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Abstract— We consider in this paper a class of two-player
nonzero-sum stochastic games with incomplete information.
We develop fully distributed reinforcement learning algorithms,
which require for each player a minimal amount of information
regarding the other player. At each time, each player can be
in an active mode or in a sleep mode. If a player is in an
active mode, she updates her strategy and estimates of unknown
quantities using a specific pure or hybrid learning pattern. We
use stochastic approximation techniques to show that, under
appropriate conditions, the pure or hybrid learning schemes
with random updates can be studied using their deterministic
ordinary differential equation (ODE) counterparts. Conver-
gence to state-independent equilibria is analyzed under specific
payoff functions. Results are applied to a class of security games
in which the attacker and the defender adopt different learning
schemes and update their strategies at random times.

I. INTRODUCTION

In recent years, game-theoretic methods have been applied

to study resource allocation problems in communication

networks, security mechanisms for network security and

privacy [1], and economic pricing in power networks [7].

Most frameworks have assumed the rationality of the agents

or the decision-makers as well as complete information about

their payoffs and strategies. However, in practice, due to

noise and uncertainties in the environment, agents often have

information limitations in their knowledge not only of other

players’ payoffs and strategies, but also of their own. For this

reason, we must consider the learning aspects of the decision-

makers and address their estimation and assessment of their

payoffs and strategies based on the information available to

them.

Learning in games has been investigated in many recent

papers. In [9], [16], a fictitious-play algorithm is used to find

Nash equilibrium in a nonzero-sum game. Players observe

opponents’ actions and update their strategies in reaction

to others’ actions in a best-response fashion. The authors

in [14] propose a modified version of the fictitious play

called joint fictitious play with inertia for potential games,

in which players alternate their updates at different time

slots. In standard fictitious play (Brown 1951, Robinson

1951), players have to monitor the actions of every other

player and need to know their own payoff so as to find

their optimal actions. In this paper, we are interested in fully

distributed learning procedures, where players do not need

any information about the actions or payoffs of the other

players, and, moreover, they do not need to have complete
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information of their own payoff structure. The focus of this

paper is on finite games, where the existence of mixed

Nash equilibrium is ensured by [15]. Some recent work has

been done for infinite (or continuous-kernel) games under

incomplete information, where extremum-seeking methods

have been used for (local) convergence to pure-strategy Nash

equilibria (see [8] and several of the references therein).

A similar setting was adopted in [18], which however dealt

with zero-sum games. Here we extend these results in a non-

trivial way to general-sum two-person games and introduce

the new paradigm of hybrid learning, where players can

choose different pure learning schemes at different times

based on their rationality and preferences. The heterogenous

learning in [18] can be seen as a special case of the gener-

alized hybrid learning of this paper. In order to render the

learning more practical in the context of network security, we

introduce additional features of the game: (F1) In addition to

exogenous environment uncertainties, we introduce inherent

mode uncertainties in players. Each player can be in an active

mode or a sleeping mode. Players learn their strategies and

average payoffs only when they are in an active mode. (F2)

We allow the interaction between the players to occur at

random times unknown by the players. We use stochastic

approximation techniques to show that the hybrid learning

schemes with random updates can be studied using their

deterministic ordinary differential equation (ODE) counter-

parts. The ODE obtained for hybrid learning is a linear

combination of ODEs from pure learning schemes. We show

the convergence properties of the learning algorithms for

special classes of games, namely, games with two actions, as

well as potential games, and demonstrate their applicability

in a network security environment.

The paper is structured as follows. In Section II, we

formulate the two-player nonzero-sum stochastic game with

incomplete information and introduce the solution concept

of state-independent Nash equilibrium. In Section III, we

present a number of distinct learning schemes and discuss

their properties. In Section IV, we present main results on

learning for general-sum games. In Section V, we apply the

learning algorithms to a network security application. Section

VI concludes the paper.

