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Abstract— Communication networks provide a larger flex-
ibility with respect to the control design of large-scale in-
terconnected systems by allowing the information exchange
between the local controllers of the subsystems. The use of
communication networks comes, however, at the price of non-
ideal signal tranmission such as time delay which is a source of
instability and deteriorates the control performance. This paper
introduces an approach for the design of the communication
topology for the distributed control of large-scale interconnected
systems in order to optimize the whole system’s performance
in the presence of constant time delay. First, a decentralized

control law that stabilizes the overall interconnected system
is designed. Then the performance is improved by designing
the distributed control law, i.e. allowing the controller of the
subsystems to exchange information, by considering the time
delay in the networks. As a novelty in this paper, the design
of the communication topology between the controllers is also
considered. The problem is formulated as a mixed-integer
optimization problem. Furthermore, a method based on matrix
perturbation theory is discussed to design the topology which
also captures the relation between the time delay, controller
gain and performance of the overall system. In addition, it is
shown that the proposed strategy also guarantees the stability
of the overall system under the permanent communication link
failure. The results are validated through a numerical example.

I. INTRODUCTION

The design of control algorithms for complex dynamical

systems has become a vibrant part of research due to the

wide applicability and impact with applications ranging from

smart power grids, water distribution and traffic systems to

large arrays of micro-electro-mechanical systems (MEMS),

formation of vehicles, and sensor-actuator networks.

The key challenge for the control of large-scale dynamical

systems is the complexity of the overall system in terms

of the number of subsystems and their interconnections.

First results addressing the complexity of large-scale sys-

tems have been achieved within the decentralized control

framework developed since the seventies, see, e.g. [1] for a

nice overview. Typically, the performance of decentralized

control approaches is degraded compared to centralized

control approaches as only the local subsystem information

is used for the control.

Digital communication networks allow the communication

between the subsystems and thereby provide a larger flexibil-

ity with respect to the control design: Instead of only local

subsystem information also neighboring subsystems’ states

can be used for the control. These novel approaches are also
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known under the notion of distributed control [2]. As a result,

typically a better performance is achieved compared to the

standard decentralized approach [3], [4]. Another merit of

using information from the neighboring subsystems is that

it can be used to stabilize the interconnected system when

no stabilizing decentralized control law exists, for example

in the presence of decentralized fixed modes (DFM) in the

system [5].

Most of the works in the known literature for distributed

systems deal with the problem of stabilization of large-scale

systems, e.g. [6], [7]. An approach which combines dis-

tributed control and optimization can be found in [8] where

the idea of dual decomposition is used for decomposition and

distributed optimization of feedback systems. Specifically,

distributed optimization is used to iteratively update local

controllers of a distributed system based on a gradient ap-

proach. The combination of both methods, i.e. optimization

and feedback control thereby results in a better system’s

performance and a guaranteed stability. All of the works

mentioned above assume that the communication topology

is given a priori. The introduction of a communication

network, however, provides an additional degree of freedom

for the structural design of the distributed controller in terms

of the communication topology. The problem of designing

communication topology has been studied in the area of

sensor networks where the goal is to minimize the sensors’

power consumption while maintaining the connectivity of the

network, e.g. in [9].

The communication topology also plays an important role

in the performance and stability of the controlled overall

system as indicated by several results especially in the

area of multi-agent systems. For example, in [10] it is

shown that the connectivity of the agents could improve the

convergence rate of the whole system to attain a desired

behavior while decreasing the robustness of the systems to

the time delay. The authors in [11] present the design of

the topology of a random sensor network to maximize the

convergence rate of the consensus algorithm. The authors

in [12] consider the synchronization of identical networked

systems by introducing a distributed controller where the

controller gain and structure are optimized subject to a

given constraint. Furthermore, the authors in [13] present

an approach to design both the controller gain and the

communication topology between the controllers thereby

exploring the additional degrees of freedom offered by the

communication network. The problem is formulated as a

mixed integer optimization problem. Moreover, the approach

also guarantees the stability, i.e. increases the robustness of
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the overall system in the presence of permanent communi-

cation link failures. However, all of the works mentioned

above assumed an ideal communication network. The use

of communication networks comes, however, at the price

of non-ideal signal transmission: the data sent through the

networks experience time delay or suffer transmission data

losses which is a source of instability and deteriorates the

control performance [14].

