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Abstract— In this paper, we address the problem of identify-
ing fixed order stable SISO systems from time and frequency
domain data. Given measurements of time and frequency
response corrupted by process and measurement noise, we aim
at finding a fixed order stable plant whose response matches the
data collected (within the noise bounds) and whose H∞ norm is
below a prescribed level. It is shown the problem can be solved
by finding a point in a set defined by polynomial inequalities
and the sparse structure of the polynomials is exploited to
develop an efficient system identification algorithm. Further
computational improvements are obtained by reformulating the
problem as a rank constrained one and using efficient convex
relaxations of rank minimization. Numerical examples are
provided to illustrate the efficiency of the proposed algorithms.

I. INTRODUCTION

In this paper, we address the problem of fixed order system
identification of single input single output (SISO) systems
from both time and frequency data. More precisely, given
noisy measurements in the time and frequency domain, we
aim at determining a stable fixed order system which is
consistent to the data within the noise bounds and whose
H∞ norm is below a prescribed bound. This is accomplished
by first reformulating the problem as finding a point in a
properly defined semi-algebraic set and exploiting its inher-
ent structure to develop efficient convex relaxations. Finally,
to further improve computational efficiency, an equivalent
rank constrained problem is developed and known convex
relaxations of rank minimization are used to provide a faster,
more efficient identification algorithm.

The problem of system identification has been thoroughly
studied in the literature. Many of the classical results in
these area can be found in many books/notes such as
[15], [21]. Moreover, results on how to determine models
from time domain data, frequency domain data or both can
be found in, e.g., [9], [15], [17] and references therein.
Since identification procedure can be only preformed on
stable systems in practice, it is desirable to take stability
into account in system identification. In [18], it is proven
that an autoregressive constraint on the input guarantees
stability of an identified transfer function via least-squares
(LS) method. When subspace identification is concerned,
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several conservative methods have been proposed in [3], [16],
[20], either by adjusting extended observability matrix or by
adding regularization terms to the least squares cost function.
In [11], sufficient conditions posed on Lyapunov parameters
have been used in subspace identification to ensure stability.
In [19], an iterative approach is proposed by incrementally
adding constraints to improve stability until a stable solution
is found. More recently, in [2], an approach based on Jury’s
test and polynomial optimization is proposed to compute the
upper/lower bound of compatible system parameters, when
time-domain data is available; see also [1] for a similar
polynomial approach to set-membership error-In-variables
identification.

A. Contribution and Organization

In this paper, we also take a polynomial optimization based
approach to the problem of stable fixed order system iden-
tification. Moreover, we go beyond results available in the
literature and consider a general case where 1) both time and
frequency domain data are available, 2) both process noise
and measurement noise are considered and 3) constraint on
the H∞ norm of the identified system is imposed. Efficient
numerical algorithms are provided to solve the resulting
polynomial optimization problem by exploiting its intrinsic
sparse structure and using results on rank minimization.

The rest of the paper is organized as follows. In Section
II, notation and basic results in polynomial optimization are
introduced. The identification problem is formally defined in
Section III. In Section IV, the problem is reformulated as an
equivalent feasibility problem involving semi-algebraic sets.
Semi-definite program (SDP) relaxations are provided with
the consideration of sparsity. To further enhance computa-
tional efficiency, an equivalent rank minimization problem is
proposed in Section V. Numerical examples are provided in
Section VI to illustrate the efficacy of the proposed method.

II. PRELIMINARIES

In this section we define the notation used and briefly
summarize some results on polynomial optimization used
in this paper. For a more detailed exposition, the reader is
referred to [4], [12], [13], [14].