II. TWO-PERSON GAME

In this section, we consider a finite two-

person nonzero-sum game (NZSG) in which each

player has stochastic payoffs and the interactions

between the players are random. Let Ξ :=
〈N , {Si}i∈N , {Ωi}i∈N , {Ai}i∈N , {Ui(s,B

2, .)}s∈S,b∈B,i∈N 〉
be the stochastic NZSG, where N = {1, 2} is the set of

players P1 and P2 who maximize their payoffs, and A1,A2
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are the finite sets of actions available to players P1 and P2,

respectively. The set Si := [si,1, si,2, · · · , si,Ni
S
] comprises

all possible N i
S external states of Pi, which describes the

environment where Pi resides. We assume that the state

space S :=
∏

i∈N Si and the probability transition on

the states are both unknown to the players. A state si is

randomly and independently chosen at each time from the

set Si. We assume that the action spaces are the same in

each state.

In addition, players do not interact at all times. A player

can be in one of the two modes: active mode or sleep

mode, denoted by mode Bi = 1 and Bi = 0, respectively.

Let Bi, i ∈ N , be an i.i.d. random variable on Ωi :=
{0, 1} whose probability mass function is given by ρiB ={

pi, Bi = 1,
1− pi, Bi = 0

, i ∈ N . The player modes can be

viewed as internal states that are governed by the inherent

randomness of the player. The system mode B2 ∈ Ω :=
Ω1 × Ω2 is a set of independent modes of the players and

we denote by B2 ⊆ N as the corresponding set of active

players to B2.

The NZSG is characterized by utility functions Ui : S ×
Ωi × A1 × A2 → R. Pi collects a payoff Ui(s,B

2, a1, a2)
when P1 chooses a1 ∈ A1 and P2 uses a2 ∈ A2 at state

s ∈ S and mode B2.

Remark 1: The preceding game model can be viewed

as a special class of stochastic games in which the state

transitions are independent of the player actions as well as

the current state and we assume that the state processes and

the activities of the players are i.i.d. random variables.

We have slotted time, t ∈ {0, 1, . . .}, when players

pick their mixed strategies as functions of what has tran-

spired in the past, to the extent the information avail-

able to them allows. Toward this end, we let xi,t(ai) de-

note the probabilities of Pi choosing ai ∈ Ai at time

t, and let xi,t = [xi,t(ai)]ai∈Ai
be the mixed strategies

of Pi at time t, where more precisely, xi,t ∈ Xi :={
xi ∈ R

|Ai| : xi(ai) ∈ [0, 1],
∑

ai∈Ai
xi(ai) = 1

}
. In par-

ticular, we define eai
∈ R

|Ai|, with ai ∈ Ai, as unit vectors

of sizes |Ai| , whose entry that corresponds to ai is 1 while

others are zeros. We assume that the mixed strategies of

the players are independent of the current state s and the

player mode Bi. For any given pair of mixed strategies,

(x1,x2) ∈ X1 × X2, and for a fixed si ∈ Si, B
2 ∈

Ω, we define the expected utility (as expected payoff to

Pi) as Ui(s,B
2,x1,x2) := Ex1,x2Ui(s,B

2, a1, a2), where

Ex1,x2Ui denotes expectation of Ui over the action sets

of the players under the given mixed strategies. A further

expectation of this quantity over the states s and B2, denoted

by Es,B2 , yields the performance index of the expected game.

We now define the equilibrium concept of interest for this

game, that is the equilibrium of the expected game:

Definition 1 (State-independent equilibrium): A strat-

egy profile (x∗
1,x

∗
2) ∈ X1 × X2 is a state-independent

equilibrium of the game Ξ if it is equilibrium of the expected

game, i.e., ∀x1 ∈ X1,x2 ∈ X2, Es,B2U1(s,B
2,x∗

1,x
∗
2) ≥

Es,B2U1(s,B
2,x1,x

∗
2), and Es,B2U2(s,B

2,x∗
1,x

∗
2) ≥

Es,B2U2(s,B
2,x∗

1,x2).
Since the expected game is a two-player game with finite

actions for each player, the existence of an equilibrium

follows from Nash’s existence theorem [15], and hence we

have the following lemma.

Lemma 1: The stochastic NSZG Ξ with unknown states

and changing modes admits a state-independent equilibrium.

