
A new algorithm for frequency estimation and disturbance cancellation
inspired from induction machine theory

Scott Pigg, Grad. Student Member, IEEE, and Marc Bodson, Fellow, IEEE

Abstract— The paper presents a new frequency estimation
algorithm based on the model of a two-phase induction motor.
Averaging theory is used to show that, for a small adaptation
gain and positive initial conditions, the frequency estimator
is globally stable. Local exponential convergence is obtained
near the nominal frequency. Combined with a gradient-based
adaptive algorithm for disturbance rejection, the frequency
estimator rejects sinusoidal disturbances of unknown frequen-
cies. Averaging theory is used to show global convergence
of the combined algorithm. Active noise control experiments
validate the results of the analysis, and show that the algorithm
successfully rejects disturbances of unknown frequency, as well
as with abrupt and slow frequency variations.

I. INTRODUCTION

The need to reject a sinusoidal disturbance of unknown
frequency is a problem frequently encountered in practice.
In tape systems, reel eccentricities cause tension ripples that
are mostly sinusoidal disturbances whose frequencies vary
with tape position [12]. Similar disturbances are introduced
by track eccentricities in CD players [2]. [6] deals with the
reduction of low frequency optical jitter with an unknown
frequency. In helicopters, sinusoidal vibrations with time-
varying frequency occur due to the interaction of each
blade tip with the air vortex created by the preceding blade
[5]. Oftentimes, the frequency of the disturbance cannot be
measured directly and may vary significantly with time.

A common technique for dealing with disturbances of
unknown frequency is to first obtain an estimate of the
unknown frequency, and then use this estimate in a distur-
bance cancellation algorithm for known frequency [1][11].
Thus, estimating the frequency of an unknown sinusoid has
received much attention in the literature. While interesting
solutions exist for frequency determination with batch pro-
cessing of data, control applications typically require that
one obtains an estimate that can be updated continuously
and tracks time-variations. In [11], a phase-locked loop fre-
quency estimate, derived from the magnitude/phase-locked
loop (MPLL) estimator of [10], was used with a gradient-
based disturbance cancelation algorithm. Active noise control
experiments demonstrated the effectiveness of this approach.
However, the stability of the MPLL algorithm required that
the initial frequency estimate be sufficiently close to the true
frequency [4].

The main objective of this paper is to show that a new
type of frequency estimator can be obtained from models of
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AC (alternating current) electric machines. Specifically, in-
duction machines are robust devices whose mechanical speed
track the angular frequency of the electric currents applied to
their windings. An induction motor model can therefore form
the basis of a frequency estimator where the rotor speed is
the estimate of the frequency. In practice, induction machines
are asynchronous, meaning that the speed is slower than
the electrical frequency, due to load and friction. However,
when a no-load condition is simulated, global convergence
of the frequency estimator can be obtained. The induction
motor frequency estimation (IMFE) algorithm can also be
combined with a disturbance cancellation algorithm to reject
disturbances of unknown frequency. The approach was tested
successfully in active noise control experiments using the
disturbance cancelation algorithm of [11]. The need for an
a priori estimate of the frequency was found to be relaxed
with a negligible increase in computational complexity. Of
significant interest is the fact that AC electric machines
provide inspiration for a new type of frequency estimator,
whose full advantages may yet to be discovered.

II. INDUCTION MOTOR FREQUENCY ESTIMATION
ALGORITHM

A. Model of a two-phase induction motor
The model of a two-phase induction motor with one pole

pair and current command is given by the equations
dψRA
dt

= − 1

TR
ψRA +

M

TR
iSA − ωψRB

dψRB
dt

= − 1

TR
ψRB +

M

TR
iSB + ωψRA

dω

dt
=

M

JLR
(iSB ψRA − iSA ψRB) (1)

where ψRA and ψRB are the total rotor flux linkages along
phases A and B, iSA and iSB are the currents in the phase
windings A and B, TR is the rotor time constant, M is the
mutual inductance between the stator and the rotor, ω is the
mechanical speed of the rotor, J is the inertia of the rotor,
and LR is the rotor self-inductance. The model assumes that
there is no load or friction torque.

