
Necessary Condition for a Petri Net Model That Incorporates
Resources to Produce an Event Stream From an Unknown Initial State

L. V. Allen & D. M. Tilbury

Abstract— This paper presents conditions under which a type
of Petri net model with resources, called System of Transition
Processes with Resources (STPR), can produce a given event
stream. In particular, a necessary condition is given for the
event stream to be produced based on checking upper and lower
bounds of the marking on the Petri net. Algorithms for checking
the condition are presented; the computational complexity of
checking the condition is polynomial in the number of places
and transitions the first time it is checked for a particular model,
and linear in the number of transitions when the model is
checked for subsequent event streams. An example is presented
showing how this condition can be used, together with a model
generation approach, for anomaly detection in manufacturing
systems.

I. MOTIVATION AND PROBLEM DESCRIPTION

This work was motivated by a problem in anomaly detec-
tion for manufacturing systems [1]. Given a discrete-event
(Petri net) model of a manufacturing system, and an event
stream observed from that system, determine whether the
model could have generated the stream. If the stream is
inconsistent with the model, then it is called anomalous
and may indicate the occurrence of a fault in the system.
If the observed event stream and the model both start in the
same (initial) state, the problem is straightforward to solve.
However, many manufacturing systems run continuously,
and the state from which the observed event stream begins
may not be easily determined. Thus, a method to determine
whether a Petri net model could have generated an event
stream, starting from an unknown initial state, was needed.
This paper presents such a method for a specific type of
Petri net model that incorporates resources, called System of
Transition Processes with Resources (STPR).

Section II describes relevant existing work, including the
STPR formalism, how the issue of determining whether
a model could produce an event stream has been handled
before, and estimating the marking of a Petri net. The issue
of checking whether a model could produce an event stream
whose initial state is unknown is addressed in Section III
through developing theory and corresponding algorithms
for a necessary condition. The algorithms are illustrated
using a simple example manufacturing system in Section IV.
Section V discusses how the necessary condition enables
the application of an anomaly detection solution to a real

This work was supported in part by the National Science Foundation
grants EEC 95-92125, and CMS 05-28287.

L. V. Allen is currently with Creare Inc., Hanover NH. At the time of
the research, L.V. Allen was with, and D. M. Tilbury is currently with, the
University of Michigan, Departments of Electrical Engineering: Systems
and Mechanical Engineering, Ann Arbor, MI 48109-2125. Corresponding
author: lzallen@umich.edu

manufacturing system. Finally, conclusions and future work
from this project are summarized in Section VI.

II. EXISTING WORK

A. Petri Net Structure

Definition 1 (Petri net, Marked Petri net [12]): A Petri
net N is a graph (P ,T ,F), where P is a finite set of places,
T is a finite set of transitions, and F ⊆ (P ×T)∪(T ×P) is
a set of arcs from places to transitions and from transitions
to places. A marked Petri net N =(P ,T ,F ,M) is a Petri net
(P ,T ,F) with M as a marking of the set of places P that
represents the Petri net’s state. The initial marking M0 of a
Petri net corresponds to the initial state.

The marking M is the number of tokens in each place.
M(pi) refers to the number of tokens in place pi. The
notation •p refers to all transitions t that put a token in p
when they fire ((t, p) ∈ F), whereas p• are the transitions
that remove a token from p to fire ((p, t) ∈ F), and similarly
for •t and t•. A transition t is enabled when ∀p ∈ P such
that (p, t) ∈ F , M(p) ≥ 1. When transition t fires, the Petri
net has a new marking M ′ based on removing tokens from
the places that feed t (•t) and adding tokens to the places that
receive from t (t•). The incidence matrix, A, of a Petri net
is a representation of the set of arcs connecting places and
transitions and vice versa. The ith column of A is ti •−• ti.
Only ordinary Petri nets are considered here – those whose
arcs all have weight one. More information about Petri nets
can be found in Chapter 4 of [3].

