
 
 

  

Abstract— A single neural network based controller called 
the Finite-SNAC is developed in this study to synthesize finite-
horizon optimal controllers for nonlinear control-affine 
systems. For satisfying the constraint on the input, a non-
quadratic cost function is used. Inputs to the neural network 
are the current system states and the time-to-go and the 
network outputs are the costates which are used to compute the 
feedback control. Convergence of the reinforcement learning 
based training method to the optimal solution, the training 
error and the network weights are provided. The resulting 
controller is shown to solve the associated time-varying 
Hamilton-Jacobi-Bellman (HJB) equation and provide the 
fixed-final-time optimal solution.  Performance of the new 
synthesis technique is demonstrated through an attitude control 
problem wherein a rigid spacecraft performs a finite time 
attitude maneuver subject to control bounds. The new 
formulation has a great potential for implementation since it 
consists of only one neural network with single set of weights 
and it provides comprehensive feedback solutions online though 
it is trained offline. 

I. INTRODUCTION 
 here is a multitude of papers in the literature that use 
neural networks (NN) for the control of dynamical 

systems [1]-[4]. A few amongst them develop optimal 
control based on an approximate dynamic programming 
(ADP) formulation [3], [5]-[11]. Two classes of ADP based 
solutions, called the Heuristic Dynamic Programming (HDP) 
and the Dual Heuristic Programming (DHP) have emerged 
in the literature [3]. In HDP, the reinforcement learning is 
used to learn the cost-to-go from the current state while in 
the DHP, the derivative of the cost function with respect to 
the states, i.e. the costate vector is learnt by the neural 
networks [5]. The convergence proof of DHP for linear 
systems is presented in [6] and that of HDP for general case 
is presented in [7].  

The implementation of the ADP learning is usually 
achieved through a dual network architecture called the 
Adaptive Critics (AC) [5], [8] . In the HDP class with ACs, 
one network, called the ‘critic’ network maps the input states 
to output the cost and another network called the ‘action’ 
network outputs the control with states of the system as its 
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inputs [7]. In the DHP formulation, while the action network 
remains the same as with the HDP, the critic network 
outputs the costates with the current states as inputs.[8]-[9]. 
The single network adaptive critic (SNAC) [10] is shown to 
be able to eliminate the need for the second network and 
perform the DHP using only one network, resulting in a 
considerable decrease in the offline training effort and the 
simplicity of the online implementation through less 
required computational resources and storage memory. Note 
that these developments in the neural network literature have 
mainly addressed only the infinite horizon problems. 

Finite-horizon optimal control is relatively more difficult. 
The difficulty is due to the time varying HJB equation 
resulting in time-to-go dependent optimal cost function and 
costates. If one were to use a shooting method, a two-point 
boundary value problem needs to be solved for each set of 
initial condition each time and it will provide only an open 
loop solution and only for one set of initial conditions. There 
is hardly any work in the neural network literature to solve 
this class of problems [11]-[12]. In this paper, a single neural 
network (Finite-SNAC) based solution is developed which 
embeds solutions to the HJB equation. Consequently, the 
offline trained network can be used to generate online 
feedback control. Another major advantage is that this 
network provides optimal feedback solutions to any different 
final time as long as it is less than the final time for which 
the network is synthesized.  

In practical engineering problems, the designer faces 
constraints on the control effort. In order to facilitate the 
control constraint, a non-quadratic cost function [13], is used 
in this study.   

Specifically, in this paper an ADP based NN controller for 
input-constrained finite-horizon optimal control for discrete-
time input-affine nonlinear systems is developed. This is 
done through a SNAC scheme that uses the current states 
and the time-to-go as inputs. The scheme is DHP based. For 
the proof of convergence, proof of HDP for finite-horizon 
case is presented first. Then, it is shown that DHP has the 
same convergence result as HDP has and therefore, DHP 
also converges to the optimal solution. Finally, after 
presenting the convergence proofs of the training error and 
the network weights for the selected weight update law, the 
performance of the controller is evaluated with a spacecraft 
application in which a fixed final time attitude maneuver is 
carried out optimally. 