A. Notation
xi abbreviation for xi1i · · ·x

id
d where d is the

dimension of the vector x
Eµ[p(x)] the mean value of p(x) w.r.t the probability

measure µ on the random variable x
M � 0 the matrix M is positive semi-definite
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B. General Polynomial Optimization

Consider the following constrained polynomial optimiza-
tion problem:

p∗K := min
x∈K

p0(x) (P1)

where K ⊂ R` is a compact semi-algebraic set with
nonempty interior defined as

K
.= {x : pi(x) ≥ 0, i = 1, . . . d}

where pi(x) are polynomials with total degree di. Consider
a related problem in the probability measure space:

p̃∗K := min
µ∈P(K)

∫
p0(x)µ(dx) := min

µ∈P(K)
Eµ [p0(x)] (P2)

where P(K) is the space of finite Borel probability measures
on K. According to [12], these two problems are equivalent.
One direct consequence of this equivalency is that, it is
possible to develop a convergent sequence of LMI based
convex relaxations to problem (P1), where the optimization
variables are mi

.= Eµxi, the moments of the unknown
distribution µ. To this effect, let

p∗N = min
m

∑
α

p0,αmα (1)

s.t. MN (m) � 0,
MNi(pim) � 0, i = 1, . . . , d,

where N is the relaxation order; p0,α is the coefficient of
xα in p0(x); Ni is the smallest integer that no less than
N − di/2; MN (m) is the so-called moment matrix and
MNi(pim) is the so-called localizing matrix. For illustration
and clarity of exposition, consider the case where x ∈ R2,
the moment matrix MN (m) consists of the block matrix
{Mj,k(m)}0≤j,k≤N is defined as

MN (m) =


M0,0(m) M0,1(m) · · · M0,N (m)
M1,0(m) M1,1(m) · · · M1,N (m)

...
...

. . .
...

MN,0(m) MN,1(m) · · · MN,N (m)


where

Mj,k(m) =


mj+k,0 mj+k−1,1 · · · mj,k

mj+k−1,1 mj+k−2,2 · · · mj−1,k+1

...
...

. . .
...

mk,j mk−1,j+1 · · · m0,j+k

 .
The localizing matrix MNi(pi,m) is defined as

MNi(pi,m)(i, j) =
∑
α

pi,αm(β(i, j) + α)

where pi,α is the coefficient of xα in pi(x), m(i, j) is the
entry (i, j) of MN (m) and β(i, j) is the subscript of mβ .
By the end, according to Theorem 4.2 in [12], we have,

Theorem 1 (General Polynomial Optimization): Under
“mild” conditions,

p∗N ↑ p∗K . (2)

as N increases to infinity,

C. Sparse Polynomial Optimization

If the set of variables in the polynomials satisfies the
so-called running intersection property, the size of the mo-
ment/localizing matrices can be significantly reduced in the
resulting SDP relaxations.

Definition 1 (Running Intersection Property [13]):
Let Ik, k = 1, . . . , r, be the subsets of variables
X

.= {x1, . . . , x`} satisfying
⋃r
k=1 Ik = X . If

i) each constraint polynomial pi(x) uses only variables in
Ik for some k = β(i);

ii) the objective polynomial can be written as p0 = p0,1 +
· · ·+ p0,t where each p0,i uses only variables in Ik for
some k,

then running intersection property is satisfied in (P1) if the
collection {I1, . . . , Ir} obeys:

Ik+1 ∩
k⋃
j=1

Ij ⊆ Is for some s ≤ k, (3)

for every k = 1, . . . , r − 1.
Similar to the result stated in Theorem 1, for a sparse

polynomial optimization problem that satisfies the running
intersection property, the convergence property holds as
well. For simplicity, we denote MN (m, Ik) the moment
matrix for the reduced variables in the set Ik. Similarly, we
denote MNi

(pjm, Ik) the localizing matrix with the reduced
variables in Ik. We now restate Theorem 3.6 in [13] that
formalize this approach.

Theorem 2 (Sparse Polynomial Optimization): Assume
that (P1) satisfies running intersection property. Let

p∗N = min
m

∑
α

pαmα (4)

s.t. MN (m, Ik) � 0, k = 1, . . . , r
MNi

(pim, Iβ(i)) � 0, i = 1, . . . , d.

