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Abstract—The track assignment problem in applications
with large gaps in tracking measurements and uncertain
boundary conditions is addressed as a Two Point Boundary
Value Problem (TPBVP) using Hamiltonian formalisms.
An L2-norm analog Linear Quadratic Regulator (LQR)
performance function metric is used to measure the trajec-
tory cost, which may be interpreted as a control distance
metric. Distributions of the performance function are
determined by linearizing about the deterministic optimal
nonlinear trajectory solution to the TPBVP and accounting
for statistical variations in the boundary conditions. The
performance function random variable under this treat-
ment is found to have a quadratic form, and Pearson’s
Approximation is used to model it as a chi-squared random
variable. Stochastic dominance is borrowed from mathe-
matical finance and is used to rank statistical distributions
in a metric sense. Analytical results and approximations
are validated and an example of the approach utility is
given. Finally conclusions and future work are discussed.

I. INTRODUCTION AND BACKGROUND

In recent years there has been a significant increase
in trackable on-orbit objects due to new launches, col-
lisions, and improved sensor capabilities [1], [2], [3].
Object correlation for objects with maneuver execution
capability has become increasingly complex, and oper-
ational methods to correlate objects have become more
important, specifically for collision avoidance operations
[4], [5].

Object track correlation has an extensive body of
literature, particularly in continuous visible and radar
tracking applications. Many approaches use statistical
properties of sensors or known target qualities to mini-
mize false alarms and the effects of clutter. Probabilistic
Multi-Hypothesis Tracking (PMHT), Probabilistic Data
Association Filter (PDAF), and Modified Gain Extended
Kalman Filter (MGEKF) are representative of these
algorithms (discussions and examples of their usage are
in [6], [7], [8], [9]). Largely, these approaches update
their correlations as new measurements are generated.
An alternate class of problems to examine are those
with large gaps in observation, such as on-orbit object

tracking. In these scenarios the problem is to associate
individual object tracks incorporating 5-15 minutes of
observations (perhaps generated using some of the meth-
ods mentioned above) separated by observation gaps on
the order of tens of minutes to days [10], [11].

One way to support candidate object pairing associ-
ation is to propagate the initial track uncertainty (also
introducing process noise) and compute the Kullback-
Leibler Distance (KL-D) [12], the Battacharya Distance
(B-D) [13], or the Mahalanobis Distance (M-D) [14]
from the newly generated object track state and uncer-
tainty.

Alternately, with an initial and final track for each
candidate association pairing, each association may be
addressed as a Two Point Boundary Value Problem
(TPBVP) linking uncertain boundary conditions. In this
approach the optimal connecting trajectory performance
distribution may itself be used as a metric, and mutu-
ally exclusive track association pairings may be ranked
against one another in a metric sense. Specifically, LQR-
type costs (quadratic in state or fuel deviations from
a nominal homogeneous trajectory) directly measure
the effect of active maneuvers. Note that for space
applications, a subclass of this problem concerned only
with quadratic cost in fuel usage can be used [15].
This paper examines the full LQR performance index
to expand upon previous efforts. This proposed method
is fundamentally different from computing the statistical
KL-D, B-D, or M-D from the objects’ expected state
distribution as it directly accounts for control usage.
Computing the distribution of the LQR performance
index has the additional advantage that the resulting
probability distribution function may be used to support
hypothesis testing to infer intentions or detect maneu-
vers.

The contribution of this paper is to generalize from
quadratic control costs to full LQR trajectory costs.
Effort is made to maintain applicability to general
dynamical systems with LQR trajectory costs. Theory
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verification and operational use examples are given, then
conclusions and future work are discussed.

II. PROBLEM DEFINITION

The problem is illustrated in Figure 1. One or
more initial Uncorrelated Tracks (initial UCTs) must be
’paired’ with one or more final Uncorrelated Tracks (fi-
nal UCTs). Rather than computing the KL-D, B-D, or M-
D between the expected homogeneous state distribution
and the final UCTs, optimal connecting trajectories will
be used to generate norm analog performance function
distributions that will in turn be used to rank candidate
UCT pairings.

UCT0!

(x0,P0)!

UCTf!

(xf,Pf)!