The currents in the stator windings are assumed to be of
the form µ

iSA
iSB

¶
= Im

µ
cos(ωet)
sin(ωet)

¶
(2)

where ωe is the (angular) electrical frequency of the sinu-
soidal currents. The difference between the two frequencies,
S = ωe − ω, is an important quantity known as the slip
frequency. The torque generated by the motor is a nonlinear
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function of the slip frequency, but is approximately linear for
small slip. Thus, for small S, induction motor theory predicts
that

dω

dt
' k(ωe − ω) (3)

for some constant k. Therefore, the rotor speed converges
to the electrical frequency with the desirable dynamics of a
first-order system. For large slip, the torque is reduced, but
remains of the same sign, so that global convergence of ω
to ωe is ensured.

B. IMFE algorithm
Consider now the task of estimating the frequency ω∗1 of

a sinusoidal signal

y(t) = m∗ cos(α∗1(t)) (4)

where α∗1(t) = ω∗1t. We propose to solve this problem by
implementing an induction motor model with ω becoming
the estimate ω1 of ω∗1. Thus, the algorithm will be given by

ẋ1F (t) = −a1x1F + a1x1 − ω1x2F (5)
ẋ2F (t) = −a1x2F + a1x2 + ω1x1F (6)

and
ω̇1 = gω (x2(t)x1F (t)− x1(t)x2F (t)) (7)

where a1 and gω are positive constants. Note that x1 can be
defined as MiSA so that the two constants in (5)-(6) can be
assumed to be equal.

The signal x1 is simply

x1(t) = y(t) (8)

but a difficulty is that the signal x2 associated with the
second winding is not available. The situation has a parallel
in induction machines operated on residential single-phase
supplies, where single-phase induction motors are two-phase
motors with the second winding connected in series to a
capacitor, and then in parallel with the first winding. The
capacitor is selected so that the current in the second winding
is approximately 90◦ out of phase with the first winding.

In the context of a numerical frequency estimator, the
limitations of a physical implementation can be avoided, and
other means of shifting the phase by 90◦ can be used. For
example, a possible choice is the filter

H1(s) =
ω1 − s

s+ ω1
(9)

which has a gain of 1 and a phase lead of 90◦ at frequency
ω1. An approximation of the second winding current is the
signal x2(t) defined through

x2(t) = H1(s) [x1(t)] (10)

where the notation H1(s) [·] represents the time domain
output of the system with transfer function H1(s). (10) can
be implemented as

ẋ3 = −ω1x3 + ω1x1

x2 = 2x3 − x1 (11)

The overall frequency estimator is defined by (5),(6), (7), and
(11). The algorithm is quite different from other frequency
estimation aglorithms, such as [7], [8].

C. Stability analysis of the IMFE algorithm using averaging
The system can be fitted in the averaging theory for mixed

time scales systems [9], where the frequency estimate (7)
varies slowly, and the signals (8), (10) and (5)-(6) vary at a
faster or mixed time scale. In finding the averaged system,
the frequency estimate is held constant, and the responses
of the fast variables are approximated by their steady-state
responses. Then, x1 and x3 become

x1 = m∗ cos(α∗1) (12)

x3 =
m∗

ω21 + ω∗21

¡
ω21 cos(α

∗
1) + ω1ω

∗
1 sin(α

∗
1)
¢

(13)

To find the steady-state values of the filtered signals (5)-(6),
rewrite the equations as

x1F = H2(s) [x1]−H3(s) [2x3 − x1] (14)
x2F = H2(s) [2x3 − x1] +H3(s) [x1] (15)

where

H2(s) =
a1 (s+ a1)

(s+ a1)
2 + ω21

(16)

H3(s) =
a1ω1

(s+ a1)
2 + ω21

(17)

Next, define the real and imaginary parts of the frequency
responses of the three filters (9), (16), and (17) with

H1(jω
∗
1) = HR1 + jHI1 (18)

H2(jω
∗
1) = HR2 + jHI2 (19)

H3(jω
∗
1) = HR3 + jHI3 (20)

The steady-state values of (14)-(15) are then given by

x1F = m∗w∗T1 (t)

µµ
HR2

HI2

¶
−
µ

HR3 −HI3

HI3 HR3

¶
×
µ

HR1

HI1

¶¶
(21)

x2F = m∗w∗T1 (t)

