
  

  

Abstract—There was a major collection of publications between 

1975 and 1985 that established fundamental theory and 

implementation of power system dynamic analysis.  These results 

recognized the time-scale features of power systems and created 

strong modeling and analysis tools that are continuing to form the 

basis for simulation and analysis techniques today.  This paper 

presents the fundamental time-scale properties of power system 

dynamic models that enabled many of these contributions.  These 

properties have been utilized to create reduced-order dynamic 

models, efficient simulation algorithms, and to discover techniques 

for large-scale stability analysis. 

I. INTRODUCTION 

Electric power systems can be broadly classified by 

mechanical equipment and electrical equipment as shown in 

Figure 1.  While this figure separates the blocks by 

mechanical and electrical dominance, the mechanical 

equipment on the left requires a control system and 

communication infrastructure that depends on electrical  

Figure 1.  A typical Electromechanical system 

 

components.  Similarly the electrical equipment on the right 

includes mechanical components such as tap-changing-

under-load (TCUL) transformers and massive numbers of 

rotating machines as loads. 

The dynamics associated with the blocks in this figure 

range in time response from microseconds to hours.  As 

such, the mathematical modeling of these dynamics presents 
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both an interesting property and computational challenge. 

The phenomena that require understanding and analysis are 

shown in Figure 2. 

 

Figure 2.  Phenomena time scales in electric power systems 

 

The mathematical models for each of these phenomena 

often take drastically different forms because of the inherent 

time-scale features.  Several of these are discussed in the 

following sections. 

 

II. DYNAMIC MODELING OF SYNCHRONOUS MACHINES 

To see what some of the models for the equipment shown 

in Figure 1 look like, consider the middle of the time scale 

range.  The heart of most electric power system dynamic 

analysis involves the dynamics of the generators that provide 

the majority of the power consumed by the loads.  The 

models for these generators begin by considering the 

revolving field circuit in a synchronous machine being 

driven by a prime mover (typically a turbine of some type). 

Figure 3 shows a typical schematic of that rotating field 

circuit and several other electrical coils.  There are three 

coils on the stationary part of the machine (called the stator), 

and four additional coils on the rotating part of the machine 

(called the rotor).  These 7 coils have labels – a, b, c for the 

stator, and fd, 1d, 1q, and 2q for the rotor.  The magnetic 

axes of these 7 coils are shown on the diagram of Figure 3. 

The magnetic axis of the field winding (labeled fd) is aligned 

with the long dimension of the “dog bone” rotor.  

Perpendicular to this and 90 degrees ahead of this “d’ axis is 

the quadrature axis – the “q” axis.  The other 3 coils on the 

Time-Scale Features and Their Applications in Electric Power 

System Dynamic Modeling and Analysis 

Peter W. Sauer, Fellow, IEEE 

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 4155



  

rotor (1d, 1q, 2q) are short circuited damper windings.  The 

shaft position is measured from the stator “a” axis to the “q” 

axis, with assumed counterclockwise rotation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Synchronous machine coil locations 

 

Virtually all of the electrical dynamics of interest in the 

synchronous machine arise from the dynamic equations 

associated with these 7 coils.  Standard Kirchhoff (plus Ohm 

and Faraday) laws written in the time domain give the 

following differential equation for each coil: 

 

 

(1) 

 

The algebraic relationship between the flux linkages (λ) 

and currents (i) reflect the constraints of Ampere’s law plus 

the magnetic property of the iron and air configuration.  This 

relationship is normally assumed to be linear, although the 

flux linkages will include dependence on the rotor position 

θshaft. 

 

(2) 

 

The fundamental Newton’s Second Law for the rotating 

shaft of the machine has the following pair of differential 

equations: 
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where P is the number of magnetic poles per phase (Figure 3 

shows a 2-pole machine).  These “abc” equations are 

traditionally transformed into “dqo” variables through the 

following relationship [8]: 
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The same transformation is also performed on the flux 

linkages and currents.  For time-scale modeling and analysis, 

the most valuable feature of power system dynamics is the 

use of “per-unit” scaling.  The tradition of scaling voltages 

and currents to be relative to rated values makes the 

quantities of interest to be “near 1.0”.   For example, actual 

voltage divided by “rated voltage” will normally produce a 

value between 0.95 and 1.05 as that is the goal of most 

system controllers.  This scaling feature allows the modeling 

to proceed directly into a well-defined multiple time-scale 

structure.  In this scaled model the ψ variables are per-unit 

scaled versions of the flux linkages and the capital I and V 

are the per-unit scaled versions of the currents and voltages.  

