
Inverse Reinforcement Learning with Gaussian Process

Qifeng Qiao and Peter A. Beling

Department of Systems and Information Engineering

University of Virginia

Charlottesville, Virginia 22904

Email: qq2r, pb3a@virginia.edu

Abstract— We present new algorithms for inverse reinforce-
ment learning (IRL, or inverse optimal control) in convex
optimization settings. We argue that finite-space IRL can be
posed as a convex quadratic program under a Bayesian infer-
ence framework with the objective of maximum a posteriori
estimation. To deal with problems in large or even infinite state
space, we propose a Gaussian process model and use preference
graphs to represent observations of decision trajectories. Our
method is distinguished from other approaches to IRL in
that it makes no assumptions about the form of the reward
function and yet it retains the promise of computationally
manageable implementations for potential real-world applica-
tions. In comparison with an establish algorithm on small-scale
numerical problems, our method demonstrated better accuracy
in apprenticeship learning and a more robust dependence on
the number of observations.

I. INTRODUCTION

Imitation learning is a subfield of machine learning in

which the objective is to learn to mimic human behavior

solely through observation of the actions taken by the subject.

Technical approaches to imitation learning generally fall into

two broad categories [1]. One category contains behavioral

cloning approaches that attempt to use supervised learning to

predict actions directly from observations of features of the

environment. The other category consists of IRL approaches,

first introduced in [2], use training examples in the form of

decision trajectories defined in terms of a Markov decision

process (MDP) model of the underlying sequential decision

task. IRL algorithms attempt to discover the reward function

for the MDP solely on the basis of observations of a decision-

maker’s solution to that problem. This approach is appealing

because knowledge of the reward function offers the promise

that behavior can be predicted in domains unseen during the

period of observation.

A variety of approaches have been proposed for IRL. In

early work, Ng and Russel [2] advance the key idea of

choosing the reward function to maximize the difference

between the optimal and suboptimal policies, under the as-

sumption that the reward function can be approximated by a

linear combination of basis functions. A principal motivation

for considering IRL problems is the idea of apprenticeship

learning, in which observations of state-action pairs are used

to learn the policies followed by experts for the purpose of

mimicking or cloning behavior. By its nature, apprenticeship

learning problems arise in situations where it is not possible

or desirable to observe all state-action pairs for the deci-

sion maker’s policy. In recent approaches to apprenticeship

learning, partial policy observation is dealt with by searching

mixed solutions in a space of learned policies with the goal

that the accumulative feature expectation is near that of the

expert [3], [4]. In such approaches, the reward function is

approximated by a linear combination of features, which

in turn allows for linear approximation of value functions

with consequent simplification of the learning problem. In

such methods, algorithm performance is strongly influenced

by the modeler’s choice of features. Another algorithm for

IRL is policy matching in which the loss function penalizing

deviations from expert’s policy is minimized by tuning the

parameters of reward functions [5].

The assumption that the reward function can be linearly

approximated, which underlies a number of IRL approaches,

may not be reasonable for many problems of practical

interest. The ill-posed nature of the inverse learning problem

also presents difficulties. Multiple reward functions may

yield the same optimal policy, and there may be multiple

observations at a state given the true reward function. To

deal with these problems, we design algorithms that do

not assume linear structure for reward function, but yet

remain computationally efficient. In particular, we propose

new IRL models and algorithms that assign a Gaussian prior

on the reward function or treat the reward function as a

Gaussian process. This approach is similar in perspective to

that Ramachandran and Eyal [6], who view the state-action

samples from the expert as the evidence that will be used

to update a prior on the reward function, under a Bayesian

framework. Other approaches to IRL include game-theoretic

methods [7] and algorithms derived from linearly-solvable

stochastic optimal control [8].