Rest of the paper is organized as follows: the Finite-
SNAC is developed in section II. Relevant convergence 
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proofs are presented in section III. Numerical results and 
analysis from a spacecraft problem are presented in Section 
IV. Conclusions are given in Section V.  

II. THEORY OF THE FINITE-SNAC 
A single neural network (Finite-SNAC) that outputs the 

costates as a function of the current states and the time-to-go 
is used in this study. Its mapping is described in a functional 
form as  

 ���� � ���	�
 � � �

�
 � � � � � � � (1) 
where ���� � �� and 	� � �� denote the system costates 

at time � � � and the states at time/stage �, respectively, and 
 denotes the network weights. � is the dimension of the 
state space. Note that for developing discrete control sets as 
a function of time-to-go, the specified final time is divided 
into � stages. Note that ���� is a function of 	� and time-to-
go �� � ��.   

The neural network ���� � in this study is selected to be 
of a form that is linear in the weights. 

 ���	
� � �

� � 
���	
 � � �� (2) 
where ��� � � �� is composed of � linearly independent 
basis functions and 
 � ����, where � is the number of 
neurons. 

Dynamics of the nonlinear control-affine system is  
assumed as 

 	��� � ��	�� �  �	��!� (3) 
A non-quadratic cost function " is assumed to incorporate 
the input constraints [13]. It is given by  

 " � �# 	$�%&	$ � ' �# �	(�%	( � )�!(��$*�(+,  (4) 
where-)�� � � �  is defined as 

 )�.� � / 0*��1�2, � 341 (5) 0*��� � denotes the inverse of function 0(.) which is a 
bounded continuous one-to-one real-analytic integrable 
saturating function which passes through the origin, like for 
example, a hyperbolic tangent function. Note that )�� � is a 
non-negative scalar and / 0*��1�2, � 41 for 0*��1�- � �� 
is defined as 

 / 0*��1�2, � 41 � ' / 0(*��1�25, 41�(+�  (6) 
where subscript 6 in .( and 0( denotes the 6th element of the 
corresponding vector.  

The network training target should be calculated using 
following two equations [11]: 

 �$7 � %&	$ (7) 

 ����7 � %	��� � 89�&�:;<=��>�:;<=�?;<=�9:;<= @� ���# 

 � � � � � � � (8) 
In the SNAC training process, ���# on the right hand side 

of (8) will be substituted by ���	���
 � � �� � ��

� as 
described in [10]. 

The SNAC training should be done in such a way which 
along with learning the target given in (8) for every state 	� 
and time �, the final condition (7) is also satisfied. In this 
study, this idea is incorporated by augmenting the training 

input-target pairs with the final stage costate. Define 
following augmented parameters: 

 �A � B����---�$C (9) 
 �D � B��	�
 � � ��---��	$*�
 ��C (10) 

Now, the network output and the target to be learned are 
 �A � 
��D (11) 
 �A7 � B����7 ---�$7 C (12) 

The training error is defined as 
 E � �A � �A7 � 
��D � �A7 (13) 
In each iteration along with selecting a random state 	�, a 

random time �, � � � � � � �, is also selected and ����7  is 
calculated using (8) after propagating 	� to 	���. Then, to 
calculate �$7  through (7), another randomly selected state 
will be considered as 	$*� and propagated to 	$ and fed to 
(7). Finally �A7 will be formed using (12). This process is 
depicted graphically in Fig. 1. In this diagram, the left 
column follows (8) and the right column follows (7) for the 
target calculations. 

 
Fig. 1. Finite-SNAC training diagram 
 
Having the input-target pair FB�	�
 � � ��--�	$*�
 ��C
B����7 --�$7 CG calculated, the network can be trained using 

some training method. In this study, the Galerkin method of 
approximation [14] is used. In this method, in order to find 
the unknown weight 
 one should solve the following set of 
linear equations. 