III. LEARNING IN NZSGS

A. Learning Procedures

In many practical applications, players in two-person

NZSGs do not have complete knowledge of each other’s

utility functions and the state of their environment. Moreover,

they do not know whether they interact with the other player

or not. Hence, the equilibrium strategy has to be learned

online by observing the realized payoffs during each time

slot. A general learning procedure is outlined as follows. At

each time slot t ∈ Z+, each player generates an internal

mode Bi to determine whether to participate in the game

or not. If both players are active, they interact and receive

a payoff after the play. If only one of the players is active,

then the active player receives his payoff as an outcome of his

action at t only without interaction with the other player. If

players do not have the knowledge of their active mode prob-

ability pi, then each player keeps a count of its interaction

with others by updating its vectors θij,t ∈ R
2, i, j ∈ {1, 2},

as follows: θij,t = θij,t−1 + 1l{Bj=1}, where θij,t is Pi’s
count of Pj’s number of activity since t ≥ 0 and the initial

condition is given by θij = 0, ∀i, j ∈ {1, 2}. The active

players choose an action ai,t ∈ Ai at time t and observe or

measure an output uj,t ∈ R as an outcome of their actions.

Players estimate their payoffs by updating the entry of the

estimated payoff vector ûi,t+1 ∈ R
|Ai| that corresponds to

the chosen action ai,t. In a similar way, players update their

strategy vectors xi,t+1 based on a specific learning scheme

(to be introduced later). The update of the strategy vectors

can exploit the payoff information ûi,t from the previous

time step. In this case, we say the learning is combined.

The general combined learning updates on the strategy and

utility vectors take the following form:
{

xi,t+1 = xi,t +Πi,t(λi,t, ai,t, ui,t, ûi,t,xi,t),
ûi,t+1 = ûi,t +Σi,t(νi,t, ai,t, ui,t,xi,t, ûi,t),

(1)

where Πi,t,Σi,t, i ∈ N , are properly chosen functions for

strategy and utility updates, respectively. The parameters

λi,t, νi,t are learning rates indicating players’ capabilities of

information retrieval and update. The vectors xi,t ∈ Xi are

mixed strategies of the players at time t. ûi,t, i ∈ N , are

estimated average payoffs updated at each iteration t, and

ui,t, i ∈ N , are the observed payoffs received by players at

time t. The learning rates λi,t, νi,t ∈ R+ need to satisfy the

conditions (C1)
∑

t≥0 |λi,t|2 < ∞,
∑

t≥0 |νi,t|
2 < ∞; (C2)∑

t≥0 |λi,t| = +∞,
∑

t≥0 |νi,t| = +∞.

The learning rates of Pi are relative to their frequency of

activity. In general, they are functions of θii, i ∈ N , and

can be written as λi,θii(t), νi,θii(t). We need to adopt a time

reference for the game using maximum learning rates among
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the active players, i.e., λ∗
t := maxi∈B2(t) λi,θii(t), ν∗t :=

maxi∈B2(t) νi,θii(t). It can be verified that the reference

learning rates λ∗
t , ν

∗
t satisfy (C1) and (C2) if λi,t, νi,t satisfy

the conditions for every i ∈ N . The learning rates λ∗
t , ν

∗
t , as

we will see later, affect the ODE approximation.

We call the learning in (1) a COmbined DIstributed PAyoff

and Strategy Reinforcement Learning (CODIPAS-RL) [18].

The players can have different learning rates for their utility

and strategy updates. The payoff learning rate is on a faster

time scale than strategy learning rate if λi,t/νi,t → 0 as

t → ∞; if it is the other way around, νi,t/λi,t → 0 as

t → ∞. In the former case, the payoff learning can be seen

as quasi-static compared to the strategy learning, and vice

versa for the latter.

B. Learning Schemes

We introduce different learning schemes in the form of (1)

for the stochastic NZSG. Let L = {Lk, k ∈ {1, 2, · · · , 5}}
be the set of five pure learning schemes. A player Pi chooses

a learning schemes Pi from the set L. We call the learning

homogeneous if both players use the same pure learning

schemes and heterogeneous if players use different learning

schemes, i.e., P1 6= P2.

1) Bush-Mosteller-based CODIPAS-RL L1:

Let Γi ∈ R be a reference level of Pi and

Γ̃i,t :=
ui,t−Γi

sup
s,B2,a

|Ui(s,B2,a)−Γi|
. The learning pattern

L1 is given by





xi,t+1(ai) = xi,t(ai) + λi,t1l{i∈B2(t)}×

Γ̃i,t

(
1l{ai,t=ai} − xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)}×
(ui,t − ûi,t(ai)) .