Propagated x(t), P(t)
!

Propagated
!

Optimal Connecting x*(t) 

with maneuvers
!

‘State 

Distance’
!

Fig. 1. Problem Illustration

Deterministic dynamics are considered in this effort.
The dynamics are ẋ = f(x,u, t), where x ∈ Rn is the
state, u ∈ Rm is the control input, and t ∈ [t0, tf ] is the
time. A performance function commonly found in Linear
Quadratic Regulation (LQR) problems is used.

P = ∫
tf

t0

1
2
[ x(τ)

u(τ) ]
T

[ Q N
NT R ] [ x(τ)

u(τ) ]dτ (1)

with t ∈ [t0, tf ], P ∈ R, x(t) ∈ Rn, u(t) ∈ Rm,
Q ∈ Rn×n, R ∈ Rm×m, and N ∈ Rm×n. Presently it
is only assumed that Q = QT ≥ 0 and R = RT ≥ 0.
Further conditions will be placed on Q, N, and R as
necessary. There is no terminal state cost (typically
written as V (xf) = xT

f Pxf ), as the boundary conditions
are considered equality constraints for this problem.
Thus, this performance function is essentially a fixed-
horizon LQR optimal control problem. Optionally, the
cost function may be defined relative to a reference tra-
jectory (xr(t),ur(t)) by choosing x(τ)→ xr(τ)−x(τ)
and u(τ)→ ur(τ) − u(τ) in (1).

It is well known that this form has the additional
benefit that it has extrema for the same trajecto-
ries (x(t),u(t)) as the L2-norm defined for y(t)T =
[x(t)T u(t)T ] over the inner-product space generated by
Q, N, and R. A minima found using (1) is also a minima
of the analogous L2-norm. Of particular interest to the

examples given in this paper is if Q = 0, N = 0, and
R = I, then the control distance analog ∥u∥L2 =

√
2P

is generated. An excellent discussion of norms and their
properties is given by Naylor [16]. This definition makes
particular sense for on-orbit track correlation problems
where control usage minimization is a top operator
priority. The modification made to the TPBVP for this
analysis is that x0 and xf are not known exactly, and are
described as random vectors X0 and Xf , respectively.
The distributions of X0 and Xf are assumed to be
Gaussian, with

E [X0] = x0, E [(X0 − x0) (X0 − x0)T ] = P0

E [Xf ] = xf , E [(Xf − xf) (Xf − xf)T ] = Pf

Where P0 ∈ Sn×n
+ and Pf ∈ Sn×n

+ are covariance matrices
associated with means x0 and xf , respectively. Equiva-
lently, this paper uses the notation X0 ∈ N(x0,P0) and
Xf ∈ N(xf ,Pf) to define the initial and final boundary
conditions as being random vectors with normal (Gaus-
sian) distributions.

III. THEORY

The nominal optimal trajectory problem for a gen-
eral nonlinear system is now solved using Hamiltonian
formalisms [17], [18]. After this solution is found, varia-
tions in the boundary conditions are considered and their
impact on the performance function evaluated.

For nonlinear systems with a performance function P
the Hamiltonian H is

H = inf
u

[1
2

xT Qx + xT Nu + 1
2

uT Ru + pT f(x,u, t)] (2)

Finding the optimal control u∗:

u∗ = arg inf
u

[1
2

xT Qx + xT Nu + 1
2

uT Ru + pT f(x,u, t)]

Applying the first-order necessary condition of optimal-
ity for the control u:

∂H
∂u

= NT x +Ru + ∂f
∂u

T

p = 0 (3)

which yields

u∗ = −R−1 (NT x + ∂f
∂u

T

p) (4)

with the second-order necessary condition [∂2H/∂u2] ≥
0 being satisfied if R > 0. This ultimately requires that
R be a symmetric positive definite matrix. The state and
co-state dynamics are then

∂H
∂p

= ẋ = f(x,u∗, t) (5)

−∂H
∂x

= ṗ = −Qx −Nu∗ − ∂f
∂x

T

p (6)