 HE
 �DI � ���� (14) 
where HJ
 KI � / JK�4	-L  is the defined inner product on the 
compact set M on �� and ���� denotes an-� � � matrix of 
elements equal to zero. Denoting the 6th row of matrices E 
and �D by E( and �D(, respectively, (14) leads to following 
equations 

 HE(
 �DI � ����--N6
 � � 6 � � (15) 
 HE(
 �DOI � �--N6
 P
 � � 6 � �
 � � P � � (16) 
Substituting E from (13) into (14) results in 
 HE
 �DI � 
�H�D
 �DI � H�A7
 �DI � � (17) 

or 
 
 � H�D
 �DI*�H�D
 �A7I (18) 

Eq. (18) is the desired weight update for the training process.  
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Finally, for use in a discrete problem, the integral used in 
the inner products in (18) is discretized by evaluating the 
inner products on Q different points in a mesh covering the 
compact set M [12]. Denoting the distance between the mesh 
points by R	, one has 

 H�D
 �DI � STUVW:VX, YZYZ� [	 (19) 
 H�D
 �A7I � STUVW:VX, YZ\D]� [	 (20) 

where 
 YZ � ^�D�	��---�D�	#�--_---�D�	`�a (21) 
 \D]- � ^�A7�	��---�A7�	#�--_---�A7�	`�a (22) �D�	(� and �A7�	(� denote �D and �A7 evaluated on the mesh 

point 	(, respectively. 
Using (19) and (20), the weight update rule (18) is now 

simplified to the standard least square form as 
 
 � �YZYZ��*�YZ\D]� (23) 
Note that for the inverse of the matrix �YZYZ�� to exist, one 

needs the basis functions �( to be linearly independent and 
the number of mesh points Q to be greater than or equal to 
half of the number of neurons �. 

Though (23) looks like an one shot solution for the ideal 
NN weights, the training is an iterative process which needs 
selecting different random states from the problem domain 
and times and updating the network weights by repeated use 
of  (23). The reason for the iterative nature of the training 
process is the reinforcement learning basis of ADP. To make 
it more clear, one should note that �A7 used in the weight 
update (23) is not the true optimal costate but its 
approximation with a current estimation of the ideal 
unknown weight, i.e. \D]�
�. Denoting the weights at the 6th 
epoch of the weight update by 
�(� results in the following 
iterative procedure as 

 
�(��� � �YZYZ��*�YZ\D]b
�(�c� (24) 
The weight training is started with an initial weight 
�,� 

and iterated through (24) until the weights converge. The 
initial weight can be set to zero or can be selected based on 
the linearized solutions of the given nonlinear system. 

Once the network is trained, it can be used for optimal 
feed-back control in the sense that in the online 
implementation, the states and the time will be fed into the 
network to generate the optimal costate using (1) and the 
optimal control will be calculated as 

 !� � �0�3*� �	�������- � (25) 

III. CONVERGENCE PROOFS 
Convergence proof for the proposed optimal controller is 

composed of three parts: first of all, one needs to show that 
the reinforcement learning, which the target calculation is 
based on, will result in the optimal target, then it needs to be 
shown that the weight update will force the error between 
the network output and the target to converge to zero and 
finally the network weights should be shown to converge. 

A. Convergence of the algorithm to the optimal solution 
The proposed algorithm for the Finite-SNAC training is 

DHP in which starting at an initial value for the costate 
vector one iterates to converge to the optimal costate. 
Denoting the iteration index by a superscript and the time 
index by a subscript, the learning algorithm for finite 
horizon optimal control starts with an initial value 
assignment to ��,  for all �’s, e.g. ��, � �--N�, and repeating 
below three calculations for different 6’s from zero to 
infinity. 