The updates on the strategy and the estimated payoff are

decoupled but they are implicitly dependent. The strategy up-

date does not exploit the knowledge of estimated payoff but

only relies on the observed payoffs during each time slot. The

strategy update of L1 is widely studied in machine learning

and has been initially proposed by Bush and Mosteller in [6].

Combined with the payoff update, we obtain a COPIDAS-

RL based on Bush-Mosteller learning. When Γi = 0, we

obtain the learning schemes in [2], [4].

2) Boltzmann-Gibbs-based CODIPAS-RL L2: Let β̃i,ǫ :
R

|Ai| → R
|Ai| be the Boltzmann-Gibbs (B-G) strategy map-

ping given by β̃i,ǫ(ûi,t)(ai) :=
e
1
ǫ
ûi,t(ai)

∑
a′
i
∈Ai

e
1
ǫ
ûi,t(a

′
i
)
, ai ∈ Ai. It

is also known as the soft-max function. When ǫ → 0, the

B-G strategy yields a (pure) strategy that picks the maximum

entry of the payoff vector ûi,t. The learning pattern L2 is

given by





xi,t+1(ai) = xi,t(ai) + λi,t1l{i∈B2(t)}×(
β̃i,ǫ(ûi,t)(ai,t)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)}×
(ui,t − ûi,t(ai)) .

The strategy and the estimated payoff are updated in a

coupled fashion. The numerical value of experiment is used

in the estimation, and the estimated payoffs are used to

built the strategy (here the estimations are crucial since a

player does not know the numerical value of the payoff

corresponding to his other actions that he did not use).

The strategy update is a B-G based reinforcement learning.

Combined together one gets the B-G based CODIPAS-RL.

The rest point L2 can be seen as the equilibrium for a

modified game with the perturbed payoff Es,B2Ui + ǫiHi,

where Hi is the extra entropy term as discussed in [16].

3) Imitative B-G CODIPAS-RL L3: Let βI
i,ǫ,t : Xi ×

R
|Ai| → R

|Ai| be the imitative B-G strategy mapping given

by β̃I
i,ǫ,t(xi,t, ûi,t)(ai) =

xi,t(ai)e
1
ǫ
ûi,t(ai)

∑
a′
i
∈Ai

xi,t(a′
i
)e

1
ǫ
ûi,t(a

′
i
)
, ai ∈

Ai. The learning pattern L3 is given by




xi,t+1(ai) = xi,t(ai) + λi,t1l{i∈B2(t)}×(
β̃I
i,ǫ,t(ûi,t)(ai)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)}×
(ui,t − ûi,t(ai)) .

The imitative B-G learning weights the B-G strategy with

the current strategy vector xi,t and the strategy mapping

β̃I
i,ǫ,t is time-dependent. It allows the learning strategies to

be attained at the boundary of the simplex Xi.

4) Weighted Imitative B-G CODIPAS-RL L4: Let β̃W
i,t :

Xi × R × R
|Ai| → R

|Ai| be the imitative weighted B-

G strategy mapping given by β̃W
i,t (xi,t, λi,t, ûi,t)(ai) :=

xi,t(ai)(1+λi,t)
ûi,t(ai)

∑
a′
i
∈Ai

xi,t(a′
i
)(1+λi,t)

ûi,t(a
′
i
)
, for every ai ∈ Ai. The learn-

ing pattern L4 is given by





xi,t+1(ai) = xi,t(ai) + 1l{i∈B2(t)}×(
β̃W
i,t (xi,t, λi,t, ûi,t)(ai)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)}×
(ui,t − ûi,t(ai)) .

Note that the exploitation function learning β̃W
i,t is time

dependent in L4 and is independent of parameter ǫ. If the

learning yields an interior point as the equilibrium, then it is

the exact equilibrium of the expected game, while the equi-

librium in L2 is an approximated one for the ǫ−perturbed

game.