The main contributions of our work are as follows. First,

we model the reward function in a finite state space using a

Bayesian framework with known Gaussian priors. We show

that this problem is a convex quadratic program, and hence

that it can be efficiently solved. Second, for the general

case that allows noisy observation of incomplete policies,

representation of the reward function is challenging and

requires more computation. We show that Gaussian process

is appropriate in that case. Our model constructs a preference

graph in action space to represent the multiple observations

at a state. Even in cases where the state space is much larger

than the number of observations, IRL via Gaussian processes

has the promise of offering robust predictions and results that

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 113

are relatively insensitive to number of observations.

It is worth mentioning here that the preference graph we

use in IRL is based on an understanding of the agent’s

preferences over action space. In the machine learning lit-

erature, there has been study of a learning scenario called

learning label preference that focuses on finding the latent

function that predicts preference relations among a finite set

of labels. This scenario is a generalization of some stan-

dard problems, such as classification and label ranking [9].

Considering the latent function values as a Gaussian process,

Chu and Ghahramani [10] observed that Bayesian framework

is an efficient and competitive method for learning label

preferences, and they proposed a novel likelihood function

to capture preference relations and the use of a Gaussian

process model for learning label preferences. We also use

Bayesian inference and build off several of the ideas in

[10] and related work, but our method differs from label

preference learning for classification and label ranking. Our

input data depends on states and actions in the context of an

MDP. Moreover, we are learning the reward that indirectly

determines how actions are chosen during the sequential

evolution of an MDP, while preference learning studies the

latent functions preserving preferences.

The rest of this paper is organized as follows: In Section

II, we introduce IRL preliminaries. In Sections III and IV,

we propose our principal models and algorithms. In Section

V, we describe the results of two small-scale numerical ex-

periments. Finally, in Section VI, we offer some concluding

remarks.

II. PRELIMINARIES

A finite-state, infinite horizon Markov decision process

(MDP) is defined as a tuple M = (S,A,P, γ, r), where S =
{s1, s2, · · · , sn} is a set of n states; A = {a1, a2, · · · , am} is

a set of m actions; P =
{
Paj

}m

j=1
is a set of state transition

probabilities; γ is a discount factor; and r is the reward

function which can be written as r(s, a), if we define it as

depending on state s and action a. For any a ∈ A and Pa is

a n × n matrix, each row of which, denoted as Pas, is the

transition probabilities upon taking action a in state s.

Consider a decision maker who selects actions according

to a policy π : S → A that maps states to actions. Define

the value function at state s with respect to policy π to be

V π(s) = E[
∑∞

t=0 γ
tr(st, π(st))|π], where the expectation

is over the distribution of the state sequence
{
s0, s1, . . .

}

given policy π, where superscripts index time. A decision

maker who aims to maximize expected reward will, at every

state s, choose the action that maximizes V π(s). Similarly,

define the Q-factor for state s and action a under policy

π, Qπ(s, a), to be the expected return from state s, taking

action a and thereafter following policy π. Given a policy π,

∀s ∈ S, a ∈ A, V π(s) and Qπ(s, a) satisfy

V π(s) = r(s, π(s)) + γ
∑

s′

Pπ(s)s(s
′)V π(s′)

Qπ(s, a) = r(s, a) + γ
∑

s′

Pas(s
′)V π(s′)

The well-known Bellman optimality conditions state that

π is optimal if and only if, ∀s ∈ S, we have π(s) ∈
argmaxa∈A Qπ(s, a) [11].

Given an MDP M = (S,A,P, γ, r), let us de-

fine the inverse Markov decision process (IMDP) MI =
(S,A,P, γ,O). The process MI includes the states, actions,

and dynamics of M , but lacks a specification of the reward

vector, r. By way of compensation, MI includes a set of

observations O that consists of state-action pairs generated

through the observation of a decision maker. We can define

the inverse reinforcement learning (IRL) problem associated

with MI = (S,A,P, γ,O) to be that of finding the reward

function r such that the observations O could have come

from an optimal policy for M = (S,A,P, γ, r). The IRL

problem is, in general, highly underspecified, which has

led researchers to consider various models for restricting

the set of reward vectors under consideration. In a seminal

consideration of IMDPs and associated IRL problems, Ng

and Russel [2] observe that, by the optimality equations, the

only reward vectors consistent with an optimal policy π are

those that satisfy the set of inequalities

(Pπ − Pa)(In − γPπ)
−1r ≥ 0, ∀a ∈ A, (1)