 !�( � �0b3*� �	�������( c (26) 
 ��(�� � %	�- � db	�
 !�( c�����(  (27) 
 �$(�� � %&	$-  (28) 

Eq. (28) is actually the final condition of the optimal control 
problem. Note that, 

 db	�
 !�( c � 98&�:;��>�:;�?;5 @9:;  (29) 

 ����( � �-(�	���� � �-(b��	�� �  �	��!�( c (30) 
The problem is to prove that the iterative procedure results 

in the optimal value for the costate � and control !. The 
convergence proof presented here is based on the 
convergence of HDP, in which the parameter subject to 
evolution is the cost function " whose behavior is much 
simpler to discuss as compared to that of the costate vector �. 

In the latter, the cost function " needs to be initialized, e.g. "-,�	�
 �� � �--N�, and iteratively updated throught the 
following steps. 
 "-(���	�
 �� � �# b	��%	� � )�!�( �c � "-(�	���
 � � �� (31) 

 !�( � efgUTh? 8"-(���	�
 ��@ 

 � �0 i3*� �	��� jk;<=5j	���l (32) 

For finite horizon case, the final condition given below is 
satisfied at every iteration. 

 "-(���	$
�� � �# 	$�%&	$ (33) 
Note that "� � "�	�
 �� and 

 "���( � "-(b��	�� �  �	��!�( 
 � � �c (34) 
In [7] the authors have proved that HDP for infinite-

horizon regulation converges to the optimal solution. In this 
paper, that proof is modified to cover the case of constrained 
finite-horizon optimal control. For this purpose following 
four Lemmas are required of which three are cited from [7] 
with some modifications to handle the time dependency of 
the optimal cost function. 

Lemma 1 [7]: Using any arbitrary control sequence of m�- , 
and-n-( defined as 

 n(���	�
 �� � �# b	�- �%	�- � )�m�- �c � 
 n(���	�- � �  �	�- �m�- 
 � � �� (35) 

If n-,�	�
 �� � "-,�	�
 �� � � then n(�	�
 �� o "(�	�
 ��--N6 
where "(�	�
 �� is iterated through (31) and (32). 

Proof: The proof is given in [7]  
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Lemma 2: If the system is controllable then "(�	�
 ��, 
resulted from (31) and (32), is upper bounded by an existing 
bound K�	�
 ��. 

Proof: The proof is inspired by the proof of similar 
Lemma in [7], however, this is an important modification to 
deal with finite horizon problems. Let p� be an arbitrary 
control. Let q,�	�
 �� � ",�	�
 �� � �, where q( is updated 
as 

 q(���	�
 �� � �# b	��%	� � )�p�- �c � 
 q(�	���
 � � �� (36) 
 q-(���	$
�� � �# 	$�%&	$ (37) 
 	��� � ��	�� �  �	��p� (38) 

Defining K�	�
 �� as 
 K�	�
 �� � �# 	$�%&	$ � 

 ' �# �	���� %	��� � )�p�����$*�*��+,  (39) 
Subtracting (39) from (36) results in q(���	�
 �� � K�	�
 �� � q(�	���
 � � �� � 8�# 	$�%&	$ � ' �# �	���� %	��� � )�p�����$*�*��+� @ (40) 
which is the equivalent of 

 q(���	�
 �� � K�	�
 �� � 
 q(�	���
 � � �� � K�	���
 � � �� (41) 

If 6 o � � � � �-then above equation results in 
 q(���	�
 �� � K�	�
 �� � 
 q(*�$*�*���	$
�� � K�	$
 �� (42) 

But the right hand side of (42) is q(*�$*�*���	$
�� � K�	$
 �� � 
 �# 	$�%&	$ � �# 	$�%&	$ � �--6�-6 r � � � � � (43) 

 q,�	$
�� � K�	$
 �� � 
 � � K�	$� � �--6�-6 � � � � � � (44) 