In this paper, we consider the design of communication

topology between the controllers of interconnected system in

the presence of time delay in the communication networks.

The time delay is assumed to be identical and constant for all

communication links. The goal is to improve the performance

of the interconnected system and in addition increase the

robustness w.r.t. the permanent link failures. In order to

achieve the goals, we extend our design approach in [13]

to incorporate constant and identical time delay. First, we

design the decentralized control law to stabilize the overall

interconnected system. Then, we improve the performance

of the systems by designing a controller which uses the state

information from other subsystems under given communica-

tion network constraints and network induced time delay. As

a performance metric we consider the convergence rate.

The remainder of the paper is organized as follows. The

problem formulation is described in Section II. The design

approach for ideal communication networks is reviewed in

Section III. The design of the distributed control law in order

to improve the performance of the systems under a given time

delay is considered in Section IV where the problem is for-

mulated as a mixed integer optimization problem. A method

based on the matrix perturbation theory is discussed in

Section V. The proposed approach is demonstrated through

a numerical example in Section VI.

II. PROBLEM FORMULATION

Consider an interconnected system of N heterogenous

linear time invariant (LTI) subsystems described by the

following differential equations

ẋi = Aixi + ∑
j∈Ni

Ai jx j + Biui, (1)

where i = 1,2, ...,N denotes the i−th subsystem, xi ∈ R
n×1,

ui ∈ R
p are the state of subsystem i and the control in-

put to subsystem i, and Ai,Ai j ∈ R
n×n, Bi ∈ R

n×p. The

term ∑ j∈Ni
Ai jx j represents the physical interconnection be-

tween the subsystems where Ni is the set of subsystems to

which subsystem i is physically connected. The intercon-

nected system described above can be found for example in

power grids. Here we consider a state feedback controller

for which the control law can be written as

ui = Kixi + ∑
j∈Gi

Ki jx j(t − τ), (2)

which is known as distributed control law since the controller

for each subsystem does not only depend on its own states

but also the states of the other subsystems. Here Gi represents

a set of subsystems to which controller i could communicate,

local controller

subsystem

interconnected system

distributed controller layer

τ τ

τ
τ

τ

Fig. 1. Interconnected system with distributed control architecture. The
communication network has a constant and identical time-delay τ .

i.e. exchange information. In this paper, we consider a con-

stant and identical time delay τ for all communication links.

The interconnected system with its distributed controller is

illustrated in Fig. 1. If Ki j = 0,∀i and ∀ j ∈ Gi, then the

control law is called a decentralized control law.

In this paper, first we address the following practically

relevant question: given a pre-designed distributed controller

under a given communication network constraint and without

consideration of time delay, what is the effect of time delay

on the system performance? Specifically, we would like to

investigate up to which time delay value a communication

network is still beneficial in terms of the convergence rate

of the overall system. Next, given a constant, identical time

delay for all communication links, we aim at designing the

distributed control (2), if any, such that the performance of

the whole system is improved and the stability of the system

is guaranteed. Moreover, as an additional goal, the robustness

of the interconnected system w.r.t. the permanent link failures

has to be guaranteed. In order to achieve the goals, we extend

our approach in [13] to incorporate constant and identical

time delay. First we design a decentralized control law that

guarantees the stability of the interconnected system. The

performance of the systems is then improved by designing a

distributed control law, i.e. the second term of (2).