Then, as N increases to infinity,

p∗N ↑ p∗K . (5)

D. Positive Trigonometric Polynomials on Unit Circle

Consider a univariate trigonometric polynomial

R(z) =
d∑

k=−d

rkz
k, r−k = rk,

it is non-negative on the unit circle if and only if it can be
represented as

R(z) = [1, z−1, . . . , z−d]Q[1, z, . . . , zd]T ,

where Q is a positive semi-definite matrix; e.g., see [4]. This
is summarized as follows.

Theorem 3 (Theorem 2.5 in [4]): The univariate polyno-
mial R(z) is non-negative on the unit circle if and only if
there exist a positive semi-definite matrix

Q
.=

 q0,0 · · · q0,dr

...
. . .

...
qdr,0 · · · qdr,dr


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such that

rk =
dr+k∑
i=k

qi,i−k, k = 0, . . . , dr. (6)

III. PROBLEM FORMULATION

In this paper, we consider SISO systems of the form

G(z) =
b(z)
a(z)

, (7)

where

a(z) = 1 + a1z
−1 + . . .+ anz

−n, (8)
b(z) = b1z

−1 + . . .+ bnz
−m. (9)

It is assumed that one only has accesses to noisy measure-
ments and that the input is perturbed by noise, i.e., given
measurements yk and input uk, the following holds,

yk = −
n∑
i=1

ai(yk−i−vk−i)+
m∑
i=1

bi(uk−i+wk−i)+vk+ek,

where wk, vk, ek are input noise, output noise and process
noise, respectively; a and b are system parameters; uk =
0, yk = 0 for k ≤ 0. The noises are assumed to be bounded
in `∞ norm, i.e., there exist known w̄, v̄ and ē so that

|wk| ≤ w̄, |vk| ≤ v̄, |ek| ≤ ē, k = 1, . . . , Lt. (10)

It is also assumed that noisy measurements of the frequency
response are available. More precisely,

Ĝk = G(e−jωk) + εk, k = 1, . . . , Lf , (11)

are the (noisy) measurements of frequency response. More-
over, εk is the frequency measurement noise assumed to
be bounded, i.e., |εk| ≤ ε̄ for some known constant ε̄. We
assume that the system G(z) is stable (exponentially stable),
i.e., the roots of a(z) lie in the unit disk (a disk with radius
ρ < 1) and that the H∞ norm of G(z) is bounded by a
known positive real number CH, i.e.,

‖G(z)‖∞ ≤ CH. (12)

The objective is to identify a compatible model, if any, that is
consistent with all a priori information and all measurement
data, i.e., we aim at solving the following problem.

Problem 1: Given fixed order (n,m), time-domain
data (uk, yk), 1 ≤ k ≤ Lt, frequency-domain data
(ωk, Ĝ(e−jωk)), 1 ≤ k ≤ Lf , bounds (w̄, v̄, ē) on the `∞
norm of measurement noise (w, v, e) (i.e. |wk| ≤ w̄, |vk| ≤ v̄,
|ek| ≤ ē for all k), a bound CH on the H∞ norm of G(z)
and the root radius ρ (i.e., all the roots of a(z) locate in
the disk of radius ρ ≤ 1), find a linear model of the form
(7) that is consistent with all a priori information and the
measurement data, or conclude that none exists.

IV. ALGEBRAIC REFORMULATION AND ITS SDP
RELAXATIONS

In this section, it is shown that Problem 1 can be refor-
mulated as a polynomial optimization problem. Furthermore,
SDP relaxations are proposed based on the results introduced
in Section II with the consideration of sparsity.

A. Conditions on Consistency with Time-Domain Data

We first define the regression vector φk, the disturbance
vector ∆ηk and the system parameter vector Θ as follows,

φk = [−yk−1, . . . ,−yk−n, uk, . . . , uk−m]T ,
∆ηk = [vk−1, . . . , vk−n, wk−1, . . . , wk−m]T ,

Θ = [a1, . . . , an, b1, . . . , bm]T .