Hence, one has 
 q(���	�
 �� � K�	�
 �� � �--6�-6 o � � � � � (45) 
For the case of 6 � � � � � � one has q(���	�
 �� � K�	�
 �� � 

 q,�	��(��
 � � 6 � �� � K�	��(��
 � � 6 � �� (46) 
But, q,�	��(��
 � � 6 � �� � �, hence, 

 q(���	�
 �� � K�	�
 �� � 
 � � K�	��(��
 � � 6 � �� � �--6�-6 � � � � � � (47) 

In conclusion, (45) and (47) lead to 
 q(�	�
 �� � K�	�
 ��--N6 (48) 

From Lemma 1 with m�- � p� one has "(�	�
 �� � q(�	�
 ��, 
hence, 

 "(�	�
 �� � K�	�
 �� (49) 
which proves Lemma 2.  

Lemma 3 [7]: If the system is controllable and the optimal 
control problem can be solved, then there exists a least upper 
bound "s�	�
 ��, "s�	�
 �� � K�	�
 ��, which satisfies 
equation (31) when "( and "(�� are replaced by "s,and � � "(�	�
 �� � "s�	�
 �� � K�	�
 �� where K�	�
 �� is 
defined in Lemma 2. 

Proof: The proof given is in [7].  
Lemma 4 [7]: The sequence of "( defined by HDP, in case 

of ",�	�� � �, is non-decreasing. 

Proof: The proof given is in [7].  
Theorem 1: The sequence of "( iterated through (31) to 

(33), in case of ",�	�� � � converges to the fixed final time 
optimal solution. 

Proof: Using the results of Lemma 4 and Lemma 2 one 
has 

 "( X "t as 6 X u. (50) 
From Lemma 3 

 "t � "s (51) 
Since "t satisfies the HJB equation and the finite-horizon 
final condition one has 

 "t � "s (52) 
which completes the proof.  

Now, we can proceed to the convergence proof DHP. 
Theorem 2: The sequence of ��(  iterated through (26) to 

(28) for � � �
 �
 _ 
 � providing ��, � �--N�, converges to 
the optimal costate vector for the fixed final time problem as 6 X u. 

Proof: The idea is to use the method of induction to show 
that the evolution of the sequence in DHP is identical to that 
of HDP, i.e., at each learning iteration, we will have ��( � 9k5�:;- 
��9:;-   N�, where ��( -is resulted from DHP and "( is 

resulted from HDP. Since "(, based on Theorem 1, converge 
to the optimal values as 6 X u, ��(  will also converge to the 
optimal costate vector. The steps of the proof are skipped 
because of the page constraints.   

B. Convergence of the error of the weight update 
This step is to prove that the weight update rule makes the 

error between the network output and the target converge to 
zero and that the network weights themselves converge. The 
idea behind proofs of Theorem 3 and 4 are similar to [14], 
but, since the error equation and the dimension of the error 
are different compared to [14], the processes of the proofs 
are different and given below. 

Theorem 3: Training error convergence 
The weight update (14) will force the error (13) to converge 
to zero as the number of neurons of the neural networks, �, 
tends to infinity. 

Proof: Using Lemma 5.2.9 from [14], assuming �D to be 
orthonormal, rather than being linearly independent, does 
not change the convergence result of the weight update. 
Assume �D is a matrix formed by � orthonormal basis 
functions-�DO as its rows where � � P � � among the infinite 
number of orthonormal basis functions v�DOw�t. The 

orthonormality of v�DOw�t implied that if a function x �yQz�v�DOw�t then 
 x � ' Hx
 �DOI�DOtO+�  (53) 

And for any { one can select � sufficiently large to have 
 |' Hx
 �DOI�DOtO+��� | � { (54) 

where-V� V denotes norm operation. From (14) one has 
 HE
 �DOI � �--NP
 � � P � � (55) 
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And from (13) 
 HE
 �DOI � 
�H�D
 �DOI � H�A7
 �DOI (56) 

which is equivalent to 
 HE
 �DOI � ' 
(�H�D(
 �DOI � H�A7
 �DOI�(+�  (57) 

where 
( is the 6th row of weight matrix 
. 
On the other hand, one can expand the error E using the 
orthonormal basis functions v�DOw�t. 