where Pπ is the transition probability matrix relating to

observed policy π, Pa denotes the transition probability

matrix for other actions, In is a n × n identity matrix, and

r is a reward vector that depends only on state. Note that

the trivial solution r = 0 satisfies these constraints, which

highlights the underspecified nature of the problem and

the need for reward selection mechanisms. Ng and Russel

[2] choose the reward function to maximize the difference

between the optimal and suboptimal policies, which can be

done using a linear programming formulation. In the sections

that follow, we propose the idea of selecting reward on

the basis of Maximum a posterior (MAP) estimation in a

Bayesian framework.

III. BAYESIAN IRL WITH GAUSSIAN DISTRIBUTION

Suppose that we have a prior distribution p(r) for the

rewards in an IMDP MI , along with a likelihood function

p(O|r). Then we can define the associated Bayesian IRL

problem to be that of finding the MAP estimate of r. In this

section we consider this problem for priors with a Gaussian

distribution, showing that the MAP estimation problem can

be formulated as a convex optimization problem. We assume

all the states, value functions, and transition probabilities can

be stored in the memory of a computer.

Specifically, let r ∈ ℜn be a random vector only depending

on state. The entry r(si) denotes the reward at i-th state.

We assign a Gaussian prior on the r: r ∼ N (µr,Σr). This

is a subjective distribution; before anything is known about

optimal policies for the MDP, the learner has characterized

a prior belief by µr with confidence by Σr.

One can envision two principal types of experiments for

collecting a set of observations O:

1) Decision Mapping: the observations are obtained by

finding a mapping between state and action; e.g., we

114

−3

−2

−1

0

1

2

−4

−3

−2

−1

0

1

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r1

r2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−3

−2

−1

0

1

2

−4
−3

−2
−1

0
1

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

r1

r2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Fig. 1. An example showing the Bayesian IRL given full observation of
the decision maker’s policy.

ask the expert which action he, she, or it would choose

at state s, and then repeat the process. Ultimately, we

will have a set of independent state-action pairs, O1 =
{
(sh, ah)

}t

h=1
.

2) Decision Trajectory: Given an initial state, we simulate

the decision problem and record the history of the

expert’s behavior, O2 =
{
s1, a1, s2, a2, · · · , st, at

}
.

Formally, we define an experiment E to be a triple

(O, r, {p(O|r)}), where O is a random vector with probabil-

ity mass function p(O|r) for some r in the function space.

Given what experiment E was performed and a particular

observation of O, the experimenter is able to make inference

and draw some evidence about r arising from E and O. This

evidence we denote by Ev(E,O). Consider observations

made using decision mapping O1 and decision trajectory O2,

with corresponding experiments E1 = (O1, r, {p(O1|r)})
and E2 = (O2, r, {p(O2|r)}). We would like to show that

Ev(E1,O1) = Ev(E2,O2), if the states in O1 and O2 are

the same. This fact implies that inference conclusions drawn

from O1 and O2 should be identical.

Making use of independence of state-action pairs in deci-

sion mapping, we calculate the joint probability density as

p(O1|r) =
t∏

h=1

p(sh, ah|r) =
t∏

h=1

p(sh)p(ah|sh, r).

Considering Markov transition in decision trajectory, we

write the joint probability density as

p(O2|r) = p(s1)p(a1|s1, r)
t∏

h=2

p(sh|sh−1, ah−1)p(ah|sh, r).

Finally, we get p(O1|r) = c(O1,O2)p(O2|r), where

c(O1,O2) is a constant. The above equation implies an

equivalence of evidence for inference of r between the use

of a decision map or a decision trajectory.