The stator dynamics are (with the terminal relationship 

between I and V yet to be specified): 

 

 

 

 

(7) 

 

 

 

 

 

 

Where the small parameter epsilon is the inverse of the 

electrical angular frequency: 

 

 

(8) 

 

and a “transient speed” is defined as: 

 

 

(9) 

 

The “dqo” transformation removes the time variation of the 

scaled flux linkage vs current relationship to give (with stator 

current directions reversed): 
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(10) 

 

 

 

(11) 

 

 

 

(12) 

 

This model also neglects leakage in the mutual inductances.     

 

Three of the rotor quantities are typically scaled to be: 

 

(13) 

 

 

A new angle variable is traditionally introduced as a 

“strobed” version of the actual shaft position as: 

 

(14) 

 

Where ωs is rated speed in electrical radians per second.  The 

rotor dynamics (4 electrical plus 2 mechanical) are then as 

follows. 
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All parameters and variables are defined according to 

standard industry practice [8].   

With the rotor coil currents eliminated, the stator flux 

linkages are related to the stator currents and rotor flux 

linkages by: 

 

(21) 

 

 

(22) 

 

 

(23) 

 

There are of course dynamic models for the excitation 

systems and speed governors and turbines associated with 

each machine.  These voltage and frequency control systems 

are discussed in [8], but do not play a strong role in the time-

scale features that have been utilized for reduced-order 

modeling and stability analysis in the past 35 years. 

III. DYNAMIC MODELING OF THE NETWORK 

INTERCONNECTION 

The interconnection of all the synchronous machines in 

the power network is not included in the above formulation.  

The dynamics of that interconnection include the effects of 

the magnetic and electric fields associated with the 

transmission lines.  The proper technique to analyze the 

electrical dynamics associated with these fields is the set of 

partial differential equations describing these fields.  

However, there is a traditional approximation that utilizes a 

lumped-parameter model which can be used to together with 

the above dynamic models to create powerful reduced-order 

models that sufficiently capture the relatively slow 

phenomena of rotor synchronism and coherent behavior.  

The use of this lumped parameter approximation results in 

series inductance and shunt capacitance with their associated 

resistances.  This step of going from partial differential 

equations for the electric and magnetic fields to the lumped-

parameter approximation should actually be thought of as the 

first time-scale feature that is traditionally done to avoid that 

complex dynamic analysis associated with the exact Maxwell 

Equations. 

If shunt capacitors are neglected, a graph methodology 

involving independent branches and nodes of interconnected 

3-phase lumped-parameter elements results in the following 

network model (including passive loads) for “branch” flux 

linkages, currents, and voltages relative to a synchronously 

rotating reference frame: 
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The epsilon small parameter is the same as that for the 

stator transients given in (8). 

It is straightforward to extend this to independent “loop” 

flux linkages, currents, and voltages.  With the help of per-

unit scaling, the complete dynamic model of a power system 

with interconnected synchronous machines is of the standard 

two-time scale form.  Formally setting the small parameter 

epsilon to zero gives the dynamic model in the slow time 

scale where the fast stator and network currents and flux 

linkages are infinitely fast (change instantaneously).  The 

resulting algebraic equations that replace the differential 

equations have the following general form for the 

synchronous machine: 

 

 

 

(25) 

 

 

 

together with (10)-(12) above and the following form for 

transmission lines and impedance loads: 
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with the linear flux linkage/current relationship: 

 

 

 

(27) 

 

 

 

This huge reduction in model complexity gives a very useful 

“circuit” view of the algebraic equations created by the 

singular perturbation.  For balanced systems, the “o” 

quantities will be zero and the remaining pairs of equations 

can be written as complex equations by adding the “d” 

equation plus j times the “q” equation as follows: 

 

(28) 

 

The machine flux linkages are related to the machine 

currents through equations (10) and (11).  Doing the same 

for the network transmission lines, loads, and transformers 

gives: 

 

(29) 

 

 

 

 

To connect the machine “circuit” equations to the network 

“circuit” equations, it is necessary to transform the machine 

“dq” variables into the synchronously rotating “DQ” 

reference frame.  This is done by multiplying by an 

exponential term that includes the strobed rotor shaft 

position angle delta, i.e.: 

 

(30) 

 

With this complex variable notation, the algebraic 

equations look very similar to traditional “steady state” 

phasor equations.  This is not surprising since the 

stator/network singular perturbation leaves the slow 

subsystem modeled in what is often called the “quasi steady 

state” form.  It is also often called “neglecting stator 

transients”. 