III. DISTRIBUTED CONTROL DESIGN

In this section we review the procedure for designing

the distributed controller together with the communication

topology proposed in [13] in order to improve the perfor-

mance of the systems without consideration of time delay.

As a performance metric, the convergence rate of the overall

system is considered.

A. Decentralized control design

As a design strategy, first we design the decentralized

control law using the standard methods, e.g. [6] that sta-

bilizes the interconnected system (1), that is, we consider

the decentralized controller synthesis for the interconnected

system (1) using the standard method with the control input

given by

ũi = Kixi. (3)

Remark 1: It is assumed that all the decentralized fixed

modes, if any, are in the open left half plane. The problem

with unstable DFMs is the subject of future works.
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Let Ai + BiKi = Āi. The closed loop expression of the

interconnected system (1) with the decentralized control law

can be written as

ẋ = Adecx, x(t0) = x0, (4)

where x = [x1,x2, · · · ,xN ]T and

Adec =











Ā1 A12 · · · A1N

A21 Ā2 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ĀN











∈ R
nN×nN

.

It is well known that the solution of (4) is given by

x(t) = eAdec(t−t0)x0 and the state norm satisfies

‖x(t)‖ ≤ e‖Adec‖(t−t0)‖x0‖,∀t ≥ t0, (5)

and

‖x(t)‖ ≤ eRe{λmax}(t−t0)‖x0‖,∀t ≥ t0, (6)

where Re{λmax} represents the real part of the largest

eigenvalues of Adec.

B. Distributed controller design

Assume that the decentralized control law stabilizing the

interconnected system (1), that is the first term of (2), has

been designed. Next we will improve the performance of

the systems for a certain performance metric by designing

the distributed controller, that is the feedback gain and

the communication topology under a given communication

constraint without consideration of time delay, i.e. τ = 0.

The objective is to improve the performance of the overall

system, i.e. increase the convergence rate by designing the

second term of (2) given by the following controller

ûi = ∑
j∈Gi

di jKi jx j, (7)

where di j ∈ {0,1} is a binary number that shows the pos-

sibility to perform the state information exchange between

controller i and j, that is di j = 1 means that a communication

link is added between controllers i and j and vice versa.

The new closed loop expression of (1) with the addition of

controller (7) is given by

ẋ = Āx, x(t0) = x0, (8)

Ā =











Ā1 A12 · · · A1N

A21 Ā2 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ĀN











+











0 Ā12 · · · Ā1N

Ā21 0 · · · Ā2N

...
...

. . .
...

ĀN1 ĀN2 · · · 0











,

Ā = Adec + Adist.

The matrix Adec is the closed-loop system with the decen-

tralized control, thus, the matrix Adec is stable. The term Āi j

is defined as Āi j = di jBiKi j . Furthermore, we assume that not

arbitrary many links can be added, i.e. the number is limited

by an upper bound induced by the communication constraint

∑
1≤i≤ j≤N

γi jdi j ≤ c, (9)

where c > 0 is the total cost constraint on the communication

network, and γi j represents a cost to establish a link between

subsystem i and j. This cost is typically related to factors

such as the distance between the subsystems.

The problem can then be formulated as finding the gain

and topology of the distributed controller such that the

convergence rate of the overall interconnected system is

optimized under a given communication constraint. The

distributed controller is given by the following proposition.

Proposition 3.1: [13] Consider an interconnected system

(8). If there exists a solution to the optimization problem

minimize
Ki j ,di j

Re{λmax(Ā)}

subject to Re{λmax(Ā)} < Re{λmax(Adec)},

∑
1≤i≤ j≤N

γi jdi j ≤ c,

di j ∈ {0,1},

(10)

then the convergence rate of the interconnected system

with the distributed control law (2) is higher than with the

decentralized control law (3) and the whole system remains

stable.

The optimization problem (10) is a mixed integer optimiza-

tion problem since it is solved with respect to both the

feedback gain and the communication topology of the dis-

tributed controller. The optimization (10) can be solved using

well-known techniques such as relaxation and decomposition

techniques or cutting planes approaches [15].