To simplify computation, we eliminate the elements in

likelihood function p(O|r) that do not contain r, which yields

p(O|r) =
∏t

h=1 p(a
h|sh, r). Further, we model p(ah|sh, r)

by

p(ah|sh, r) =

{

1, if Q(sh, ah) ≥ Q(sh, a), ∀a ∈ A

0, otherwise.
(2)

This form for the likelihood function is based on the assump-

tion each observed action is an optimal choice on the part

of the expert. Note that the set of reward values that make

p(ah|sh, r) equal to one is given by Eq. 1.

Proposition 1: Assume a countable state and control

space and a stationary policy. Then IRL using Bayesian MAP

inference is a quadratic convex programming problem.

Proof: By Bayes rule, the posterior distribution of

reward

p(r|O) =
1

(2π)n/2|Σr|1/2
exp

(

−
1

2
(r − µr)

TΣ−1
r (r − µr)

)

.

This posterior probability p(r|O) quantifies the evidence that

r is the reward for the observations in O. Using Eq. 1, we

formulate the IRL problem as

min
r

1

2
(r − µr)

TΣ−1
r (r − µr)

s.t. (Pa∗ − Pa)(In − γPa∗)−1r > 0, ∀a ∈ A (3)

rmin < r < rmax

Since the objective is convex quadratic and constraints are

affine, Problem 3 is a convex quadratic program.

Fig. 1 shows a Gaussian prior on reward and its posterior

after truncation by accounting for the linear constraints on

reward implied by observation O. Note the shift in mode.

The development above assumes the availability of a

complete set of observations, giving the optimal action at

every state. If necessary, it may be possible to expand

observations of partial policies to fit the framework. A naive

approach would be to state transition probabilities averaged

over all possible actions at unobserved states.

IV. GAUSSIAN PROCESSES FOR GENERALIZED IRL

In this section, we introduce a Gaussian process IRL

model. Our model involves the construction of a preference

graph, defined below, that is used to record the actions of

the expert under observation. The choice of one action over

the others at any given state will be governed by Q-function

values, if the expert acts optimally. Hence, these values may

be used to define preference relations among actions.

Definition 1 At state si ∈ S , ∀â, ǎ ∈ A, we define the

preference relation as: if Q(si, â) ≥ Q(si, ǎ), the action â is

weakly preferred to ǎ, denoted as â �si ǎ; strictly preferred,

denoted as â ≻si ǎ,if and only if Q(si, â) > Q(si, ǎ); â is

equivalent to ǎ, denoted as â ∼si ǎ, if and only if â �si ǎ
and ǎ �si â.

Definition 2 A preference graph over action space is

a directed graph showing preference relations among the

countable actions at a given state. At state si, a preference

graph ǫi consists of the node set Vi and edge set Ei. Each

node represents an action in A. Define a one-to-one mapping

ϕ : Vi → A. Each edge indicates the preference relation

between two nodes.

Suppose we are given a dataset of observations, denoted

as O = {S,G} = {si, ǫi}
n̂
i=1. Each pair (si, ǫi) consists

of two components: one is the input si that is a feature

vector constructed by a mapping φ : S → [0, 1]d; the other,

115

denoted as ǫi = (Vi, Ei), is a two layer preference graph over

actions observed at si. As shown in Figure 2, the node set

Vi can be divided into two subsets: a set of nodes in the top

layer to represent optimal actions, denoted as V+
i ; a set of

nodes in the bottom layer to represent other actions, denoted

as V−
i . The graph ǫi =

{
(u → v)ni

l=1, u ∈ V+
i , v ∈ V−

i

}
∪

{
(u ↔ v)mi

k=1, u, v ∈ V+
i

}
, where ni is the number of edges

denoting strict preference relations and mi is the number

of edges denoting equivalent relations. Consider action’s

(a) (b)

Fig. 2. Examples of preference graph

influence on the reward function. Here we define r as follows.

r = (ra1
(s1), ..., ra1

(sn̂)
︸ ︷︷ ︸

, . . . , ram
(s1), . . . , ram

(sn̂)
︸ ︷︷ ︸

)

= (ra1
, · · · , ram

) (4)

where raj
, ∀j ∈ {1, 2, · · · ,m}, denotes the reward only

associated with j-th action. Given r, a ranking function can be

naturally formulated as arrangement of the nodes in sorting

of the values of Q-functions. We write the ranking function

with respect to a node u at state s as Q(s, ϕ(u)).