 E � ' HE
 �DOI�DOtO+�  (58) 
Inserting (57) into (58) results in 

 E � ' b' 
(�H�D(
 �DOI�DO � H�A7
 �DOI�DO�(+� ctO+�  (59) 
But, from the weight update (55), the right hand side of (57) 
is also equal to zero. Applying this to (59) results in 

 E � ' b' 
(�H�D(
 �DOI�DO � H�A7
 �DOI�DO�(+� ctO+���  (60) 
Due to the orthonormality of the basis functions, one has 

 H�D(
 �DOI � �--N6 } P (61) 
Hence, (60) simplifies to 

 E � �' H�A7
 �DOI�DOtO+���  (62) 
Using (54) for x � �A7, as � increases, E decreases to zero. 

 STU�Xt VEV � � (63) 
This completes the proof.    

Theorem 4: Neural network weight convergence 
Assuming an ideal set of weights, denoted by 
s, where 

 �A7 � ' 
(s��D(t(+�  (64) 
Then, using the weight update (14), one has �
 �
7~?��s � X � where 
7~?��s  is the truncated first � row of 
the ideal weight 
s. 

Proof: The training error is defined as 
 E � �A � �A7 (65) 

Hence 
 E � b
� �
7~?��s �c�D � ' 
(s��D(t(+���  (66) 

Note that �D is a matrix formed by the first � orthonormal 
basis functions �D( as its rows, i.e. � � 6 � �. The inner 
product of both sides of (66) by �D results in 

 HE
 �DI � b
� �
7~?��s �cH�D
 �DI � 
 ' 
(s�t(+��� H�D(
 �DI (67) 

The last term on the right hand side of the above equation 
vanishes due to the orthonormality property of the basis 
functions. Considering-H�D
 �DI � �, (66) simplifies to 

 HE
 �DI � 
� �
7~?��s � (68) 
Examining (68) further, the weight update implies the left 
hand side to be zero, hence, using the weight update (14) one 
has 
 X
7~?��s .    

IV. SIMULATIONS 
For demonstration of the new synthesis technique, the 

problem of nonlinear satellite attitude control has been 
selected. Satellite dynamics can be represented as [15] 

 ���7 � �*�����7 � � � ��� (69) 
where �, �, and ���7 are inertia tensor, angular velocity 
vector of the body frame with respect to inertial frame and 
the vector of the total torque applied on the satellite, 
respectively. The selected satellite is an inertial pointing 

satellite; hence, one is interested in its attitude with respect 
to the inertial frame. All vectors are represented in the body 
frame and the sign � denotes cross product of two vectors.  

The total torque is composed of control and the 
disturbance torques. The control torque is the torque created 
using satellite actuators. Since control torque is limited in 
practice, this problem is ‘input-constrained’. 

Following [16] and its order of transformation, the 
kinematic equation of the satellite is   

��7 �
��x� � �� �Th-����eh-��� ���-����eh-���� ���-��� ��Th-���� �Th��� ����-��� ������ ����-���� �

�:����� (70) 

where �
 �
 and x are the three Euler angles describing the 
attitude of the satellite with respect to 	, �, and � axes of the 
inertial coordinate system, respectively. The subscript 	
 �
 
and � denote the corresponding elements of the vector �.  

To form the state space equation of satellite attitude 
problem, one can choose the three Euler angles and the three 
elements of the angular velocity as the states and form the 
following state space equation as 

 	� � ��	� �  �	�! (71) 
where 

 ��	� � � �����*�b�>> � � � ��c� (72) 

  � ������*� � (73) 

 	 � B� � x-----�: �� ��C� (74) 
 ! � ^��7~�: ��7~�� ��7~��a� (75) ���� denotes the right hand side of equation (70) and ���� 

denotes a three-by-three null matrix.  