µµ
HR2 −HI2

HI2 HR2

¶µ
HR1

HI1

¶
+

µ
HR3

HI3

¶¶
(22)

where
w∗1(t) =

µ
cos(α∗1(t))
− sin(α∗1(t))

¶
(23)

Given the steady-state values, the right side of the fre-
quency estimator equation (7) can be averaged with

AV E [x2x1F − x1x2F ] =
m∗2

2
(2HI1HI2 −HR3

×
¡
H2
R1 +H2

I1 + 1
¢¢

(24)

Using (18), (19) and (20), the averaged system is given by

ω̇1 = −gωfav(ω1) (25)
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with

fav(ω1) =
m∗2a1ω1
(ω21 + ω∗21 )

3ω∗21 + ω21 + a21

(ω21 − ω∗21 + a21)
2
+ (2a1ω∗1)

2

×
¡
ω21 − ω∗21

¢
(26)

To assess the stability of (25), note that fav(ω1) = 0
implies the existence of three real equilibrium points at
ω1 = 0 and ω1 = ±ω∗1. Evaluating ∂fav/∂ω1 at the
equilibrium points gives

∂fav
∂ω1

¯̄̄̄
ω1=0

= gωm
∗2 a1

¡
3ω∗21 + a21

¢
(ω∗21 + a21)

2 (27)

∂fav
∂ω1

¯̄̄̄
ω1=±ω∗1

= −gωm∗2
1

a1
(28)

The equilibrium point ω1 = 0 is repulsive, while ω1 = ±ω∗1
are both attractive. Thus, with a positive initial estimate
ω1(0), ω1 will converge to ω∗1. As ω1 → ω∗1 (25) becomes,
approximately

ω̇1 ' −
gωm

∗2

2a1
(ω1 − ω∗1) (29)

so that convergence is exponential in the vicinity of ω∗1.
The exponential convergence around ω∗1 is comparable to
the linear convergence of the induction motor for small slip.
The quadrature filter (9) is the source of the two additional
equilibrium points, which are not useful, but do not cause
any problem either.

D. Discrete-time implementation
The implementation of the estimator on a microprocessor

requires the derivation of a set of difference equations that
can be used to recursively update the system states. The
algorithm is implemented by deriving an equivalent discrete-
time algorithm. The input of the estimator is the discrete-time
signal

x1(k) = y(k) (30)

Let Ω1(k) be the estimate of the discrete-time frequency
Ω∗1 = ω∗1TS , where TS is the sampling period. Define the
auxiliary signal

r(k) = cos(Ω1(k))/ (1 + sin(Ω1(k))) (31)

The discrete-time algorithm is given by

x3(k) = r(k)x3(k − 1) + x1(k − 1) (32)
x1F (k + 1) = ad1x1F (k) + (1− ad1)x1(k)

− sin (Ω1(k))x2F (k) (33)
x2F (k + 1) = ad1x2F (k) + (1− ad1)x2(k)

+ sin (Ω1(k))x1F (k) (34)

where ad1 = 1− a1TS and

x2(k + 1) =
¡
1− r(k)2

¢
x3(k)− r(k)x1(k) (35)

The frequency update is given by

Ω1(k + 1) = Ω1(k) + gdfd (36)

with

fd = x2(k)x1F (k + 1)− x1(k)x2F (k + 1)

gd = gωT
2
S (37)

III. APPLICATION OF THE IMFE ALGORITHM IN
SINUSOIDAL DISTURBANCE CANCELLATION

A. Gradient based disturbance cancellation
The IMFE can be combined with a gradient-based distur-

bance cancellation algorithm to reject sinusoidal disturbances
of unknown frequency. Given the system P (s), consider the
output

y(t) = P (s) [u(t) + d(t)] (38)

The goal is to find an appropriate input u(t) such that y(t)
is minimized. Express the disturbance as

d(t) = w∗T1 (t)π, π =

µ
dc
ds

¶
(39)

dc and ds are unknown parameters. w∗1 is given by (23) where
α∗1(t) = ω∗1t and ω∗1 is the frequency of the disturbance.