Hence, the output yk can be written as

yk = ΘT · φk + ΘT ·∆ηk + ek + vk. (13)

Therefore, G(z) is consistent with the measurements and a
priori noise information if and only if

|yk −ΘT · φk −ΘT ·∆ηk − vk| ≤ ē,

for all integers k ∈ [1, Lt].
Now let’s define polynomials pt(Θ, v, w) as

pt,6k−5 = ē+ yk −ΘT · φk −ΘT ·∆ηk − vk,
pt,6k−4 = ē− yk + ΘT · φk + ΘT ·∆ηk + vk,

pt,6k−3 = v̄ − vk,
pt,6k−2 = v̄ + vk,

pt,6k−1 = w̄ − wk,
pt,6k = w̄ + wk,

for k = 1, . . . , Lt and a semi-algebraic set Kt as

Kt
.= {(Θ, v, w) : pt,k ≥ 0, k = 1, . . . , 6Lt}. (14)

Then, we have the following result.
Lemma 1: There exists at least one model G(z) in the

form of (7) that is compatible with time-domain data and a
priori information if and only if the set Kt is non-empty.

B. Conditions on Consistency with Frequency-Domain Data

If noisy frequency responses are available and the complex
valued noise is assumed to be norm bounded by a known
positive constant, a compatible model (7) must satisfy

|G(e−jωk)− Ĝk| ≤ ε̄,

for all integers k ∈ [1, Lf ], where Ĝk is the measured
response at frequency ω = ωk.

Define polynomials

pf,k(Θ) = ε̄2(R2
d + I2

d)2 − (RnRd + InId −
αkR

2
d − αkI2

d)2 + (InRd −RnId −
βkR

2
d − βkI2

d)2

for k = 1, . . . , Lf , where αk = Re{Ĝk}, βk = Im{Ĝk} and

Rn = Re{b(e−jωk)},
In = Im{b(e−jωk)},
Rd = Re{a(e−jωk)},
Id = Im{a(e−jωk)},

are polynomial in Θ. Moreover, a semi-algebraic set Kf is
defined as

Kf
.= {Θ : pf,k(Θ) ≥ 0, k = 1, . . . , Lf}. (15)
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Then, we have the following result.
Lemma 2: There exists at least one model G(z) in the

form of (7) that is compatible with frequency-domain data
and a priori information if and only if Kf is non-empty.

C. Bound on H∞ Norm

Now we provide an algebraic formulation on bounding the
H∞ norm of G(z). A stable LTI system satisfies

‖G(z)‖∞ =
∥∥∥∥ b(z)a(z)

∥∥∥∥
∞
≤ CH,

if and only if

R(z) .= C2
Ha(z)a(z−1)− b(z)b(z−1) ≥ 0, (16)

for all z ∈ C with |z| = 1. Note that R(z) = R(z−1). Hence,

R(z) =
dr∑

k=−dr

riz
i, ri = r−i (17)

where dr = max{m − 1, n} and rk are (quadratic) poly-
nomial of Θ. To apply Theorem 3 to build polynomial
inequalities, it is necessary to introduce additional variables
λi, i = 1, . . . , dr(dr+1)

2 . To illustrate, consider the case where
n = 2 and m = 1. Then,

Q =

 q00 q01 q02
q10 q11 q12
q20 q21 q22

 =

 λ1 λ3 r2
∗ λ2 r1 − λ1

∗ ∗ r0 − λ1 − λ2

 .

It is positive semi-definite if and only if its principal minors
are non-negative. Denote the principal minors of Q by pH,k,
k = 1, . . . , dr + 1 and define a semi-algebraic set

KH
.= {(Θ, λ) : pH,k ≥ 0, k = 1, . . . , dr + 1}. (18)

Then, we have the following result.
Lemma 3: There exists at least one model G(z) in the

form of (7) whose H∞ norm is bounded by CH if and only
if the set KH is non-empty.