A. Numerical Results 
The moment of inertia matrix of the satellite is chosen as  

 � � ���� � � �� ��� �� � � ���� -� ��# (76) 

The different moments around different axes and also the 
non-zero off-diagonal elements result in some gravity 
gradient disturbance torque acting on the satellite. 

The initial states are selected based on initial Euler angles 
of 60, -20, and -70 deg. and zero angular rates. The mission 
of the controller is to perform an attitude maneuver to bring 
the states to zero, in a fixed final time of 800 sec. A 
saturation limit of ������-��� is selected for the actuators. 

The orbit for the satellite is assumed circular with a radius 
of 20,000 km, and an inclination of 90 degrees. 

The state and control weight matrices are selected as 
 % � 46z ��--�--�--���--���--���� (77) 
 %& � ����-% (78) 
 3 � 46z ��� --�� --�� � (79) 

Note that the last three diagonal elements of matrix % and %& correspond to the angular rates with the unit of radians 
per second and are set to higher values relative to the first 
three elements. This is because the objective in this study is 
to force the angles along with the rates to reach zero and 
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higher weights on angular rates helps this process. 
Moreover, higher values for %& compared to % are to stress 
the importance of minimizing the terminal errors. A tangent 
hyperbolic function describes the saturating function 0�� � 
used in the performance index (4) and is scaled to reflect the 
actuator bounds. 

The network weights are initialized to zero and the basis 
functions are selected as polynomials 	(, 	(#, 	(� for 6 �1 to 7 
along with 	(	O, 	(#	¡- , 	(	¡#, 	(	¡� and 	(E*:¢ for 6
 P � � to 6  6 } P, resulting in 60 neurons, where, 	( is the 6th network 
input. Note that 	¡ is the fed normalized time-to-go and its 
contribution in the basis functions are selected through some 
trial and error such that the network error is as small as 
possible. For the training process, in each Epoch, 50 initial 
states among a previously selected interval of states are 
randomly selected to form a mesh and the weight update 
(23) is used for training the neural network. The training is 
performed for 600 Epochs, until the weights converge. 

The simulation results are shown in Fig. 2 and Fig. 3 by 
the black plots. The Euler angles as seen in Fig. 2 have 
nicely converged close to zero in the fixed final time of 800 
sec. Fig. 3 shows the applied control history and as expected 
it has not violated the control bounds. 

To demonstrate the versatility of the proposed controller, 
using the same trained network, the same attitude maneuver 
is performed with a shorter time-to-go, i.e. 400 sec. and the 
results are superimposed with previous results and shown in 
Fig. 2 and Fig. 3 using blue plots. As can be seen, the 
controller has applied another control sequence on the 
satellite with more saturation at first in order to accomplish 
the same mission in a shorter time-to-go of 400 sec. This 
illustrates the power of the Finite-SNAC technique that the 
same controller will be optimal for all of the final times less 
than or equal that horizon by virtue of the Pontryagin’s 
principle of optimality. 

In order to analyze the effect of external disturbances on 
the controller, the gravity gradient disturbance is modeled 
[15] and applied on the satellite and the results are shown 
using red plots in the same figures. Note that even-though 
this method is not developed to measure and cancel the 
effect of the disturbance, the feedback form of the controller 
is robust enough to be able to get an acceptable trajectory 
even in the presence of unknown disturbances.  

V. CONCLUSIONS 
A finite-horizon optimal neurocontroller, that embeds the 

solution to finite-horizon HJB equation, has been developed 
in this study. The developed neurocontroller has been shown 
to solve finite-horizon input-constrained optimal control 
problem for discrete-time nonlinear control-affine systems. 
Convergence proofs have been given. The numeric 
simulation from a satellite control problem indicate that the 
developed method is very versatile and has a good potential 
for use in solving for optimal closed loop control of control-
affine nonlinear systems..  
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Fig. 2. Euler angles histories for different simulations. Refer to the text 

for color coding. 

 
Fig. 3. Control histories for different simulations. Refer to the text for 

color coding. 
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