5) Weakened Fictitious-Play L5: Let β̃F
i,t : R

|Ai| →

2R
|Ai|

be a point-to-set mapping (correspondence)

β̃F
i,t(ûi,t) := (1 − ǫ)δβi(ûi,t) + ǫ

|Ai|
1, where

1 ∈ R|Ai| is a vector with all its entries being 1;

βi : R
|Ai| → 2Ai is the best-response correspondence:

βi(ûi,t) ∈ argmaxa′
i
∈Ai

ûi,t(a
′
i)and δZ ,Z ⊆ Ai, denotes a

set of unit vectors {eai
, ai ∈ Z}. The learning pattern L5

is given by




xi,t+1(ai) = xi,t(ai) ∈ 1l{i∈B2(t)}×(
β̃F
i,t(ûi,t)− xi,t(ai)

)
,

ûi,t+1(ai) = ûi,t(ai) + νi,t1l{ai,t=ai,i∈B2(t)}×
(ui,t − ûi,t(ai)) .

The weakened fictitious play L5 has been discussed in

[12], [14]. Different from the classical fictitious play, a player
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does not observe the action played by the other player at

the previous step and the utility function is unknown. Each

player estimates its payoff by updating ûi,t using perceived

payoffs. The strategy update equation is composed of two

parts. A player chooses one of his optimal actions with

probability (1 − ǫ) by optimizing the up-to-date payoff

estimation ûi,t, and plays an arbitrary action with equal

probability ǫ.
IV. MAIN RESULTS

A. Stochastic approximation of the pure learning schemes

The pure learning schemes introduced in Section III share

the same learning structure for average utility but differ in

their strategy learning. Denote by Π
(l)
i,t the strategy learning

function for l ∈ L in the general form (1). Following

the multiple time-scale stochastic approximation framework

developed in [3], [5], [11], [13], one can write the pure

learning schemes into the form
{

xi,t+1 − xi,t ∈ qi,t

(
f
(l)
i (xi,t, ûi,t) +M

(l)
i,t+1

)

ûi,t+1 − ûi,t ∈ q̄i,t
(
Es,x−i,t,B2Ui − ûi,t + M̄i,t+1

) ,

where f l
i = E[Π

(l)
i,t+1|Ft], l ∈ L, is a learning pattern in

the form of stochastic approximation. qi,t is a time-scaling

factor which is a function of the learning rates λi,t and

the probability of Pi in active mode at time t, denoted by

P(i ∈ B2(t)); q̄i,t is the time-scaling factor for ûi,t. To use

ODE approximation, we check first the assumptions given

in the Appendix. The term M
(l)
i,t+1 is a bounded martingale

difference because the strategies are in the product of sim-

plices which are convex and compact, and the conditional

expectation of Mi,t+1 given the sigma-algebra generated by

the random variables st′ ,xt′ , ut′ , ût′ , t′ ≤ t, is zero. Similar

properties hold for M̄t+1. The function f is a regular func-

tion, and hence Lipschitz over a compact set, which implies

linear growth. Note that the case of constant learning rates

can be analyzed under the same setting but the convergence

result is weaker Thus, the asymptotic pseudo-trajectories for

the non-vanishing time-scale ratio, i.e., λi,t/νi,t → γi for

some γi ∈ R++ are
{

d
dt
xi,t ∈ gi,t

(
f
(l)
i (xi,t, ûi,t)

)

d
dt
ûi,t = ḡi,t

(
Es,x−i,t,B2Ui − ûi,t

) ,

where gi,t (resp. ḡi,t) are the asymptotic functions of

qi,t, λ
∗
t , pi (resp. q̄i,t, , ν

∗
t , pi).

If the learning rates have the vanishing ratio, i.e., λt

µt
→ 0,

the asymptotic pseudo-trajectories are
{

d
dt
xi,t ∈ gi,t

(
f
(l)
i (xi,t,Es,x−i,t

Ui)
)

ûi,t −→ Es,x−i,B2Ui.