System of Transition Processes with Resources (or
STPR) [2] is a type of Petri net that incorporates resources
and is modularly constructed. One of the motivations behind
STPRs was the ability to modularly model highly parallel
systems. In one example industry system studied, there were
two gantries and six CNCs that could collectively handle
up to eight parts at a time. Even assuming that each of
these eight machines only has three states (a conservative
estimate), that is still more than 6, 000 (38) possible states,
but could be modeled by a relatively small STPR.

Significant detail about STPRs, including formal defini-
tions, is provided in [2] and only the aspects of STPRs
relevant to this research will be highlighted here. An STPR
consists of a set of processes that interact through shared
resources, where resources include machines that change a
part (i.e. CNC), machines that transport a part (i.e. robot),
and components that transport a part (i.e. pallet). Each
resource is represented by a place and the place is marked
if and only if the resource is available. There are different
types of resources – type A resources are always available

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2393

when not in use (robot, CNC, etc.), type C resources are
created and consumed (empty pallets), and type NA and NC
resources are negative versions of the type A and type C
resources that represent when the resource is unavailable.
The places for type A and type NC resources are initially
marked, whereas those for type C and type NA resources are
initially unmarked. Events in an STPR can acquire and re-
lease resources, where acquiring a resource is taking a token
from the place associated with that resource and releasing
a resource is putting a token in said place. Resources are
the only places that may initially be marked. Events and
transitions have a one-to-one mapping in STPRs.

An STPR can have mutual exclusion decisions, i.e.
one place leads to two transitions, and hence when there
is a token in that place, a decision must be made about
which transition to fire. Additionally, an STPR can exhibit
concurrency, both with multiple processes running at the
same time and multiple instances of a single process running
at the same time. Each type A resource in an STPR is
conserved, a property that is guaranteed by requiring that
each type A resource be associated with a p-semiflow [12],
which is a vector y ≥ 0 such that AT y = 0 and y(i) > 0
for at least one element of y.

An example STPR that models a small manufacturing
cell is illustrated in Figure 1. This STPR has three resource
places: R1, R2, and NotR2, corresponding to the availability
of resources R1 and R2 and unavailability of resource R2,
respectively. It has two processes, one for the events ending
in ‘1’ and one for the events ending in ‘2’, and these two
processes interact through the shared resource R1. As an
example of how the events interact with resources, R1 is
acquired by g1 and g2 and released by q1, m1, and q2.

Fig. 1. STPR Model of Small Manufacturing Cell

B. Event Stream From Unknown Initial State

It is common in academic work to assume that all ob-
served event streams start from the system’s initial state. For
example, in the area of discrete event systems (DES), system
identification often assumes that the system’s behavior is
cyclic and that the observed event streams start and end in
the initial state [8], [13], [11]. In workflow mining, an area

of computer science that also involves system identification
of some forms of DES, a similar assumption is made [15]
[5]. As discussed in Section I, however, many industry
manufacturing systems run continuously and thus observed
event streams may not start from the system’s initial state.

Several existing approaches were considered to determine
whether an STPR could have generated an event stream,
starting from an unknown initial state. The set of reach-
able states could be calculated [10] and then searched for
sequences of valid markings that would allow the event
stream to occur. If at least one such sequence of markings
existed, then the model would accept that event stream,
but if no such sequence existed, then the model would not
accept the event stream. A major concern about this approach
is the computational complexity of calculating the set of
reachable states, which in general takes exponential time
[12], searching through it, and keeping track of the different
possible marking sequences thus far.

Another approach considered was searching the reachable
markings for a sequence that allows the event stream, but
calculating the set of reachable markings in a simpler way.
For some classes of Petri nets, the set of reachable markings
can be described concisely without reference to such a graph
[12]. However, STPRs do not, in general, belong to these
classes and thus their results do not apply.