A. Bayesian inference

Below we describe our models for prior information,

likelihood functions, and inference.

1) Gaussian prior: Consider raj
as a stochastic process.

Then raj
is a Gaussian process if, for any {s1, · · · , sn̂} ∈ S ,

the random variables
{

raj
(s1), · · · , raj

(sn̂)
}

are normally

distributed. We denote by kaj
(sc, sd) the function generating

the value of entry (c, d) for covariance matrix Kaj
, which

leads to raj
∼ N(0,Kaj

). Then the joint prior probability

of the reward is a product of multivariate Gaussian, namely

p(r|S) =
∏m

j=1 p(raj
|S) and r ∼ N(0,K). Thus r

is completely specified by the positive definite covariance

matrix K. As we assume the m latent processes are un-

correlated, the covariance matrix K is block diagonal in

the covariance matrices {K1, ...,Km}. In practice, we use a

squared exponential kernel function, written as kaj
(sc, sd) =

e
1

2
(sc−sd)

TMa(sc−sd)+σ2
aj
δ(sc, sd) where Maj

= κaj
In̂ and

In̂ is an identity matrix of size n̂. The function δ(.) is the

Kronecker delta.

2) Likelihood: Given an edge u → v, we adopt a variant

of the likelihood function proposed by Chu and Ghahramani

in [10] to capture the preference relation in that edge.

Specifically,

pideal(u → v|rϕ(u)(s), rϕ(v)(s))

=

{

1 if Q(s, ϕ(u)) > Q(s, ϕ(v))

0 otherwise,
(5)

where u and v are two nodes in the preference graph. By

Definition 2, these nodes can be mapped to two actions ϕ(u)
and ϕ(v) in space A. We write the Q-function as,

Q(s, a) = ra(s) + γP̂as(In̂ − γP̂a∗)−1Îr (6)

where P̂as and P̂a∗ are transition probabilities for the

observed n̂ states, and Î is a matrix with n̂ rows and

n̂ × m columns. The production of Î and r is a n̂ × 1
vector containing the reward for taking the optimal action

at each state. After assuming that the latent functions are

contaminated with Gaussian noise that has zero mean and

unknown variance σ2 [10], the likelihood function for l-th
strict preference edge in graph ǫi becomes

p(ul → vl)|rϕ(ul)(si) + δul
, rϕ(vl)(si) + δvl

)

=

∫ ∫

pideal(ϕ(ul) ≻ ϕ(vl)|rϕ(ul)(si), rϕ(vl)(si))

N(δu, 0, σ
2)N(δv, 0, σ

2)dδudδv = Φ(zli) (7)

where zli = Q(si,ϕ(ul))−Q(si,ϕ(vl))√
2σ

, N(δu, 0, σ
2) denotes a

Gaussian distribution for δu, and Φ(z) =
∫ z

−∞ N(γ, 0, 1)dγ.

The l-th edge (ul → vl) in preference graph ǫi denotes

the strict preference relation ϕ(ul) ≻ ϕ(vl). Consequently,

we have p(ϕ(ul) ≻si ϕ(vl)|r) = Φ(zli). With a two-layer

preference graph, we are only interested in the directed edges

between two layers as well as the equivalent relation in the

top layer. We propose a new likelihood function for the k-th

equivalent preference edge as follows,

p(uk ↔ vk|r) ∝ e−
1

2
(Q(si,ϕ(uk))−Q(si,ϕ(vk)))