2
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Because these equations are nonlinear an analytical
solution may not exist. Now a nominal optimal solution
(xn(t),un(t)) connecting the nominal boundary condi-
tions x0 and xf is assumed (which may be numerical),
and is expressed as

xn(t) = φx(t; x0,p0, t0) (7)
pn(t) = φp(t; x0,p0, t0) (8)

for times up to and including tf . In a manner similar
to that of linear systems, the effect of random initial
and final states X0 and Xf are considered. If the trajec-
tory space surrounding the nominal optimal trajectory
(xn(t),pn(t)) is linearized, then linear variations in the
boundary conditions may be directly examined. Taking
the Taylor series expansion of xn(t) and pn(t) with
respect to variations in x0 and p0:

xn(t) + δx(t)

= φx(t; x0,p0, t0) +
∂φx

∂x0
δx0 +

∂φx

∂p0

δp0 +H.O.T.

pn(t) + δp(t)

= φp(t; x0,p0, t0) +
∂φp

∂x0
δx0 +

∂φp

∂p0

δp0 +H.O.T.

Keeping only first order terms and realizing that x(t) −
φx(t; x0,p0, t0) = 0 and p(t) − φp(t; x0,p0, t0) = 0, the
state transition matrix is produced:

[ δx(t)
δp(t) ] = [ Φxx(t, t0) Φxp(t, t0)

Φpx(t, t0) Φpp(t, t0)
] [ δx0

δp0
] (9)

The state transition matrix Φ(t, t0) can be solved using
the differential matrix equation Φ̇(t, t0) = AnΦ(t, t0)
where An is the gradient of the full state and adjoint
dynamics with respect to bot the state and adjoint and the
initial condition Φ(t0, t0) = I2n×2n. So far the Theory
section has closely followed [19], however at this point
the approach and application in this paper diverges.
Evaluating (9) at t = tf where both δx0 and δxf are
assumed to be known, δp0 can be computed:

δp0 = Φxp(tf , t0)−1 [ −Φxx(tf , t0) I ] [ δx0

δxf
]

(10)

The matrix partition inverse Φxp(tf , t0)−1 is
shown to exist for some systems [20] (particularly
Clohessy-Wiltshire dynamics). Here it is assumed that
Φxp(tf , t0)−1 exists. Also, for t0 < t ≤ tf , the state and
co-state variation δx(t) δp(t) may be found by solving
(9) using (10) and produce (17) and (18). Which are
re-written as

δx(t) = κ(t, t0) [
δx0

δxf
] (13)

δp(t) = Λ(t, t0) [
δx0

δxf
] (14)

Note that some of the state transition matrix portions are
computed over the interval [t0, t] while others are com-
puted over [t0, tf ]. The functions κ(t, t0) and Λ(t, t0)
map variations in the initial and final states to variations
in the state δx(t) and the co-state δp(t) at time t. Since
the optimal control is defined in terms of the state and
co-state, linear variations in the control are written as

u∗(t) = un(t) + δu(t)

≈ −R−1 (NT (xn(t) + δx(t)) + ∂f
∂u

T

(pn(t) + δx(t)))

Because un(t) = −R−1(NT xn(t)+ ∂f
∂u

T
pn(t)), the linear

variation in the control is:

δu(t) = −R−1 (NTκ(t, t0) +
∂f
∂u

T

Λ(t, t0)) [ δx0

δxf
]

(15)
Recall that ∂f/∂u is evaluated along the nominal op-
timal trajectory (xn(t),un(t)). Returning now to the
performance function P defined in (1) and substituting
u∗(τ) = un(τ) + δu(τ), the performance function be-
comes

P = ∫
tf

t0

1
2
[ xn + δx

un + δu ]
T

[ Q N
NT R ] [ xn + δx

un + δu ]dτ

(16)

The state and optimal control variations can be written
in terms of the boundary condition variations as

[ δx
δu ] =

⎡⎢⎢⎢⎣

κ(t, t0)
−R−1 (NTκ(t, t0) + ∂f

∂u
T

Λ(t, t0))
⎤⎥⎥⎥⎦
[ δx0

δxf
]

Which for ease of notation is defined as

W(t, t0) =
⎡⎢⎢⎢⎣

κ(t, t0)
−R−1 (NTκ(t, t0) + ∂f

∂u
T

Λ(t, t0))
⎤⎥⎥⎥⎦

Expanding (16) P may be written as

P (t) = ∫
t

t0

1
2
[ xn

un
]