Because the state from which an observed event stream
starts is unknown, and the set of reachable states cannot
be easily described for STPRs, state (marking) estimation
is necessary. Some work in marking estimation, such as
[4], assumes the initial marking is known and estimates the
current marking, where the uncertainty is due to silent tran-
sitions. Other research estimates the initial marking through
observation of an event stream. In [6], a lower bound on the
initial marking of a Petri net is determined through observing
a stream of events, where the lower bound is updated after
each observed event. In [9], the minimum initial marking is
calculated for the case in which transition labels are observed
and the uncertainty comes from the labels and transitions not
having a one-to-one marking. In both of these approaches,
only a lower bound on the initial marking is determined, not
a lower bound on each of the markings associated with the
event stream occurring, and hence these approaches cannot
be used directly. The idea of a lower bound on the initial
marking is used in developing the theory in Section III,
although extended to a lower bound on all the markings for
producing an event stream.

III. INITIAL STATE ISSUE AND RESOLUTION

The problem, as described in Section I, is: given an event
stream starting from an unknown initial state and a Petri net
(STPR) model, determine whether there exists a sequence
of states (markings) that could reproduce this event stream.

A. Theoretical Foundation for Necessary Condition

The theory determines a sequence of lower bounds on the
markings necessary for the given model to have produced
the given event stream and checks whether these lower bound

2394

markings violate the upper bound marking restrictions caused
by the conservation of type A resources. If the lower bound
of the markings does not exceed the upper bound marking
restrictions, then the model may be able to produce the event
stream, whereas if the any of these lower bounds exceeds the
upper bound, the model cannot produce the event stream. The
first event for which the upper bound is violated is returned
by the algorithm. This theory assumes that the model’s initial
marking is known (all type A and type NC resources are
initially marked, and all other places are initially unmarked),
but that the event stream’s initial state does not necessarily
correspond to to the model’s initial marking.

Given an event stream and a model, a set of lower bound
markings can be calculated for that model to have produced
that event stream. The theory builds up from the simplest
case – a single event.

Lemma 1: Given a Petri net and an event e that can occur
in that Petri net, the lower bound on the model’s marking
prior to the event e occurring is MLB,0 = •e and the lower
bound after the event e has occurred is MLB,1 = e•.

A slight abuse of notation is made to describe •e as not
only the places that feed tokens into event e, but also as the
marking of those places. This lemma is evident based on the
definition of a Petri net, Definition 1. For an event e to occur
in a Petri net, it must be that M0 ≥ •e so that e is enabled.
Likewise, when an event e occurs it will necessarily produce
e•, and thus M1 ≥ e•.

Lemma 2: Given a Petri net, a stream of events σ =
e1...em where ei ∀i = 1...m can occur in the Petri net, and
a lower bound on the markings MLB,0...MLB,m−1 based on
events e1...em−1, the lower bound on the model’s markings
when em is included are M ′

LB,0...M
′
LB,m−1M

′
LB,m, where

• M ′
LB,i = MLB,i + NEm for i = 1...m− 1

• NEm = max((•em −MLB,m−1), 0)
• M ′

LB,m = M ′
LB,m−1 − •em + em•

and thus for i = 1...m MLB,i ≤ M ′
LB,i ≤ Mi.

NEm is the set of tokens required for em (•em) that are not
explained by the previous state (MLB,m−1), and thus need to
be added to the previous lower bounds (MLB,0...MLB,m−1)
to update them (M ′

LB,0...M
′
LB,m−1) so that em could occur.

The lower bound marking for M ′
LB,m is then simply the

previous marking M ′
LB,m−1 with the effect of em included.

The lower bound markings associated with a stream of events
can be calculated iteratively using Lemma 1 to initialize the
lower bound markings based on the first event and Lemma 2
to update the lower bound markings for each subsequent
event.

Next, the upper bound marking restrictions based on the
type A resources are determined. The general idea with these
restrictions is that an STPR model has at least some type A
resources and because these resources are limited to known
quantities (e.g., number of robots in system), they impose
restrictions on the markings. For example, a single robot
is used for exactly one thing at a time and this must be
reflected in the marking – a token associated with the robot
is in exactly one place. Because only a lower bound on the

markings is known, this conservation constraint which should
be an equality is instead relaxed to an inequality.

Theorem 3: Given an STPR (N,M0), the set of reach-
able markings R(N, M0) is upper bounded by the re-
source constraint equations Σ||P ||i=1 yjM(pi) = cj for every
p-semiflow yj associated with a type A resource (j =
1...number type A resources), where cj = Σ||P ||i=1 yjM0(pi).

