child	
  patient	
   simulation,	
   if	
  
three	
  consecutive	
  calculated	
  pairs	
  <	
  IOBi	
  ,	
  Si	
  >	
  are	
  over	
  L1	
  
and	
  L2,	
  a	
  IISF	
  is	
  assumed. 

C. Principal Components Analysis 
In this case, every simulated child data set was arranged in 

a feature matrix X where each row (object) corresponds to 
the actual analyzed element xi, used to calculate the slope 
(10 plasma glucose measurements over the last 45 min 
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window). Because xi only contains plasma glucose 
measurements, each column (feature) is highly correlated 
with the others so a PCA reduction to extract the main 
information of the plasma glucose was carried out. 

For the simulated average child, the centered feature 
matrix Xc was calculated as follows: 

 
 (2) 

 
where j corresponds to the feature matrix columns (in our 
case m = 10). Principal Components of Xc (PCs), were 
calculated to find that the first component represents 97.7% 
of the data variation and 99.96% can be represented by the 
first three principal components.  

Using the same approach as the bivariate classification a 
detection algorithm (PCA algorithm) was proposed for the 
elements belonging to the “faulty” class (see, Fig. 4). In this 
case the boundary region for the “faulty” class (L3) defined 
a threshold for the first principal component score detecting 
the IISF when any patient glucose time course enters the 
“faulty region”. 

 
Fig. 4.  PCA Classification using PC1, the “faulty region” is considered for 

all elements to the right of L3.  
 
Finally, another IISF detection algorithm as a combined 

approach that includes bivariate classification and PCA by 
using the first component, PC1, obtained by the PCA 
analysis and the insulin on board signal, IOB, as variables 
for the bivariate classification. In this case (PCA_IOB 
algorithm), the boundary region for the “faulty” class (L4 
and L5) defined a threshold for the < IOBi, PC1i > pairs 
detecting the IISF if the patient glucose time course enters 
the “faulty region” (see, Fig. 5). 

 
 

 

 
Fig. 5.  Bivariate Classification using IOB and PC1, the “faulty region” is 

considered for all objects above L4 and L5.  

III. SIMULATION RESULTS 
 

After applying the initial preprocessing the three proposed 
algorithms (BC, PCA and PCA_IOB) were tested using the 
10 simulated child data files with: i) no IISF, ii) ramp IISF 
starting at Midnight, iii) ramp IISF starting at Noon and iv) 
ramp IISF stating at 4:00 p.m..  

 
Fig. 6.  Plasma glucose time course for the simulated child #8 in normal 

regulated conditions. Four detection signals were activated (false positives) 
when the BC algorithm was used. 

 
Fig. 6 shows the plasma glucose time course for simulated 

child #8 for normal condition without IISF when the BC 
algorithm is applied. As can be observed, four detection 
signals were activated during the simulated 24h period. 
These signals are considered false positives, FP (the 
detection signal is activated when no IISF has occur).  

Fig. 7 shows the normal and the simulated midnight IISF 
ramp, for child #2. The IISF detection occurs at 7:00 a.m., 
seven hours after the simulated ramp IISF starts but just one 
hour after complete set failure is achieved.  
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Fig. 7.  Plasma glucose time course for the simulated child #2 when a ramp 

IISF starting at Midnight was simulated. IISF was detected at 07:00 a.m. 
without FPs when the BC algorithm was used. 

Fig. 8 shows the BC algorithm results when the simulated 
ramp IISF onset starts at noon. It presents the IISF detection 
signal at 1:25 p.m. with a previous FP (8:00 a.m.); note that 
the last detection signal would not occur if the appropriate 
correction action is performed at 1:25 pm.  

 
Fig. 8.  Plasma glucose time course for child #4 when a ramp IISF starting 
at Noon was simulated. IISF was detected at 1:25 p.m. with a previous FP 

when the BC algorithm was used. 
 
As can be observed when the bivariate classification 

algorithm was used a high rate of false positives, FP, were 
detected. From the previous results, the BC algorithm is 
sensitive to changes in plasma glucose slope. 

 
For PCA algorithm the following results were obtained: 

Fig. 9 shows the plasma glucose time course for the 
simulated child #8 for normal regulated condition without 
IISF. As can be observed, in this case just one detection 
signal was activated during the simulated 24h period. This 
shows a significant decrease in the false positive rate.  

 
Fig. 9.  Plasma glucose time course for the simulated child #8 in normal 

regulated conditions. Just one detection signals was activated (false 
positive) when the PCA algorithm was used. 

Fig. 10 shows the normal and Midnight simulated ramp 
IISF onset for child #2 when the PCA algorithm was used. 
The IISF detection is at 6:50 a.m., just 10 minutes before 
that when the BC algorithm was used (See Fig. 7).  

Fig. 10.  Plasma glucose time course for the child #2 when a IISF starting at 
Midnight was simulated. IISF was detected at 6:50 a.m. without FPs when 
the PCA algorithm was used. 