T

[ Q N
NT R ] [ xn

un
]dτ

+∫
t

t0
[ xn

un
]

T

[ Q N
NT R ]W(τ,0)δzdτ

+∫
t

t0

1
2
δzT W(τ,0)T [ Q N

NT R ]W(τ,0)δzdτ

over the interval t ∈ [t0, tf ] where δzT = [δxT
0 δxT

f ] ∈
R2n. The variable δz does not depend on τ , so the

3
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δx(t) = [Φxx(t, t0) −Φxp(t, t0)Φxp(tf , t0)†Φxx(tf , t0) Φxp(t, t0)Φxp(tf , t0)−1] [ δx0

δxf
] (17)

δp(t) = [Φpx(t, t0) −Φpp(t, t0)Φxp(tf , t0)†Φxx(tf , t0) Φpp(t, t0)Φxp(tf , t0)−1] [ δx0

δxf
] (18)

following definitions are made:

Pn(t) =
1
2 ∫

t

t0
[ xn

un
]

T

[ Q N
NT R ] [ xn

un
]dτ, (17)

ω(t, t0) = ∫
t

t0
W(τ,0)T [ Q N

NT R ] [ xn

un
]dτ, (18)

and

Ω(t, t0) =
1
2 ∫

tf

t0
W(τ,0)T [ Q N

NT R ]W(τ,0)dτ.
(19)

Note that Pn is the performance of the nominal optimal
trajectory (xn(t),pn(t)). The performance index P (t)
over the time interval t ∈ [t0, tf ] is

P (t) = Pn(t) + ω(t, t0)T δz + δzT Ω(t, t0)δz

The approximation of P (t) in the linear space about
(xn(t),pn(t)) is a quadratic form in terms of the
boundary condition variations, δz. From §II, δz may be
treated as the realization of a Gaussian random vector
δZ ∈ N(0,Pz), where

E [δZδZT ] = Pz = [ P0 0
0 Pf

] (20)

Rewriting the performance function as a scalar random
variable the following form is obtained:

P (t) = Pn(t) + ω(t, t0)T δZ + δZT Ω(t, t0)δZ (21)

The quadratic form shown in (21) is an intuitive result, as
if the variations in the boundary conditions are reduced
to zero, P (t) = Pn(t). Similarly, if the variance in the
boundary conditions is large, one would expect the pos-
sible values of P to increase. Typically one is interested
in the final performance function value P (tf), however
the development given above is valid for t ∈ [t0, tf ].
Now, the question of computing the PDF of P (t) arises.

Because (21) has a quadratic form, existing theory in-
volving quadratic forms of normal random variables may
be applied. To compute the PDF of P (t), the following
definitions (found using similar transformations as those
described in [21]) are made:

Pn(t) = Pn(t) −
1
4
ω(t, t0)T Ω(t, t0)†ω(t, t0) (22)

µX(t) = 1
2
Ω(t, t0)†ω(t, t0) (23)

BBT = Pz (24)

b = TT B−TµX(t) (25)

⎡⎢⎢⎢⎢⎢⎣

λ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λ2n

⎤⎥⎥⎥⎥⎥⎦
= TT BT Ω(t, t0)BT (26)

The matrix B is a matrix square root of Pz (or any
decomposition such that BBT = Pz). Also, the matrix
T ∈ R2n×2n is an orthonormal transformation matrix such
that TT BT Ω(t, t0)BT is diagonalized. These definitions
transform P to

P (t) = Pn(t) +
2n

∑
i=1
λi(t) (Ui + bi(t))2 (27)

Many methods to approximate the distribution of P (t)
exist. One such approximation that benefits from ease
of computation is Pearson’s Approximation [21], where
the first three moments of the distribution of P (t) are
matched and modeled using a chi-squared distribution.
The approximation is given as

P (t) ≈ θ3(t)
θ2(t)

χ2
v(t) −

θ2(t)2

θ3(t)
+ θ1(t) + Pn(t) (28)

where

θs(t) =
2n

∑
j=1

λj(t)s (1 + sbj(t)2) , s = 1,2,3

and the degree of freedom v(t) is defined as

v(t) = θ2(t)
3

θ3(t)2

The approximation (28) is valid over P ∈ [0,∞).