Proof: One of the properties of an STPR is that
each type A resource is associated with a p-semiflow. An
important property of p-semiflows is that for any p-semiflow
y, MT y = MT

0 y for any given initial marking M0 and
any M ∈ R(N,M0) [12]. For a given initial marking M0

and p-semiflow yj , MT yj = Σ||P ||i=1 yjM(pi) and MT
0 yj is

equal to constant cj , which means that Σ||P ||i=1 yjM(pi) = cj .
Thus from [3], the STPR N is conservative with respect to
each p-semiflow yj , and each of these p-semiflows enforces
a restriction on the marking expressed by the previous
equation.

Each resource constraint inequality is of the form

y1M(p1) + ... + y||P ||M(p||P ||) ≤ max (1)

where

max = y1M0(p1) + ... + y||P ||M0(p||P ||) (2)

y1...y||P || are the elements of a p-semiflow y and also
the coefficients of the inequality, and y1M0(p1) + ... +
y||P ||M0(p||P ||) is a constant and the maximum value of the
inequality. These lower and upper bound constraints can be
used together to create a necessary condition for a model to
produce an event stream.

Theorem 4: If there exists a prefix σ̂ = e1...ej of an
event stream σ = e1...em, j ≤ m, for which any marking
in its sequence of lower bound markings (MLB,0...MLB,j)
exceeds any of the resource conservation constraints of a
model, then that model could not have generated σ.

Proof: Using proof by contradiction, suppose the “if”
conditions hold but the “then” conditions do not. In other
words, there is a violation of at least one of the resource
conservation constraints, but the model could generate the
event stream and would create a valid sequence of markings
associated with it. Let σ be an event stream and σ̂ be a
prefix of σ such that for at least one MLB,i i = 0...j, there
is at least one p-semiflow yk such that MT

LB,iyk > MT
0 yk.

Because yk is a p-semiflow, and M0 is a marking, yk ≥ 0
and M0 ≥ 0, hence MT

0 yk ≥ 0. Similarly, MLB,i ≥ 0. From
Lemma 2, Mi ≥ MLB,i for each element. Combining this
information implies MT

i yk > MT
0 yk, which means that this

marking is not valid, and hence a contradiction.

B. Algorithms for Checking the Necessary Condition

This theory is coded into a set of algorithms. The lower
bound calculations in Lemma 2 were coded into Algorithm 1.
The resource conservation constraints developed in Theo-
rem 3 are implemented in Algorithm 2. This algorithm has
computational complexity that is polynomial in the number
of places and transitions (events) in the model due to calcu-
lating the p-semiflows using singular value decomposition,

2395

Algorithm 1 Calculate Lower Bound Marking
Inputs Previous lower bound (prevLB), current event in

stream (e), •e, e•.
1: Calculate the change required for e : chngReq = •e −

prevLB(prevState)
2: Calculate what is required for e to occur that has not

already been explained: NE = max(chngReq, 0)
3: Update prevLB by adding NE to each state in it
4: Make newest entry to lower bound as newState =

prevLB(prevState)− •e + e•
5: Create newLB as concatenation of updated prevLB and

newState
Outputs new lower bound (newLB)

although it only needs to be run once for each model. This
algorithm checks a condition that is only necessary, and not
sufficient – the lack of sufficiency can be seen as a trade-off
for reduced computational complexity.

Algorithm 2 Calculate Resource Constraint Equations
Inputs Model, events

1: Calculate the p-invariants as solutions to AT y = 0
2: Determine which p-invariants are p-semiflows (have all

non-negative values)
3: for each p-semiflow do . create a resource constraint

(RC)
4: Max value for constraint is p-semiflow times initial

marking of model
5: Coefficients for constraint are p-semiflow
6: end for

Outputs Resource constraints (RC) for model

The necessary condition is checked in Algorithm 3, which
requires the results from Algorithm 2 and calls Algorithm 1.
The computational complexity of Algorithm 3, which is
the online portion of checking the condition, is linear in
the number of events (transitions). This condition is only
necessary – there may be some event streams the model
cannot generate that do not violate these constraints, and
thus will not be found by checking this condition. In contrast
to the other approaches, however, this approach is valid for
STPR models and avoids the computational complexity of
creating reachability graphs.