B. Stochastic approximation of the hybrid learning scheme

Players can choose different patterns during different time

slots. Consider the hybrid and switching learning
{

xi,t+1 − xi,t ∈ qi,t(
∑

l∈L 1l{li,t=l}f
(l)
i (xi,t, ûi,t) +M

(l)
i,t+1)

ûi,t+1 − ûi,t ∈ q̄i,t
(
Es,x−i,t

Ui − ûi,t + M̄i,t+1

) ,

TABLE I

ASYMPTOTIC PSEUDO-TRAJECTORIES OF PURE LEARNING

Learning patterns Class of ODE

L1 Adjusted replicator dynamics
L2 Smooth best response dynamics
L3 Imitative BG dynamics
L4 Time-scaled replicator dynamics
L5 Perturbed best response dynamics

where li,t ∈ L is the learning pattern chosen by Pi at time

t.
Theorem 1: Assume that each player Pi, i ∈ N , adopts

one of the CODIPAS-RLs in L with probability ωi =
[ωi,l′ ]l′∈L ∈ ∆(L) and the learning rates satisfy conditions

(C1) and (C2). Then, the asymptotic pseudo-trajectories of

the hybrid and switching learning can be written into the

form
{

d
dt
xi,t ∈ gi,t

(∑
l∈L ωi,lf

(l)
i (xi,t, ûi,t)

)

d
dt
ûi,t = ḡi,t

(
Es,x−i,t

Ui − ûi,t

)

for the non-vanishing time-scale learning ratio λi,t/νi,t; and,
{

d
dt
xi,t ∈ gi,t

(∑
l∈L ωi,lf

(l)
i (xi,t,Es,x−i,t,B2Ui)

)

ûi,t −→ Es,x−i,B2Ui

for the vanishing learning ratio λi,t/νi,t.
In Table 2, we give the asymptotic pseudo-

trajectory of the pure learning when the rate of

payoff learning is faster than the strategy learning.

Let Uj(x) := Es,B2Uj(s,B
2,x), j ∈ N . In Table

2, the replicator dynamics are given by ẋj(aj) =

qjxj(aj)
[
Uj(eaj

,x−j)−
∑

a′
j
∈Aj

Uj(ea′
j
,x−j)xj(a

′
j)
]
.The

smooth best response dynamics are given by

ẋj(aj) = qj(
e

1
ǫ
Uj(eaj

,x−j)

∑
a′
j
e

1
ǫ
Uj(ea′

j
,x−j)

− xj(aj)). The imitative

Boltzman-Gibbs dynamics are given by ẋj(aj) =

qj(
xj(aj)e

1
ǫ
Uj(eaj

,x−j)

∑
a′
j
xj(a′

j
)e

1
ǫ
Uj(ea′

j
,x−j)

− xj(aj)). The best response

dynamics are given by ẋj ∈ qj(βj(x−j)−xj), and the payoff

dynamics are d
dt
ûj(aj) = q̄jxj(aj)(Uj(eaj

,x−j)− ûj(aj)).

C. Connection with equilibria of the expected game

We study the convergence properties of the dynamics and

their connection with the state-independent Nash equilibrium

for three special classes of games.

1) Games with two actions: For two-player games with

two actions, i.e, A1 = {a11, a
2
1},A2 = {a12, a

2
2}, one can

transform the system of ODEs of the strategy-learning into

a planar system under the form

α̇1 = Q1(α1, α2), α̇2 = Q2(α1, α2), (2)

where we let αi = xi(a
1
i ). The dynamics for Pi can be

expressed in terms of α1, α2 only as x1(a
2
1) = 1 − x1(a

2
1),

and x2(a
2
2) = 1− x2(a

2
2).

We use the Poincaré-Bendixson theorem and the Dulac

criterion [10] to establish a convergence result for (2).
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Theorem 2 ( [10]): Consider an autonomous planar vec-

tor field as in (2).Let γ(.) be a scalar function defined on the

unit square [0, 1]2 . If
∂[γ(α))α̇1]

∂α1
+ ∂[γ(α)α̇2]

∂α2
is not identically

zero and does not change sign in [0, 1]2, then there are no

cycles lying entirely in [0, 1]2.
Corollary 1: Consider a two-player two-action game.

Assume that each player adopts the Boltzmann-Gibbs

CODIPAS-RL with
λi,t

νi,t
= λt

νt
−→ 0. Then, the asymptotic

pseudo-trajectory reduces to a planar system in the form

α̇1 = β1,ǫ(u1(ea1 , α2)) − α1; α̇2 = β2,ǫ(u2(α1, ea2)) − α2.
Moreover, the system satisfies the conditions of Theorem 2

(known as the Dulac’s criterion).