D. Conditions on Stability

To obtain the conditions on the system parameters for
stability, we use Jury’s criterion, which is a necessary and
sufficient condition for BIBO stability of the discrete-time
system G(z); e.g., see [10]. The criterion has been used
in [2] to address stability constraints in identification. For
completeness, we briefly restate this well-known result.

TABLE I
JURY’S ARRAY

an an−1 an−2 · · · a2 a1 1
1 a1 a2 · · · an−2 an−1 an

J1,n−1 J1,n−2 J1,n−3 · · · J1,1 J1,0

J1,0 J1,1 J1,2 · · · J1,n−2 J1,n−1

J2,n−2 J2,n−3 J2,n−4 · · · J2,0

J2,0 J2,1 J2,2 · · · J2,n−2

...
...

...
Jn−2,2 Jn−2,1 Jn−2,0

Lemma 4 (Jury’s test [10]): The system G(z) in (7) is
stable, i.e., all the roots of a(z) locate inside the unit circle,
if and only if the following inequalities hold,

1 +
n∑
i=1

ai ≥ 0

1 +
n∑
i=1

(−1)iai ≥ 0

|an| ≤ 1
|Jk,n−k| ≤ |Jk,0|, 1 ≤ k ≤ n− 2

where Jk,i, k = 1, . . . , n − 2, i = 0, . . . , n − k are the
elements in the Jury’s array as shown in Table 1 that

Jk,i
.=
∣∣∣∣ Jk−1,n−k Jk−1,i

1 Jk−1,n−k−i

∣∣∣∣ ,
for k = 1, . . . , n− 2 and i = 0, . . . , n− k.

Note that every element in the Jury’s array is a polynomial
of the system parameters a1, . . . , an. Hence, a semi-algebraic
set is defined as

Ks
.= {(a1, . . . , an) : ps,k(a) ≥ 0, k = 1, . . . , 2n} (19)

where

ps,1 = 1 +
n∑
i=1

ai,

ps,2 = 1 +
n∑
i=1

(−1)iai,

ps,3 = 1 + an,

ps,4 = 1− an,
ps,2k+3 = Jk,0 − Jk,n−k, k = 1, . . . , n− 2,
ps,2k+4 = Jk,0 + Jk,n−k, k = 1, . . . , n− 2.

Then the following lemma is a direct consequence of Jury’s
criterion.

Lemma 5: There exist at least one model G(z) in the form
of (7) that is stable if and only if the set Ks is non-empty.

Remark 1: If exponential stability is presumed, i.e., the
radius of the roots, ρ < 1, is known at a priori, Lemma 5
can be modified by setting âk = ak/ρ

k, k = 1, . . . , n
and substitute them correspondingly in the polynomials that
define Ks.

E. An equivalent reformulation and its SDP relaxations

In this section, we state a polynomial optimization prob-
lem that is equivalent to Problem 1 and provide SDP re-
laxations that take into consideration sparsity. Combing the
results from Lemma 1, 2, 3 and 5, we have the following
result.

Proposition 1: There exist at least one model G(z) in the
form of (7) that satisfies the following conditions,

1) it is consistent with input/output data (u, y) and a priori
information on the noise (v, w);

2) it is consistent with the measurements in frequency-
domain ((ω, Ĝ) and a priori information on noise e;
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3) ‖G(z)‖∞ ≤ CH;
4) G(z) is stable,

if and only if the intersection of the sets Kt, Kf , KH and
Ks are non-empty.
Proof: This follows directly from Lemma 1, 2, 3 and 5. �

Thus, to solve Problem 1, it suffices to find a point, if
there exists any, in the semi-algebraic set. One may choose
any polynomial objective function on the system parameters
to form this feasibility problem to a general polynomial
optimization. For example, one may set p0 = a1 or p0 = −a1

to find the lower/upper bound on a1.
According to Section II, the polynomial optimization

problem can be asymptotically solved by solving a hierarchy
of SDP relaxations. However, the size of the SDPs can be
very large if the number of variables in the polynomial
optimization problem is large. To address this issue, it is
desirable to exploit the inherent sparse structure of the
problem. It should be noted that the variables appearing in
any of the polynomials that define Kt are included in one of
the following sets.