Remark III.1. Sums of Performance Functions
When it is desirable to add several individual perfor-
mance functions Pj , j = 1, . . . , q, then the composite
total value of all of the performance functions may be
described as

Pc(t) =
q

∑
j=1

Pj(t)

=
q

∑
j=1

(Pn,j(t) +
2n

∑
i=1
λi,j(t) (Ui + bi,j(t))2)

4

916



where λi,j(t) is the ith eigenvalue of performance
function j and bi,j(t) is the ith non-centrality parameter
of performance function j. Alternately, if

λc(t)T = [ λ1(t)T ⋯ λq(t)T ]

bc(t)T = [ b1(t)T ⋯ bq(t)T ]

Pn,c(t) =
q

∑
j=1

Pn,j(t)

and all performance functions have boundary conditions
of dimension 2n, then the sum of the performance
functions Pc may be written as

Pc(t) = Pn,c(t) +
2nq

∑
i=1

λc,i(t) (Ui + bc,i(t))2 (29)

Remark III.2. Alternate Performance Functions
The derivation of the performance function (21) and its
PDF used the performance function definition given in
(1), though in practice other performance functions may
be used with equal utility.

Remark III.3. Systems with Linear Dynamics
A result of the first order calculus of variations expansion
of xn(t) and pn(t) is that if the governing dynamics
of the system are linear - the first-order Taylor series
expansion is exact. In this case (21) is also exact.

The task of sensibly ranking probability distributions
is confounded by the fact that many distributions have
positive finite densities over their entire intervals, which
often have significant overlap. Thus, there is a finite
positive probability that a random variable X with a
‘smaller’ distribution will have a larger realized value
x than a realized random variable y with a ‘larger’
distribution. Stochastic dominance provides a framework
with which one may sensibly rank random variable
distributions. The following definition and results are
summarized from Meucci [22].

Definition III.1. Order-q Dominance:
The distribution fA(p) is said to order-q dominate the
distribution fB(p) if, for all p ∈ [0,∞], the following
inequality holds:

Iq [fA(p)] ≥ Iq [fB(p)] (30)

where the operator I [⋅] is the integration operator over
p ∈ [0,∞]. If q = 1 (FA(p) ≥ FB(p)), distribution fA(p)
is said to weakly dominate fB(p).

Brief inspection of (30) shows us that order q domi-
nance implies order q+1 dominance. Starting with q = 0,
this gives the following result

0-dom⇒ 1-dom⇒ ⋅ ⋅ ⋅⇒ q-dom

Since 0-dom does not typically occur, the first order
dominance that can reasonably be expected is q = 1.
Order q = 1 dominance is equivalent to the cumula-
tive distribution function (CDF) of the distribution of
Na ∈ fA(p) being strictly less that the CDF of the
random variable Nb ∈ fB(p). Orders higher than q = 1
do not always have a clear intuitive meaning. In general,
there is no guarantee that there exists an order q such
that any two distributions may be ranked.

Remark III.4. Gaussian Approximation
If the boundary condition variations are ‘sufficiently
small’ (such that the term δZT Ω(t, t0)δZ is negligible),
then the approximate performance function P is approx-
imately

P (t) = Pn(t) + ω(t, t0)T δZ (31)

Since E [δZ] = 0,
E [P ] = Pn (32)

Similarly, the variance of the performance function re-
duces to

σP (t)2

= E [(Pn(t) + ω(t, t0)T δZ) (Pn(t) + ω(t, t0)T δZ)T ]

= ω(t, t0)T Pzω(t, t0)
(33)

More simply, P may be considered a scalar Gaussian
random variable P (t) ∈ N(Pn(t), ω(t, t0)T Pzω(t, t0)).
This simplification greatly eases computational burdens,
as once Pn and σP (t)2 have been computed, the PDF
is an analytic function [21]:

fP,approx(p) =
1√

2πσ2
P

exp(−(p − Pn)2

2σ2
P

) (34)

Deciding whether δZT Ω(t, t0)δZ is negligible depends
very much on the situation. A good rule of thumb is
to ensure that fP,approx(p) does not have significant
probability density when p < 0. This can be achieved
by requiring that mσP (t) < Pn(t), where m is at least
2.