 
Fig. 11 shows the PCA algorithm results when the 

simulated 6-hr ramp IISF starts at noon. It shows the IISF 
detection signal at 7:10 p.m. that represents a significant 
delay with respect to that obtained by the BC algorithm (Fig. 
8), but without FPs. The rate of false positives, FP, 
decreased when the PCA algorithm was used compared to 
the BC algorithm, without significant increment in the actual 
time of IISF detection. 
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Fig. 11.  Plasma glucose time course for child #4 when a IISF starting at 
Noon was simulated. IISF was detected at 7:10 p.m. but without FP when 

the PCA algorithm was used. 
 
For PCA_IOB algorithm the following results were 

obtained: Fig. 12 shows the plasma glucose time course for 
the simulated child #8 for normal regulated condition 
without IISF. As can be observed, in this case two detection 
signals were activated during the simulated 24h period. This 
shows an increase in the false positive rate with respect to 
the PCA algorithm. 

Fig. 12.  Plasma glucose time course for the simulated child #8 in normal 
regulated conditions. Two detection signals were activated (false positives) 

when the PCA_IOB algorithm was used. 
 
Fig. 13 shows the normal and the Midnight simulated IISF 

onset, for child #2 when the PCA algorithm was used. It 
presents the IISF detection at 4:30 a.m. that represents two 
hours and twenty minutes before of that when the PCA 
algorithm alone was used (see Fig. 10).  

Fig. 14 shows the PCA_IOB algorithm results when the 
simulated IISF onset starts at noon and at 4:00 p.m., 
respectively.  Fig. 14 shows the IISF detection signal at 7:05 
p.m., just five minutes before of that obtained by the PCA 
algorithm (see Fig. 11) which no represents a significant 
difference. 

 Fig. 13.  Plasma glucose time course for the child #2 when a IISF starting 
at Midnight was simulated. IISF was detected at 4:30 a.m. without FPs 

when the PCA_IOB algorithm was used. 

Fig. 14.  Plasma glucose time course for child #4 when a ramp IISF starting 
at Noon was simulated. IISF was detected at 7:05 p.m. but without FP when 

the PCA_IOB algorithm was used. 
 
As can be observed the rate of false positives, FP, 

increased when the PCA_IOB algorithm was used respect to 
the PCA algorithm but the actual time of IISF detection 
decreased; overall results are summarized in tables 1 and 2. 

Table 1 presents the rates of false positives for the three 
algorithms calculated for each experimental setting where a 
period without IISF was simulated. Midnight IISF was not 
included because the experimental simulation window starts 
with the insulin infusion set failure then there is not time 
before the simulated IISF. So, for the 24 hour experimental 
window there are 24, 12 and 16 simulated hours without 
IISF for the NO IISF, Noon IISF and 4:00 p.m. IISF settings, 
respectively.   

This table shows that the larger mean rate of 0.16 false 
positives per hour was obtained for the BC algorithm while 
the smaller (0.02 FP/h) was for the PCA algorithm but with 
larger detection times that the PCA_IOB algorithm (see 
Table 2) . 
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Table 1. Rate of False Positives (#FP/hour; Mean [SD]) 

EXPERIMENTAL 
CASE 

BC 
ALGORITHM 

PCA 
ALGORITHM 

PCA_IOB 
ALGORITHM 

NO IISF (24H) 0.21 [0.13] 0.04 [0.05] 0.08 [0.08] 

NOON IISF 
(12H) 

0.13 [0.06] 0.00 [0.00] 0.05 [0.08] 

4:00 P.M. IISF 
(16H) 

0.16 [0.04] 0.02 [0.03] 0.07 [0.08] 

AVERAGE 0.16 [0.08] 0.02 [0.03] 0.07 [0.08] 

 
 
 

Table 2. Detection time (HH:MM; Mean [SD]) 

EXPERIMENTAL 
CASE 

BC 
ALGORITHM 

PCA 
ALGORITHM 

PCA_IOB 
ALGORITHM 

MIDNIGHT IISF 
(24H) 

7:26 [0:50] 7:48 [1:03] 6:04 [2:03] 

NOON IISF 
(12H) 

1:04 [0:11] 3:04 [2:24] 2:05 [2:00] 

4:00 P.M. IISF 
(16H) 

2:45 [0:51] 3:49 [0:48] 3:09 [1:35] 

 

IV. CONCLUSIONS 
Multivariate Statistical Analysis is a promising tool for 

insulin infusion set failure detection in an artificial pancreas 
framework. This preliminary study indicates that the 
Bivariate Classification algorithm is sensitive to changes in 
plasma glucose slope, firing the detection signals 
excessively, causing a high rate of false positives. The PCA 
algorithm shows the smallest rate of false positives without 
significant degradation in the actual time of IISF detection. 
Better times of IISF detection were obtained when the 
PCA_IOB algorithm was used, but the rate of false positives 
was higher, giving an overall trade-off between actual 
detection and false alarms.  
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