2

(8)

where uk, vk ∈ V + and the k-th edge (uk ↔ vk) denotes the

equivalent relation ϕ(uk) ∼si ϕ(vk). We have p(ϕ(uk) ∼si

ϕ(vk)|r) = p(uk ↔ vk|r) that is shown in Eq.8. Then we

compute the likelihood function for all observed preference

graphs using the following equation,

p(G|S, r, θ) =

n̂∏

i=1

p(ǫi|si, r) =

n̂∏

i=1

ni∏

l=1

Φ(zli)

exp(

n̂∑

i=1

mi∑

k=1

−
1

2
(Q(si, ϕ(uk))−Q(si, ϕ(vk)))

2). (9)

We put all the unknown parameters into a hyper-parameter

vector θ =
{
κaj

, σaj
, σ

}
, and then adjust the hyper-

parameters on the basis of maximum a posterior estimation.

3) Posterior inference: Here we adopt a hierarchical

model. At the lowest level are function values encoded as a

parameter vector r. At the top level are hyper-parameters in

θ controlling the distribution of the parameters at the bottom

level. Inference takes place one level at a time. At the bottom

level, the posterior over function values are given by Bayes’

rule as p(r|S,G, θ) = p(G|S, θ, r)p(r|S, θ)/p(G|S, θ).
The posterior combines the information from the prior

and the data, which reflects the updated belief about r after

observing the decisions. By Eq. 4, our task is to minimize

116

the negative log posterior equation U(r), which is

U(r) =
1

2

m∑

j=1

rTaj
K−1

aj
raj

+
n̂∑

i=1

mi∑

k=1

1

2
(

m∑

j=1

ρikaj
raj

)2

−
n̂∑

i=1

ni∑

l=1

lnΦ(zli). (10)

Given the k-th equivalent relation ϕ(uk) ∼ ϕ(vk), let ∆k ,

γ(P̂φ(uk)si − P̂φ(vk)si)(In̂ − γP̂a∗)−1, then we have

ρikaj
= αi[1(aj = φ(uk))− 1(aj = φ(vk))] +∆k Îaj

where Îaj
is a block matrix of Î = [Îa1

, Îa2
, · · · , Îam

] and

αi is a 1× n̂ vector whose entry αi(i) = 1, and αi(−i) = 0.

The notation 1(.) is an indicator function.

Remark Minimizing Eq.10 is a convex optimization prob-

lem. The proof can be found in our supplemental report [12].

At the minimum of U(r) we have

∂U

∂raj

= 0 ⇒ r̂aj
= Kaj

(∇ logP (G|S, r̂, θ)), (11)

where r̂ = (r̂1, · · · , r̂aj
, · · · , r̂m). In Eq.11, we can use

Newton’s method to find the maximum of U with the

iteration

rnewaj
= raj

− (
∂2U

∂raj
∂raj

)−1 ∂U

∂raj

.

B. Model selection

Model selection is the process of choosing a covariance

function for a Gaussian process. The process can be consid-

ered to be training of a Gaussian process [13]. At the top

level, we can optimize the hyper-parameters by maximizing

the posterior over these hyper-parameters. The posterior

p(θ|G,S) is given by p(θ|G,S) = p(G|S, θ)p(θ)/p(G|S),
where the normalizing constant can be omitted for sim-

plifying the optimization problem. If the prior distribution

of hyper-parameters has no population basis, we assign

the non-informative prior density to θ. Optimization over θ
becomes the problem of maximizing the marginal likelihood

p(G|S, θ). We approximate the integral of the marginal

likelihood p(G|S, θ) using a Laplace approximation local

expansion around the maximum, which is written as

p(G|S, θ) ≈ p(G|S, r̂, θ)× p(r̂|θ)δr|S . (12)

where δr|S = | − ∇∇ lnP (r|G,S, θ)|−
1

2 is the posterior

uncertainty in r, which is known as the Occam factor,

automatically incorporating a trade-off between model fit

and model complexity. As the number of data increases, the

approximation is expected to become increasingly accurate.