IV. VALIDATION AND DEMONSTRATION OF RESULTS

A simulation was written in MATLAB using the
Clohessy-Wiltshire (CW) dynamics which describe the
relative motion in a rotating Hill frame of an on-orbit
object to a circular reference orbit. The CW dynamic
equations are written as

r̈ = 3n2r + 2nṡ + ur

s̈ = −2nṙ + us

ẅ = −n2w + uw

(35)

5
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The coordinates r, s, and w represent motion in the ra-
dial, along-track, and cross-track directions respectively
and form a right-handed cartesian coordinate system. To
compute the control distance L2-norm analog using the
framework presented in this paper the following variable
selections are made: Q = 06×6, N = 06×3, and R = I3×3.

The following two subsections describe the validation
and utility demonstration of results presented in §III of
this paper.

A. Performance Distribution Validation

To validate that the theoretical results accurately rep-
resent the true distribution of the performance function a
scenario with a single initial and final UCT is examined.
The mean and covariance of UCT0 and UCTf are
described in Table I. The initial and final covariances

TABLE I
VALIDATION TEST CASE BOUNDARY CONDITIONS AND

ASSOCIATED UNCERTAINTY

UCT0 UCT0 UCTf UCTf

Coordinate x0 σ0 xf σf

Radial - r (m) 0 1 0 1
Along-Track - s (m) -100 1 100 1
Cross-Track - w (m) 0 1 50 1

Radial - ṙ (m/s) 0 0.05 0 0.05
Along-Track - ṡ (m/s) 0 0.05 0 0.05
Cross-Track - ẇ (m/s) 0 0.05 0 0.05

P0 and Pf for each coordinate x0 and xf are formed as
a diagonal covariance matrix of the form

P = diag ([ σ2
r σ2

s σ2
w σ2

ṙ σ2
ẇ σ2

ẇ ])

The time interval under consideration is [t0, tf ] =
[0,0.25] orbits (the orbit period chosen is 90 minutes).
Four methods are used to determine the validity of the
theory developed in this paper:

1) Monte Carlo Simulation (‘Truth’): Individual re-
alizations of the distribution of X0 ∈ N(x0,P0)
and X0 ∈ N(x0,P0) are randomly generated and
simulated. 10,000 simulations are run, their control
distance is determined, and the composite numer-
ical PDF and CDF is computed using a histogram
approach with 100 bins.

2) Small δZ Approximation: The Gaussian approxi-
mation (34) for very small δZ discussed in Remark
III.4 is generated and the corresponding PDF and
CDF analytically determined.

3) Sampled Distribution: The known boundary con-
dition distribution of δZ ∈ N(0,Pz) is realized
and the corresponding control distance realization
computed according to (21). 10,000 realizations
are generated and the corresponding PDF and CDF

approximations are determined (again with 100
bins).

4) Pearson’s Approximation: Given computed values
for ω(tf , t0) and Ω(tf , t0), Pearson’s Approxima-
tion is used to match the first three moments of
the true distribution and model the control distance
random variable as a chi-squared distribution.

The Monte Carlo (method 1) results are considered
‘Truth’ for the purposes of this verification, as it includes
all nonlinearities and does not make any local lineariza-
tion assumptions. It bears mentioning that despite the
fact that the dynamics used for this verification are
linear, the optimal control law (4) is decidedly nonlinear.
Further, the approach in this paper is appropriate for
systems with nonlinear dynamics provided the trajectory
deviations are of a reasonable size. Figures 2 and 3
show the verification results of the PDF and CDF using
methods 1-4 outlined above.