This completes the description of the reduced-order 

modeling benefits of the time-scale features of the 

synchronous machine and transmission grid, and leads 

directly to another benefit which builds on these features.  

The beauty of this result is that it provides a systematic 

network algorithm for dealing with interconnection dynamics 

and power flows.  The algebraic equations in complex form 

fit a circuit representation that allows standard topology 

processing to create a fully interconnected dynamic model.  

In this simplest form, all of the dynamics have been confined 

to the generator locations.  In this formulation, the 

interconnected network does not contain elements with 

additional dynamics.  Now, in real models, there are devices 

in the network that do contain dynamic phenomena on the 

same time scale.  Examples are Tap-Changing-Under-Load 

(TCUL) transformers, Flexible AC Transmission (FACTS) 

devices with their controls, and of course dynamic loads.  

But, to illustrate a second major benefit of the time-scale 

features, it is useful to consider the concepts of “weak 

connections” and coherent machines within weakly coupled 

areas.  These coherent machines are groups of synchronous 

machines that respond in similar ways to disturbances.  For 

example, if a fault in the network causes two machines to 

both accelerate together, they could be considered 

“coherent” and therefore perhaps be combined into one.  

When taken on a system-wide basis, this coherent grouping 

of machines makes a powerful tool for equivalencing.  

Common sense indicates that machines that are tightly 

connected electrically should respond in a similar way to 

disturbances.  And, machines that are weakly connected 

electrically should not respond in a similar way.  Therefore, 

one approach to finding coherent machines in a system 

would be to quantify the strength of interconnections and 

identify extremes.  This would lead to “areas” which behave 

as single large machines rather than many smaller machines.  

This was extensively investigated in the earlier years with the 

notion that within a tightly connected area, the dynamics are 

predominantly fast while between weakly connected areas, 

the dynamics are predominantly slow. 
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IV. COHERENCY, TIME SCALES, AGGREGATION, AND WEAK 

COUPLING 

In addition to the reduced-order dynamic modeling for 

synchronous machines, there were transformative 

contributions to large-scale system dynamic modeling and 

analysis between 1975 and 1985.  While the seeds for this 

work were found even in earlier times, one major program 

created the environment for “systems engineering for power” 

[1].  This conference and the subsequent Department of 

Energy program created this environment which eventually 

stimulated research programs around the world that exist in 

various forms today.    The time-scale features of electric 

power systems include phenomena such as multi-mass 

oscillations found in the shaft train of generating stations 

involving multiple stage turbines, generator rotors, and 

exciters.  The notion of weak and strong coupling applies to 

these mechanical dynamics to model and analyze shaft 

oscillations.  When couplings are made infinitely fast, the 

mass train becomes one solid mass with all sections moving 

together.  If the purpose of the analysis is to study how this 

single mass behaves relative to other single masses at other 

locations, the coupling between individual component 

masses is made stiff.  This is equivalent to a singular 

perturbation that results in a “slow” model of the mass 

dynamics that are interconnected by the transmission grid.  

Alternatively, considering multiple masses connected 

together and their relative swings on the tandem shafts 

results in a “fast” model.  Taking this same concept one level 

higher, masses that are strongly coupled within an “area” can 

be aggregated even further, creating reduced order models 

on a system-wide basis.  This concept of coherency is still 

being used today for creating islanding schemes. 

V. CONCLUSIONS 

The time-scale features of electric power systems are rich 

in mathematical properties that enable powerful modeling, 

simulation, and analysis tools.  The work between 1975 and 

1985 was a unique collection of fundamental contributions 

that established benchmark methods for dynamic modeling 

and analysis.  The references below are but the tip of a very 

big iceberg that has emerged and formed the foundation for 

modern power system dynamic analysis of electric power 

systems. 
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