Note that for the replicator dynamics, the Dulac crite-

rion reduces to (1 − 2α1)(U1(ea1
1
, α2) − U1(ea2

1
, α2)) +

(1 − 2α2)(U2(α1, ea1
2
) − U2(α1, ea2

2
)) which vanishes for

(α1, α2) = (1/2, 1/2). It is possible to have limit cycles in

replicator dynamics and hence the Dulac criterion does not

apply. However, the stability of the replicator dynamics can

be directly studied in the two-action case by identifying the

game as belonging to one of the types: coordination, anti-

coordination, prisoner’s dilemma, hawk-and-dove.

The following corollary now follows from Theorem 2.

Corollary 2:

(CR1) Heterogeneous learning: If P1 is with Boltzmann-

Gibbs CODIPAS-RL and P2’s learning leads to replicator

dynamics, then the convergence condition reduces to (1 −
2α2)(u2(α1, ea1

2
)− u2(α1, ea2

2
)) < 1 for all (α1, α2).

(CR2) Hybrid learning: If the players use an hybrid learn-

ing obtained by combining Boltzmann-Gibbs CODIPAS-

RL with weight ωi,1 and the replicator dynamics with

weight 1 − ωi,1, then the Dulac criterion reduces to

ω1,2[(1 − 2α1)(u1(ea1
1
, α2) − u1(ea2

1
, α2))] + ω2,2[(1 −

2α2)(u2(α1, ea1
2
) − u2(α1, ea2

2
))] < w1,1 + w2,2 for all

(α1, α2).
Remark 2 (Symmetric games with three actions): If

the expected game is a symmetric game with three actions

per player, then, the symmetric game dynamics reduce to

the two-dimensional dynamical system. This allows us to

apply the Dulac criterion.

2) Lyapunov games: We say that the game Ξ is a Lya-

punov game under the hybrid dynamics if the resulting

dynamics has a Lyapunov function.

Theorem 3: Consider a Lyapunov game under the learn-

ing schemes L1,L4. Then, the learning procedure has global

convergence to the set of equilibria of the expected robust

game for all interior initial conditions.

Note that this result holds also for n−player stochastic games

with random updates.

We say that the stochastic game Ξ is an expected robust

potential game if the expected payoff derives from a potential

function.

Potential games constitute a special class of games where

the payoff functions of the players are governed by a

potential function Φ : R
∑

i∈N |Ai| → R, i.e., Ui(eai
, x−i) =

∂Φ(x)
∂xi(ai)

, i ∈ N , ai ∈ Ai. We use a Lyapunov approach to

show the global convergence of hybrid learning for potential

games.

Lemma 2: Assume that the stochastic NZSG Φ has a

potential function Φ. Then, there exists a Lyapunov function

V R(x1,x2) : R
|A1|+|A2| → R for learning schemes L1,L4-

associated replicator dynamics and it is given by its potential

V R = Φ. Hence, the replicator dynamics converge to a rest

point. In addition, if starting from an interior point of the

simplex, the dynamics converge to the Nash equilibrium of

the game Ξ.

Lemma 3: Let V B(x1,x2) : R
|A1|+|A2| → R be a Lya-

punov function for learning pattern Ll-associated replicator

dynamics f l, l = 2, such that V B(x1,x2) = Φ(x1,x2) +
ǫ1H1(x1) + ǫ2H2(x2),where Hi : R|Ai| → R are strictly

concave perturbation functions which can take different

forms depending on the pure learning scheme l. The ODEs

corresponding to the learning schemes converge to a set of

perturbed equilibria of the game Ξ.

Theorem 4: Assume that the stochastic NZSG Ξ has

a potential function Φ. The hybrid learning with L1 and

L2 converges locally to a perturbed state-independent Nash

equilibrium x
∗
1,x

∗
2 of the potential game Ξ for sufficiently

small ǫi.
The proof of Lemmas 2, 3, and Theorem 4 can be found in

the internal technical report [17].
V. SECURITY APPLICATION

In this section, we use the learning algorithm to study a

two-person security game in a network between an intruder

and an administrator. An administrator P1 can use different

levels of protection. The intruder P2 can launch an attack

that can be of high or low intensity. Let the action sets

for P1 and P2 be A1 := {H,L} and A2 := {S,W},

respectively. The network administrator is assumed to be

always on alert while the intruder attacks with a probability

p. Hence, the set B2(t) can be of two types, i.e., (C1) {P1,

P2} or (C2) {P1}. The former case (C1) corresponds to the

scenario where the intruder and the administrator attack and

defend, respectively, whereas the latter (C2) suggests that

the administrator faces no threat. We represent the payoff

under these two scenarios by M1 and M2, respectively:

M1 :=




S W

H 1,−1 1, 0
L −2, 1 2, 0



 , M2 :=

[
H 1
L 2

]
. In

(C1), a successful defense against attack yields a payoff of 2

for P1 while a failure results in a payoff of -2. A successful

attack yields P2 a payoff of 1 while a failed attack yields

a zero payoff. The employment of strong defense (H) or

strong attack (S) costs an extra unit of effort as compared to

the low defense (L) and the weak attack (W) for P1 and P2,

respectively. In (C2), P1 stays secure without the threat from

the intruder hence yields a payoff of 2. However, the high

security level costs an extra unit of energy from the player.

The payoffs in M1 and M2 are subject to exogenous

noise which depends on the environmental state s. The

state-independent equilibrium of the game is found to be

at x
∗
1 = [ 12 ,

1
2 ]

T ,x∗
2 = [ 13 ,

2
3 ]

T and the optimal average

payoffs are û
∗
1 = [ 23 ,

2
3 ]

T , û∗
2 = [0, 0]T . In Figures 1 and 2,

we show the payoffs and mixed strategies of both players

when both players use the learning pattern L1. We can
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Fig. 1. The payoffs to the players
with both players using L1.
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Fig. 2. The mixed strategies of the
players with both players using L1.
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Fig. 3. The payoffs to the players
with both players using L2.
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Fig. 4. The mixed strategies of the
players with both players using L2.
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Fig. 5. The payoffs to the heteroge-
neous players with P1 using L1 and
P2 using L2.
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Fig. 6. The mixed strategies of the
heterogeneous players with P1 us-
ing L1 and P2 using L2.
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Fig. 7. The payoffs to the play-
ers with both players using hybrid
learning scheme with equal weights
on L1 and L2.
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Fig. 8. The mixed strategies of the
players with both players using hy-
brid learning scheme with equal
weights on L1 and L2.

see that the replicator dynamics from L1 do not converge.

However the time average strategies limT→∞
1
T

∫ T

0 xi,tdt
converges to x

∗
1,x

∗
2, respectively, and, the time average pay-

offs limT→∞
1
T

∫ T

0 ûi,tdt converges to û
∗
1, û

∗
2, respectively.

In Figures 3 and 4, we show the payoffs and mixed strategies

of the players when they both adopt the learning pattern L2.

We choose ǫ = 1/50 and observe that the mixed strategies

converge to x̄1 = [0.5277, 0.4723]T , x̄1 = [0.3333, 0.6667]T

and the payoffs converge to ¯̂u1 = [0.6667, 0.6667]T , ¯̂u2 =
[−0.027, 0]T , which are in the close neighborhood of û∗

1, û
∗
2.

In Figures 5 and 6, we show the convergence of the

heterogeneous learning scheme where P1 uses L1 and P2

uses L2. With ǫ = 1/50, we find the converging strategies

at x̄1, x̄1 and the payoffs at ¯̂u1, ¯̂u2. In Figures 7 and 8,

we show the convergence of the hybrid learning scheme

where P1 and P2 adopt L1 and L2 with equal weights. The

strategies converge to [0.5145, 0.4855]T , [0.3334, 0.6666]T

for P1 and P2, respectively, whereas the payoffs converge

to [0.6666, 0.6666]T , [−0.01459, 0]T for P1 and P2, respec-

tively.
VI. CONCLUSIONS AND FUTURE WORKS

We have presented distributed strategic learning algorithms

for two-person nonzero-sum stochastic games along with

their general convergence or non-convergence properties.

Interesting work that we leave for the future is to extend

this learning framework to an arbitrary number of players,

each of them adopting hybrid learning with a diffusion

term leading to stochastic differential equations. Another

extension will be to more general stochastic games where

the state evolution depends on the actions used the players

and their states. This situation is more complicated because

the noises are correlated and depend on states and actions

and the convergence issue in that case is a very challenging

open problem.
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