IV. APPLICATION TO SMALL MANUFACTURING CELL

A. Description of Small Manufacturing Cell

This manufacturing cell, illustrated in Figure 2, interacts
with two different components, called C1 and C2, and
performs machining. The cell has two resources – a robot
(R1) to transport components, and a milling machine (R2) to
mill components. When a component C1 arrives at the cell,
the robot will get it, and if the milling machine is available,
place it in the milling machine for further processing, after
which the milling machine pushes it out of the cell. If the
milling machine is not available, the robot will place it in

Algorithm 3 Check Necessary Condition
Inputs Event stream (e1e2 . . . em), resource constraints

(RC), ei• and •ei for each ei

1: Initialize prevLB = [e1 • • e1]
2: for each event e2 . . . em do
3: Call Algorithm 1 to update the lower bound newLB
4: for each resource constraint (RC) do
5: Calculate the left-hand-side (LHS) of eq. 1 using

newLB and RC’s coefficients
6: If LHS > max from RC, then anomaly present.
7: end for
8: if none of the resource constraints are violated then
9: Event can be produced

10: Update prevLB= newLB
11: end if
12: end for
Outputs If model can produce stream, and if not, at what

location in event stream model first cannot produce it.

C1

Entrance

C2

Entrance

C1

Queue

C2

Queue

C1 Done

(exit)

Milling Machine (R2)

Robot

(R1)

g1 m1
q1

d1

g2 q2

Fig. 2. Illustration of manufacturing cell, where dashed lines show possible
movements of the robot and milling machine, and their associated events
(in italics)

a queue for C1 components waiting to be processed. When
a component C2 arrives at the cell, the robot will get it
and place it in a queue for C2 components, where removal
from this queue is outside the context of this cell. Thus, the
process performed by this cell is naturally broken down into
two processes, one for the handling of each component.

The cell’s events are listed in Table I and illustrated
in Figure 2. Resource information is summarized in Table
II, including the interaction between resources and events.
An STPR model of this manufacturing cell is shown in
Figure 1, and this model will be used to show how the
algorithms work.

B. Application of Algorithms to Cell

To illustrate the algorithms, we apply them to the model
of the example small manufacturing cell, shown in Figure 1,
and an event stream: g2q2e1q1. First the resource constraints
must be generated for this model using Algorithm 2.

2396

TABLE I
EVENTS IN MANUFACTURING CELL

Name Process Description
g1 1 Get C1
m1 1 Put C1 in Machine, begin processing it
d1 1 C1 is Done
q1 1 Put C1 in Queue
g2 2 Get C2
q2 2 Put C2 in Queue
e1 1 End of processing C1

TABLE II
RESOURCE INFORMATION FOR MANUFACTURING CELL

Name Type Acquire
Events

Release
Events

R1 (robot) A (Always) g1, g2 m1, q1, q2

R2 (machine) A (Always) m1 d1

NotR2 (neg. machine) NA d1, q1 m1, q1

• Step 1: The model’s incidence matrix is

A =

0 0 −1 0 0 0 1
0 1 0 0 0 0 −1
1 −1 0 −1 0 0 0
0 0 0 0 1 −1 0

−1 1 0 1 −1 1 0
0 −1 1 0 0 0 0
0 1 −1 0 0 0 0

where the places (rows) are ordered [P1 P2 P3 P4 R1
R2 NotR2]T and the events (columns) are ordered as
in Table I, and based on that, its p-invariants are

0
0
1
1
1
0
0

,

1
1
0
0
0
1
0

,

−1
−1

0
0
0
0
1

• Step 2: The p-semiflows are y1 = [0011100]T and y2 =
[1100010]T .