Ik
.= {Θ, vk−1, . . . , vk−n, wk−1, . . . , wk−m, ek} , (20)

for k = 1, . . . , Lt. Similarly, the variables in any of the
polynomials that define Kf , KH and Ks are included in

ILt+1
.= {Θ, λ} . (21)

In general, the objective polynomials p0 of interest is a
function of the parameters of the system, like the examples
previously mentioned aim at finding upper/lower bounds
on the parameters. If this is the case, then the polynomial
optimization problem with objective p0(Θ) satisfies running
intersection property, according to Definition 1.

Now we are ready to state the first main results.
Theorem 4: Given an polynomial objective function

p0(Θ), measurements (u, y) in time-domain and (ω, Ĝ) in
frequency domain, noise bounds v̄, w̄, ē andH∞ norm bound
CH, consider the following optimization problem

p∗s = min
m

∑
α

p0,αmα (22)

s.t. MN (m, Ik) � 0, k = 1, . . . , Lt + 1
MNi

(pt,im, Ik) � 0, i = 1, . . . , Lt,
MNi

(pf,im, ILt+1) � 0, i = 1, . . . , Lf ,
MNi

(pH,im, ILt+1) � 0, i = 1, . . . , LH ,
MNi

(ps,im, ILt+1) � 0, i = 1, . . . , 2n.

Then, if there exists at least one compatible model of the
form (7) for Problem 1, (22) is feasible for any relaxation
order N . Conversely, if (22) is feasible, rank MN (m, Ik) =
rank MNi

(m, Ik) for all k, and rank MN (m, Ik ∩ Ij) = 1
for all pairs (j, k) with Ik∩Ij 6= ∅, then, there exists at least
one compatible model.
Proof: This is a direct consequence of Theorem 2, given the
fact that running intersection property holds for the collection
of the variable sets Ik defined in (20) and in (21). �

Remark 2: The rank condition rank MN (m, Ik) =
rank MNi(m, Ik) and rank MN (m, Ik ∩ Ij) = 1 is a
sufficient condition to guarantee that the optimum of the
SDP relaxation is the same to the one of the corresponding
polynomial optimization problem, see e.g. [8], [13]. With
this rank condition being satisfied, an algorithm is given
in [8], which can always extract an optimal moment sequence
corresponding to a probability measure with point support.

As discussed above, by taking into account sparsity,
the computational complexity can be substantially reduced.
Hence, the optimization problem can be solved if its size is
relatively small. However, the relaxation order N in (22) is
not known at a priori, in general one needs to gradually
increasing N until the rank conditions are satisfied. Sec-
ondly, additional variables λ have been introduced in Section
IV.C to formulate the polynomial inequalities associate with
bounding the H∞ norm. This is also undesirable as the
number of variables are then increased to O(n2).

To overcome these numerical difficulties, we formulate
an equivalent rank minimization problem based on the fact
that efficient convex relaxations on rank minimization are
available in the literature, especially when the matrices that
are symmetric and positive semi-definite. This is described
in the next section.

V. AN EFFICIENT REFORMULATION VIA RANK
MINIMIZATION

Motivated by the fact that the system parameters can
be extracted from the optimizer of (22) only if the rank
conditions are satisfied, we impose a stronger condition on
the rank of the moment matrices, and, hence, simplify (22).

Fix relaxation order N = dmax/2 where dmax is the
highest total degree of all polynomials pt,k, pf,k and ps,k.
Define a block matrix whose diagonal elements are the
moment matrices in (22), i.e.,

M =

 MN (m, I1) · · · 0
...