The marginal likelihood can be further written as

log p(G|S, θ) = −U(r̂)−
1

2
log |In̂ +KΠ| , (13)

where r̂ is the MAP estimation in Eq.11 and Π is the second

derivative matrix of the sum of the second and third part in

Eq. 10. Now we can find the optimal hyper-parameters by

maximizing Eq.13.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 (number of observed trajectories)/5

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(a) GPIRL accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(number of observed trajectories)/5

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

(b) LIRL accuracy

Fig. 3. Average accuracy as a function of the number of observed decision
trajectories, for GridWorld experiments.

C. Posterior predictive reward

When the observed state-action pairs are limited, e.g.

in the large state space or infinite state space, how to

predict the reward at new state is desirable. Our IRL with

Gaussian process provides a probabilistic model to predict

reward on new coming state s∗, which is a Gaussian model

p(r∗|G,S, s∗, θ) with the following mean function

E(r∗aj
|G,S, s∗, θ) = kaj

(S, s∗)T (Kaj
+ σ2In̂)

−1r̂aj

and covariance function

cov(r∗aj
|G,S, s∗, θ) = kaj

(s∗, s∗)

−kaj
(S, s∗)T (Kaj

+ σ2In̂)
−1kaj

(S, s∗),

where kaj
(S, s∗) is the vector of covariance between the test

point and training points for the covariance function relating

to the action aj ∈ A.

V. EXPERIMENTS

In this section, we report on a simple GridWorld exper-

iment in which an agent starts from the a square of the

grid and attempts to navigate to the goal square, with the

possibility of encountering obstacles that block movement

to certain squares. The agent is able to take five actions:

remaining in the current square or moving in one of the

four cardinal directions. Each movement action results in

movement in the intended direction with probability 0.65,

movement in an unintended direction with probability 0.2,

and failure to move with probability 0.15.

We compared three algorithms: our convex programming

method from Section III (CPIRL), our Gaussian process

method from Section IV (GPIRL), and the linear approxima-

tion method in [2] (LIRL). Given observation of a complete

policy, each of the algorithms was successful in finding a

reward vector that yields an optimal policy identical to that

observed. For each of the reward vectors returned by the

algorithms, we recorded the amount of computation time

needed to find a best policy using reinforcement learning.

Table I shows the average of these time over 50 simulations.

Notably, reinforcement learning converges more quickly with

reward vectors returned by CPIRL and GPIRL than with

those returned by LIRL. We hypothesize our methods tend

to shape reward, providing additional feedback to the agent

and leading to an improvement in learning rate.

117

0 50 100 150 200 250 300
100

200

300

400

500

600

700

800

900

1000

s
te

p
s
 t
o
 g

o
a
l

episode

true reward

predicted reward

(a) 60-state discretization

0 50 100 150 200 250 300
100

200

300

400

500

600

700

800

900

1000

episode

s
te

p
s
 t
o
 g

o
a
l

true reward

predicted reward

(b) 120-state discretization

Fig. 4. Solutions to the hill climbing problem based off true reward (blue)
and reward recovered from GPIRL (red), for two levels of discretization.

Fig. 3 provides the basis for an accuracy comparison of

GPIRL and LIRL for experiments in which only partial

observations were available for reward learning. Accuracy is

calculated to be the fraction of runs in which the apprentice

is able to achieve the teacher’s goal state. The process of

computing accuracy includes: 1) generating some GridWorld

problems and sampling the decision trajectories from the

teacher’s demonstration; 2) inferring the reward function

using GPIRL and LIRL; 3) generating 1000 new GridWorld

problems with random initial state and solving these prob-

lems by applying reinforcement learning using the reward

output by IRL; 4) comparing the results of the GPIRL and

LIRL apprentices with the teacher. If the apprentice reaches

the teacher’s goal state, we consider that trial a success for

the apprentice. As can be seen in Fig. 3, the accuracy of

GPIRL is higher than that of LIRL, especially when the

number of observations is small. Additionally, GPIRL has

clearly lower variance in accuracy.