• Step 3 for first p-semiflow: Max value for constraint
is MT

0 y1 = [0000110] ∗ [0011100]T = 1 (where M0

is the initial marking of Figure 1), and coefficients are
p-semiflow itself [0011100]T .

• Step 3 for second p-semiflow: Max value for constraint
is MT

0 y2 = 1, and coefficients are p-semiflow itself
[1100010]T .

Next these resource constraints and g2q2e1q1 are used as
input to Algorithm 3.
• Step 1:

prevLB = [•g2 g2•] =

0 0
0 0
0 0
0 1
1 0
0 0
0 0

• Step 3 for second event (q2): use Algorithm 1 to update
lower bound

– Step 1: chngReq= •q2−prevLB(:, 2) = [0000000]T

– Step 2: NE = max(chngReq, 0) = [0000000]T

– Step 3: updated prevLB= prevLB+ NE
– Step 4: newState = prevLB(prevState) − •q2 +

q2• = [0001000]T − [0001000]T + [0000100]T =
[0000100]T

– Step 5: newLB =

[updatedprevLB newState] =

0 0 0
0 0 0
0 0 0
0 1 0
1 0 1
0 0 0
0 0 0

• Step 4 for second event (q2): for each of the three states
in newLB

[0000100]T , [0001000]T , [0000100]T

checked MT y1 ≤ 1 and MT y2 ≤ 1 for each state M .
• Step 8 for second event (q2): both constraints held, so

the model may be able produce the stream g2q2. Note
that the uncertainty is because the algorithms check a
necessary, but not sufficient, condition for a model to
produce an event stream from an unknown initial state.

• Repeat Step 2 for third and fourth events (e1 and
q1), and find that for fourth event, the constraint for
resource 1 (R1) is violated and thus the model may be
able to produce the stream g2q2e1, but cannot produce
the stream g2q2e1q1.

V. SUMMARY OF SOLUTION AND APPLICATION

To detect anomalies in systems without pre-existing formal
models, an anomaly detection solution was developed [2].
This solution is a form of supervised learning for binary
classification. Given a set of data that belongs to one of two
classes, a classifier (a black box decision-maker or function)
is learned. The classifier can then be used to classify future
data produced from the same system [14] [7]. In this case, the
input is a set of observed event streams that are labeled as to
whether or not they contain an anomaly, some information
about the resources in the system, and an unlabeled event
stream in which we wish to detect if there is an anomaly. The
output is a label (normal or anomalous) for the previously
unlabeled event stream, and if the event stream is anomalous,
then at which event in the stream the anomaly was first
detected. The solution has three main steps:

1) Model Generation
2) Performance Assessment
3) Anomaly Detection

These steps, including their inputs and outputs and rela-
tionships to one another, are illustrated in Figure 3. The
model generation step uses the labeled event streams and the
resource information to learn a set of models of the system’s

2397

behavior that can act as classifiers. The second step is
performance assessment, which consists of using additional
labeled event streams to assess the models’ performance
on detecting anomalies. Finally, anomaly detection itself is
done in the third step, where the unlabeled event stream is
classified based on the models’ agreement or disagreement
with the streams and their previous performance.

Fig. 3. Overview of Anomaly Detection Solution Steps

The performance assessment and anomaly detection steps
of this solution require that event streams be checked as
to whether a model could have produced them. Because
application to an industry system is a main purpose of
the anomaly detection solution, and the event streams may
start in an unknown initial state, the anomaly detection
solution requires the algorithms developed herein to check
whether the generated models can produce the event streams
for performance assessment and anomaly detection. If a
model cannot produce an event stream, as evidenced by the
necessary condition not holding, then the model indicates
that the event stream is anomalous.

Application to the anomaly detection solution is illustrated
through continuing the example from Section III. A set
of 35 event streams from this manufacturing cell – 25
normal and 10 anomalous – were used for performance
assessment and anomaly detection. The anomalous streams
were generated by taking normal streams and altering them
so that the example model could not have produced them.
These event streams start from a variety of states and are
randomly assigned for either performance assessment or
anomaly detection, both of which use Algorithm 3 to test
the necessary condition for a model to have produced the
given event stream. Using this algorithm, the performance
assessment and anomaly detection algorithms were run. The
anomaly detection was run on 19 event streams with a
total of 410 events, resulting in 100% of the event streams
labeled correctly. Thus, the theory and algorithms developed
to check whether a model can produce an event stream
from an unknown initial state enables this anomaly detection
solution.