. . .
...

0 · · · MN (m, ILt+1)

 . (23)

Consider the following rank constrained problem,

p∗s = min
m,Q

∑
α

p0,αmα (24)

s.t. rank(M) = Lt + 1,
M � 0,∑
α

pt,i,αm
α ≥ 0, i = 1, . . . , Lt,∑

α

pf,i,αm
α ≥ 0, i = 1, . . . , Lf ,∑

α

ps,i,αm
α ≥ 0, i = 1, . . . , LH ,

Q
.= [qij ] � 0,

rk =
n+k∑
i=k

qi,i−k, k = 0, . . . , n.

where pt,k,α, pf,k,α and ps,k,α are the corresponding coef-
ficients of polynomials pt,k, pf,k and ps,k, respectively; rk
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are the coefficients of R(z), as defined in (17) and mα are
the corresponding elements in M . Then we have our second
main result.

Theorem 5: There exists at least one compatible model
in Problem 1 if and only if problem (24) is feasible.
Proof: Assume that there exists such a compatible model
with parameters Θ admissible noise (v, w, e). Then set mα =
(Θ, v, w)α, i.e., the moment sequence m is assigned with a
Dirac distribution at the point (Θ, v, w). Hence, the moment
matrices MN (m, Ik), k = 1, . . . , Lf are of rank one and
all the polynomials pt,k, pf,k and ps,k are non-negative.
Moreover, according to Theorem 3, there exists a positive
semi-definite matrix Q such that (6) holds.

On the other hand, let m and Q be an optimizer of (24).
Since rank(MN (m, Ik)) ≥ 1 and rank(M) = Lt, we must
have

rank(MN (m, Ik)) = 1, k = 1, . . . , Lt.

Hence, the sequence m is associated with a Dirac distri-
bution. Assume that the Dirac probability density function
is only non-zero at the point (Θ, v, w), then, a system
associated with parameters Θ is a compatible model for
Problem 1. �

Since the rank condition rank(M) = Lt is in general
difficult to address directly, we rewrite problem (24) as

σ = min
m,Q

rank(M) (25)

s.t.
∑
α

p0,αmα ≥ γ, (26)∑
α

pt,i,αm
α ≥ 0, i = 1, . . . , Lt, (27)∑

α

pf,i,αm
α ≥ 0, i = 1, . . . , Lf , (28)∑

α

ps,i,αm
α ≥ 0, i = 1, . . . , LH , (29)

M � 0, (30)
Q

.= [qij ] � 0, (31)

rk =
n+k∑
i=k

qi,i−k, k = 0, . . . , n, (32)

where γ is a preset constant. It is easy to see this problem
is equivalent to Problem 1 and (24) in the following sense.

Corollary 1: There exists at least one compatible model
in Problem 1 if and only if problem (25) has an optimal
value of Lt for some γ. Moreover, (25) has optimal value Lt
for some γ if and only if the minimum of (24) satisfies

p∗s ≥ γ. (33)
Remark 3: Note that in problem (24) and (25), the relax-

ation order N is fixed and is only determined by the highest
total degree of all the polynomials p0, pt, pf and ps, and,
hence, is known at a priori. There is no need to increase
the value of N since we aim at finding rank one moment
matrices.

Although rank minimization is NP-hard, efficient convex
relaxations are available. In particular, good approximate
solutions can be obtained by using a log-det heuristic that
relaxes rank minimization to a sequence of convex problems.
Thus, we use the log-det heuristic algorithm proposed in [5],
which has been proven to be efficient in practice, to solve
problem (25), as summarized below.

Algorithm 1 Rank Minimization
Set X ←M(m), X0 ← I , δ ← 0, k ← 0.
repeat

Solve

Xk+1 ← arg min Tr(Xk + δI)−1X

s.t. (26) - (32).