The small δZ approximation of the distribution agrees
nicely with the Monte Carlo results. It is clear that
not all of the PDF or CDF is captured, as the Monte
Carlo PDF has a ’long tail’ and absolutely zero prob-
ability for P < 0, where the Gaussian approximation
has neither attribute. The sampled distribution found by
directly generating δZ ∈ N(0,Pz) and computing each
corresponding realization p matched the Monte Carlo
results very closely. As expected, P [P < 0] = 0, and the
sampled distribution exhibited a ‘long tail’ very similar
to the Monte Carlo simulations. Pearson’s Approxima-
tion matches the Monte Carlo results quite well, as seen
in Figures 2 and 3.

Fig. 2. Computed validation PDFs

B. Example: Proximity Operations Object Matching

This example demonstrates how two initial and final
UCTs may be associated with one another. Two initial

6
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Fig. 3. Computed validation CDFs

and final UCTs are described in Table II and Table III.
The initial and final UCTs are also visualized in Figure 4
along with their nominal optimal connecting trajectories
(xn, un). The time interval and weightings chosen for Q,
N, and R are the same as in the validation subsection.

TABLE II
EXAMPLE INITIAL UCT STATE AND COVARIANCE

UCT0 1 UCT0 1 UCT0 2 UCT0 2
Coord. x0 σ0 x0 σ0

r (m) 0 10 0 5
s (m) -50 5 -75 20
w (m) 25 10 0 5
ṙ (m/s) 0 0.010 0 0.010
ṡ (m/s) 0 0.005 0 0.010
ẇ (m/s) 0 0.010 0 0.020

TABLE III
EXAMPLE FINAL UCT STATE AND COVARIANCE

UCTf 1 UCTf 1 UCTf 2 UCTf 2
Coord. x0 σ0 xf σf

r (m) 0 20 50 5
s (m) 75 5 15 5
w (m) 0 15 0 20
ṙ (m/s) 0 0.010 0 0.005
ṡ (m/s) 0 0.005 0 0.003
ẇ (m/s) 0 0.005 0 0.005

The corresponding distributions of the neighboring
optimal trajectories for each UCT pairing are then com-
puted. Their PDFs and CDFs are shown in Figure 5.
Because there are only two initial and final UCTs to
associate, there are two distinct cases: Case 1 occurs if
UCT0 1 connects to UCTf 1 (and UCT0 2 connects to
UCTf 2), while Case 2 occurs when UCT0 1 connects
to UCTf 2 (and UCT0 1 connects to UCTf 2). These
cases are summarized in Table IV.

Fig. 4. Visualization of 3σ uncertain boundary conditions and nominal
candidate connecting trajectories

Fig. 5. Computed PDF and CDF approximations for each candidate
UCT association

TABLE IV
OBJECT ASSOCIATION CASE DESCRIPTIONS

Case Associations

1 UCT0 1 → UCTf 1
UCT0 2 → UCTf 2

2 UCT0 1 → UCTf 2
UCT0 2 → UCTf 1

Figure 6 plots the CDFs of the sums of the perfor-
mance functions calculated as discussed in Remark III.1
for each case. By inspection of Figure 6 it is clear that
application of stochastic dominance suggests that Case 1
is 1st-order dominant over Case 2. Reducing boundary
condition uncertainty can emphasize this dominance.
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Fig. 6. Computed CDF approximations of the performance function
sums for Case 1 and Case 2

V. CONCLUSIONS AND FUTURE WORK

A general LQR trajectory cost is defined and control
distance metric analog is proposed as an intuitive mea-
sure with which to rank candidate UCT associations. The
space about the nominal optimal connecting trajectories
between UCTs is linearized and statistical variations in
the boundary conditions are used to compute correspond-
ing variations in the control distance metric. Pearson’s
Approximation is used to model the first three moments
of the true distribution as a chi-squared distribution.
Stochastic dominance is borrowed from mathematical
finance as a mechanism to rank probability distributions
of candidate UCT pair control distances.

The theory results are validated using the Clohessy-
Wiltshire equations of relative on-orbit motion. Val-
idation results indicate that Pearson’s Approximation
adequately models the true performance function proba-
bility distribution. The example given demonstrates the
utility of the approach in this paper to candidate UCT
pairing evaluation, particularly in the presence of large
overlapping uncertainties and small relative distances of
objects. Future work includes detailed comparisons with
other correlation metrics (KL-D, B-D, and M-D) and
rigorously accounting for uncertain dynamics.
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