VI. CONCLUSIONS AND FUTURE WORK

This paper developed a necessary condition for a particular
type of Petri net, STPR, to produce a given event stream

using a lower bound on the Petri net’s markings due to the
events in the stream and an upper bound on those markings
due to resource conservation. This condition can assist in
determining whether an STPR can produce an event stream
that starts from an unknown initial state. By developing this
condition and algorithms to check it, the anomaly detection
solution from [2] is more applicable to industry systems.

The condition for a model to produce an event stream from
an unknown initial state is only necessary and not sufficient.
Thus, there may be some situations in which a model
cannot produce a particular event stream, but the necessary
condition is not violated. Only a necessary condition is
possible because a concise representation of the reachable
states is not possible for STPRs, as described in Section II.

Future work includes both developing a concise represen-
tation of the reachable states for the STPR formalism, and
exploring the conditions under which a model can produce
an event stream from an unknown initial state when a concise
representation of reachable states exists.

REFERENCES

[1] L. V. Allen & D. M. Tilbury. Event-Based Fault Detection of Manu-
facturing Cell: Data Inconsistencies Between Academic Assumptions
and Industry Practice. Proceedings of the 6th IEEE Conference on
Automation Science and Engineering, August 2010.

[2] L.V. Allen. Verification and Anomaly Detection for Event-Based Con-
trol of Manufacturing Systems. PhD thesis, University of Michigan,
December 2010.

[3] C.G. Cassandras & S. Lafortune. Introduction to Discrete Event
Systems. Massachusetts: Kluwer Academic Publisher, 1999.

[4] D. Corona, A. Giua, & C. Seatzu. Marking Estimation of Petri Nets
with Silent Transitions. Proceedings of 43rd International Conference
on Decision and Control, The Bahamas, 2004.

[5] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, &
A. J. M. M. Weijters. “Process Mining: Extending the α-algorithm to
Mine Short Loops.” prom.win.tue.nl

[6] A. Giua. Petri Net State Estimators Based on Event Observation.
Proceedings of the 36th Conference on Decision & Control, 4086-
4091, San Diego California, 1997.

[7] T. Hastie, R. Tibshirani, & J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York, NY:
Springer Science+Business Media Inc. 2001.

[8] S. Klein, L. Litz, & J-J. Lesage. “Fault Detection of Discrete Event
Systems Using an Identification Approach.” Proceedings of the 16th
IFAC World Congress, 2005.

[9] L. Li & C. N. Hadjicostis. Minimum Initial Marking Estimation in
Labeled Petri Nets. 2009 American Control Conference, 5000-5005,
St. Louis Missouri, 2009.

[10] E. W. Mayr. An Algorithm for the General Petri Net Reachability
Problem. Proceedings of the 13th Annual ACM Symposium, 1981.

[11] M. E. Meda-Campana & E. Lopez-Mellado. “Incremental synthesis
of Petri net models for identification of discrete event systems.”
Proceedings of the 41st IEEE Conference on Decision and Control,
805-810, December 2002.

[12] T. Murata. “Petri Nets: Properties, Analysis and Applications.” Pro-
ceedings of the IEEE, 77(4): 541-580, 1989.

[13] M. Roth, J. J. Lesage, & L. Litz. “Distributed identification of con-
current discrete event systems for fault detection purposes.” European
Control Conference, August 2009.

[14] S. Russell & P. Norvig. Artificial Intelligence: A Modern Approach.
New Jersey: Pearson Education Inc., 2003, Chapter 18.

[15] W. van der Aalst, T. Weijters, & L. Maruster. “Workflow Mining:
Discovering Process Models from Event Logs.” IEEE Transactions
on Knowledge and Data Engineering, 16: 1128-1142, 2004.

2398