The control signal is chosen to be

u(t) = wT
1 (t)θ, θ =

µ
θc
θs

¶
(40)

where
w1(t) =

µ
cos(α1(t))
− sin(α1(t))

¶
(41)

and the phase

α1(t) =

Z t

0

ω1dτ (42)

where ω1 is an estimate of the frequency of the disturbance.
The so-called inverse-G algorithm [11] is a gradient-based

algorithm that updates θ using

θ̇(t) = −gGTw1(t)y(t). (43)

where g > 0 is an adaptation gain,

G =

µ
PR −PI
PI PR

¶
(44)

and PR, PI are the real and imaginary parts of the frequency
response at the estimated frequency, i.e., P (jω1) = PR +
jPI .

The disturbance cancellation algorithm can be combined
with the IMFE algorithm by using the frequency estimate
ω1 of the IMFE in the reconstruction of the angle α1. One
difficulty is that the control signal produces an output that
interferes with the frequency estimator. The problem can be
avoided by using in the IMFE a modified signal

x1 = y(t)− P (s)[u(t)] = P (s)[d(t)] (45)

so that the signal used by the IMFE is the same as if the
control input was zero. Alternatively, the signal x1 can be
replaced by the simpler expression

x1 = y(t)− wT
1 Gθ (46)
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which corresponds to a steady-state approximation with
slowly varying parameter θ. The implementation is especially
useful if the plant is difficult to model with a finite-order
transfer function (due to delays, resonances,...). A frequency
response can often be obtained accurately in practice, even
when a good finite-order fit cannot be obtained. Fig. 1,
shows a diagram of the overall closed-loop system (with
yu = wT

1 Ĝθ and Ĝ is an estimate of G).

Fig. 1. Diagram of indirect disturbance cancelation with IMFE frequency
estimation.

B. Averaging analysis of the overall adaptive system
The states of the closed-loop system can be divided into

two sets, a set of slow variables and a set of fast variables.
Assuming that the adaptive gains g and gω are small, the slow
variables are the control parameter vector and the frequency
estimate, described by

θ̇ = −gGTw1y (47)
ω̇1 = gω (x2x1F − x1x2F ) (48)

With xP denoting the internal states of P (s), the fast
variables consist of the plant states

ẋP = AxP +B
¡
w∗T1 π − wT

1 θ
¢

y = CxP (49)

as well as the IMFE dynamics

ẋ3 = −ω1x3 + ω1x1

ẋ1F = −a1x1F + ax1 − ω1x2F

ẋ2F = −a1x2F + ax2 + ω1x1F

x1 = y − wT
1 Gθ

x2 = 2x3 − x1 (50)

Using the technique of [3], the angle α1 can also be treated
as a slow variable.

In finding the averaged system corresponding to (47)-(50),
the responses of the fast variables are taken as the steady-
state responses, and the dynamics of the slow variables are
averaged over time. Thus, the frequency estimate and the
control vector θ are assumed to be constant in calculating
the responses of the fast variables. The averaged system for
the IMFE is the same as was derived earlier because, for
P (s) = P̂ (s), in steady-state

x1 = yss + P (s)[d(t)]− wT
1 Gθ = P (s)[d(t)] (51)

The stability result from Sec. II.C applies: for gω sufficiently
small, the frequency estimate ω1 converges to the disturbance
frequency ω∗1. Close to the disturbance frequency, conver-
gence is exponential.

For the disturbance cancellation component, the steady-
state output of the plant can be written

yss = wT
1 G (θ − θ∗) (52)

where
θ∗ = −

µ
cos (α̃) sin (α̃)
− sin (α̃) cos (α̃)

¶
π (53)

and α̃ = α1 − α∗1. The averaged dynamics of the control
parameter update are given by

θ̇(t) = −g
2
(P 2R + P 2I ) (θ − θ∗) (54)

For ω1 = ω∗1, the control signal converges to

u(t) = −w∗T1 π (55)

Thus, as the frequency error ω1 → ω∗1, θ converges expo-
nentially to a value θ∗such that the disturbance is exactly
canceled. Note that the equilibrium θ∗ is not unique, as
it depends on the phase associated with the integration of
the frequency estimate. However, this non-uniqueness simply
produces a rotation of the control vector without the dangers
normally associated with non-uniqueness and parameter drift.