TABLE I

TIME(SEC) TO FIND THE APPRENTICE POLICY

GridWorld Size LIRL CPIRL GPIRL

10x10 2.61 2.06 1.20

20x20 20.05 15.75 9.32

30x30 75.12 64.30 35.11

We also performed an experiment based on a simulation

of an under-powered car attempting to drive out of a U-

shaped valley. In this simulation, the car lacks enough power

to climb the valley slopes from a standstill. Instead, it must

first reverse up a slope in order to accumulate energy that

will help it rush up the opposite slope. We choose the car’s

position and velocity as state features, discretizing those

naturally continuous quantities. To test GPIRL’s ability to

predict the reward on unseen states, we sampled only half the

discretized states as the observation data for GPIRL. Given a

state space with 120 states, for example, we would observe

behavior in only 60 states. Figure 4 shows the number of

steps needed to escape the valley for a range of starting

conditions, or episodes, for policies learned from the true

reward (blue) and from the reward returned by GPIRL (red).

The results in the figure suggest that GPIRL is able to

effectively recover the reward with incomplete observations,

since the solver, using the reward predicted by GPIRL, has

a performance on par with that of the teacher, using true

reward.

VI. CONCLUSIONS

We propose new IRL algorithms in the domain of convex

programming. To deal with the IRL problems with ill-posed

nature in large (or even infinite) state space, we model the

reward using Gaussian process and interpret the observation

of state-action space using preference graphs. Our posterior

prediction method can estimate the reward at unobserved

new coming states, which is promising for problems with

large state space. Numerical experiments suggest that our

method is able to find the reward approaching the true

underlying reward with fewer observations than are needed

with standard approaches. We will continue our research on

IRL with Gaussian process in continuous space.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. EEC-0827153.

REFERENCES

[1] Nathan Ratliff, Brian Ziebart, Kevin Peterson, J. Andrew Bagnell,
Martial Hebert, Anind K. Dey, and Siddhartha Srinivasa. Inverse
optimal heuristic control for imitation learning. In Proc. AISTATS,
pages 424–431, 2009.

[2] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforce-
ment learning. In Proc. 17th International Conf. on Machine Learning,
pages 663–670. Morgan Kaufmann, 2000.

[3] Peter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In Proc. 21st International Conf. on Machine

learning, page 1. ACM, 2004.
[4] Umar Syed, Michael Bowling, and Robert E. Schapire. Apprenticeship

learning using linear programming. In Proc. 25th international Conf.

on Machine learning, pages 1032–1039. ACM, 2008.
[5] Gergely Neu and Csaba Szepesvari. Apprenticeship learning using

inverse reinforcement learning and gradient methods. In Proc. Uncer-

tainty in Artificial Intelligence, 2007.
[6] Ramachandran Deepak and Amir Eyal. Bayesian inverse reinforce-

ment learning. In Proc. 20th International Joint Conf. on Artificial

Intelligence, 2007.
[7] Umar Syed and Robert E. Schapire. A game-theoretic approach to

apprenticeship learning. In Advances in Neural Information Processing

Systems, pages 1449–1456. MIT Press, 2008.
[8] Krishnamurthy Dvijotham and Emanuel Todorov. Inverse optimal

control with linearly-solvable mdps. In Proc. 27th International Conf.

on Machine learning. ACM, 2010.
[9] J. Fürnkranz and E. Hüllermeier. Preference learning. In Künstliche

Intelligenz, 2005.
[10] Chu Wei and Ghahramani Zoubin. Preference learning with gaussian

processes. In Proc. 22th Iinternational Conf. on Machine learning,
pages 137–144. ACM, 2005.

[11] Bellman R. Dynamic programming. Princeton University Press, 1957.
[12] Qifeng Qiao and Peter A. Beling. Inverse reinforcement

learning with gaussian process (supplemental materials), 2010.
http://people.virginia.edu/∼qq2r/IRLACCsupplements.pdf.

[13] Carl Edward Rasmussen and Christopher K.I.Williams. Gaussian

Processes for Machine Learning. MIT Press, 2006.

118