Decompose the symmetric matrix Xk = T−1DT .
Set δ ← min diag(D) + δ0.
Set k ← k + 1.

until a convergence criterion is reached.
return Xk

VI. NUMERICAL RESULTS

In this section, we present two simple numerical examples
to illustrate the efficiency of the proposed algorithms.

A. Example 1

We first consider a second order system with transfer
function

G(z) =
1

1− 1.8z−1 + 0.9997z−2
.

This system is stable with roots at 0.9 ± j0.4355 and H∞
norm being 6757. To perform the identification process, the
system was excited with Lt = 30 random input between −1
and 1 and process noise bounded by 0.3, i.e., w̄ = 0, v̄ =
0, ē = 0.3 The frequency responses were also measured at
2 randomly select frequency points, with disturbance being
complex numbers that are norm bounded by 0.2, i.e., ε̄ = 0.2.

In the first experiment, the system was identified without
imposing conditions on stability. The corresponding identi-
fied system is

Ĝ(z) =
0.7833

1− 1.807z−1 + 1.014z−2
.

It can be verified that the identified system is NOT stable.
After imposing conditions on exponential stability and on

the H∞ norm, i.e., ρ ≤ 0.9997 and ‖Ĝ(z−1)‖∞ ≤ 7000 the
identified system is

Ĝ(z) =
0.8685

1− 1.787z−1 + 0.9994z−2
,

which is stable with H∞ norm being 3228.
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B. Example 2

A third order system is considered with transfer function

G(z) =
2z−1 − 1.2z−2 + 0.3z−3

1− 0.815z−1 − 0.7738z−2 + 0.9842z−3
.

This system is stable with H∞ norm ‖G(z)‖∞ = 1750.97
and root radius ρ = 0.9996. To perform the identification
process, the system was excited with Lt = 300 random
input between −1 and 1 and process noise bounded by 0.2,
i.e., w̄ = 0, v̄ = 0, ē = 0.2. The frequency responses were
also measured at 10 randomly select frequency points, with
disturbance being complex numbers that are norm bounded
by 0.2, i.e., ε̄ = 0.2.

The system was first identified without posing conditions
on stability and H∞ norm. The corresponding identified
system is

Ĝ(z) =
1.991z−1 − 1.2z−2 + 0.3056z−3

1− 0.8148z−1 − 0.7743z−2 + 0.9846z−3
.

It can be verified that the identified system is stable but with
H∞ norm being 2020.2, which is significantly larger than
that of the true system.

Next, the system was identified with conditions that the
system is stable and the H∞ norm is less than 1900. Then,
the corresponding identified system is

Ĝ(z) =
1.985z−1 − 1.186z−2 + 0.3023z−3

1− 0.8156z−1 − 0.7729z−2 + 0.9834z−3
.

It can be verified that this identified system is stable and
its H∞ norm is 1359.7, which is less than that of the true
system.

Moreover, with the same experimental data, Algorithm 1
was performed multiple times to find the upper/lower bounds
on a1. Without imposing stability constraint and norm con-
dition, it is found a1 ∈ [−0.83,−0.87]. On the other hand,
with stability constraint and norm condition, it is found that
a1 ∈ [−0.82,−0.85]. Thus, it can be seen that imposing
conditions on stability and H∞ norm can lead to a tighter
bound on system parameters.

VII. CONCLUDING REMARKS

In this paper, we have addressed the problem of identifying
fixed order stable systems from time and frequency domain
measurements. We started by showing that this problem is
equivalent to finding a point in a suitably defined semi-
algebraic set. To efficiently solve this problem, the sparse
structure of the polynomials involved in the description of
the set was exploited in building a sequence of compu-
tationally efficient convergent SDP relaxations. Moreover,
to further improve efficiency, an equivalent formulation is
derived involving rank constraints. This is motivated by the
fact that efficient convex relaxations are available for rank
minimization problems. Finally, two simple numerical exam-
ples are provided to illustrate the efficiency of the proposed
algorithm. Further effort is now being put on improving the
computational efficiency of the proposed algorithms.
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