C. Experimental results
The performance of the inverse-G/IMFE algorithm was

examined through single-channel active noise control exper-
iments. (47) was discretized using the Euler approximation
so that

θ(k) = θ(k − 1)− gθG
Tw1(k − 1)y(k). (56)

where gθ = gTS , and the IMFE was discretized as in
Sec. II.D. The algorithm was coded in C and implemented
in a dSPACE DS1104 digital signal processing board. A
sampling frequency of 8 kHz was used. A constant am-
plitude sinusoidal disturbance with frequency of 160 Hz
was generated by a loudspeaker, while the control signal
was produced by another loudspeaker. A microphone was
used to measure the cancellation error. The plant consists
of the hardware and transmission in the environment from
the control signal output to the error microphone input,
including the propagation effects of the surrounding air.
The experiments were conducted in a small room where
many signal reflections were present. In all experiments,
the following parameters were used: ad1 = 0.6875, gd1 =
31.25× 10−6, gθ = 0.001875.

In the first experiment, the initial IMFE frequency was
f1(0) = 130 Hz for an initial frequency error of 50 Hz.
After 2 seconds, the inverse-G and the IMFE were engaged
simultaneously, and the algorithm was allowed to reach
steady-state. After approximately 3.5 seconds, the frequency
of the disturbance was increased by an additional 50 Hz.
Fig. 2 shows the frequency estimate and Fig. 3 shows the
measured output y. The figures show that the algorithm is
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able to adjust for the change in frequency while maintaining
significant rejection of the disturbance. The components of
the control vector θ are shown in Fig. 4.

Fig. 2. IMFE frequency estimate.

Fig. 3. Measured output with inverse-G disturbance cancelation and IMFE
frequency estimation.

In the second experiment, the IMFE frequency estima-
tor tracks a slowly varying disturbance frequency. After 2
seconds, the inverse-G and the IMFE were engaged simul-
taneously, and the algorithm was allowed to reach steady-
state. Approximately 3 seconds later, the frequency of the
disturbance was increased at a rate of 15 Hz per 10 seconds.
In Fig. 5, the ability of the algorithm to track a slowly varying
frequency is shown, and in Fig. 6, significant attenuation of
the disturbance is seen despite the changing frequency. The
components of the control vector θ are shown in Fig. 7.

In the next experiment, results using the inverse-G dis-
turbance cancelation algorithm and a MPLL frequency es-
timator are shown for comparison (implementing the al-
gorithm of [3] ). The initial frequency estimate was set
at f1(0) = 150 Hz, closer to the true value to insure
convergence of the MPLL algorithm. After 2 seconds, the
algorithm was engaged, resulting in significant attenuation of

Fig. 4. θ with IMFE frequency estimation.

Fig. 5. IMFE frequency estimate tracking changes in the disturbance
frequency.

the disturbance. After an additional 4 seconds, the frequency
of the disturbance was increased by 50 Hz. Fig. 8 shows
the MPLL frequency. The MPLL frequency estimator was
not able to compensate for the change in frequency. Fig. 9
shows the measured output y, which exhibits good reduction
under tracking conditions, but large errors otherwise.

IV. CONCLUSIONS

In this paper, a new frequency estimator was presented,
derived from the model of a two phase induction motor.
Averaging theory was used to show that global convergence
(for positive initial conditions) of the frequency estimator
was ensured, with local exponential stability around the
nominal value. The IMFE was combined with a gradient-
based disturbance cancellation algorithm for the rejection
of sinusoidal disturbances of unknown frequency. Averaging
theory was used to show that the resulting disturbance
cancelation algorithm was also globally convergent, with an
assumption of small gains. Active noise control experiments
were used to demonstrate performance of the algorithm and
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Fig. 6. Measured output with inverse-G disturbance cancelation and IMFE
frequency tracking.

Fig. 7. θ with IMFE frequency tracking.

to verify the results of the analysis. Further research is
needed to extend the algorithm for the rejection of distur-
bances containg multiple sinusoidal components, and cases
where the plant frequency response is unknown and time-
varying.
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