Remark 2: Since the first term of (2) is designed in

advance and not part of the decision variables of the

optimization problem (10), the performance may not be

optimal. However, as will be shown later, the stability of the

overall system is guaranteed in the presence of permanent

communication link failures.

IV. TOPOLOGY DESIGN UNDER TIME DELAY

In this section, we consider a more realistic scenario by

considering a non-ideal communication networks where the

information exchange is afflicted by time delay τ which is

assumed to be constant and identical for all communication

links. From (2), the closed loop expression (1) with constant

and identical time delay τ can be written as

ẋ(t) = Adecx(t)+ Adistx(t − τ),
x(θ ) = x0, ∀θ ∈ [−τ,0].

(11)

Before proceeding, we recall the following theorem on the

exponential stability of time delay system [16]. For the sake

of convenience, we adapt the notation in [16] into ours.

Consider the time-delay systems (11) utilizing the follow-

ing transformation

z(t) = eαtx(t), (12)

where α > 0 is the delay decay rate, that is the convergence

rate of time-delay system (11), to transform (11) into

ż(t) = (Adec + αI)z(t)+ Adiste
ατ z(t − τ). (13)
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Theorem 4.1: [16] Consider the time-delay system (13)

with delay time τ > 0 and delay decay rate α . This system is

exponential stable with decay rate α if there exists symmetric

and positive-definite matrices P > 0,Q > 0 such that the

following inequality holds

S1 =

[

ÂT P+ PÂ+ τQ τeατ ÂT PAdist

τeατ AT
distPÂ −τQ

]

< 0, (14)

where Â = Adec + αI + Adiste
ατ .

A. Performance-guaranteed time-delay

Since time delay deteriorates the performance of the

overall system in general, first we address the following

practically relevant question: given a pre-designed distributed

controller under a given communication network constraint

and without consideration of time delay using the approach

in Section III, up to which time delay value a communication

network is still beneficial in terms of the convergence rate

of the overall system. In this paper, we refer to the corre-

sponding time delay as a performance-guaranteed time delay

bound. Specifically, the performance-guaranteed time delay

bound τmax ∈ [0,∞) is defined as the maximum time delay

maxτ

s.t. α ≥ |Re{λmax(Adec)}| (15)

where Re{λmax(Adec)} denotes the decay rate of the inter-

connected system with the decentralized control law.

From Theorem 4.1 and (15), the performance-guaranteed

time delay bound τmax is given by the solution to the

following optimization problem

maximize
τ

τ

subject to S1 < 0 with α = |Re{λmax(Adec)}|.
(16)

We set α = |Re{λmax(Adec)}| which is the convergence rate

of the overall system with the decentralized control law (3)

since we want the convergence rate by using the distributed

control law (2) to be higher than with the decentralized

one. In particular, the performance-guaranteed time delay

bound can be calculated by increasing τ until the positive

definiteness conditions of P,Q are violated.

Remark 3: A less conservative result on the performance-

guaranteed time delay bound τmax can be achieved using the

result on the exponential stability of time-delay system, e.g.

[17].

B. Distributed controller design

Next, we consider the following problem: given a constant,

identical time delay τ for all communication links, design the

distributed control law (2), if any, such that the performance

of the whole system is improved and the stability of the

system is guaranteed. Combining Theorem 4.1 and Proposi-

tion 3.1, the distributed controller design is given by

Proposition 4.1: Consider an interconnected time delay

system (11) with a given constant and identical time delay τ
for all communication links. If there exists a solution to the

optimization problem

minimize
Ki j ,di j

α

subject to S1 < 0,

α > |Re{λmax(Adec)}|,

∑
1≤i≤ j≤N

γi jdi j ≤ c,

di j ∈ {0,1}.

(17)

then the convergence rate of the interconnected time delay

system (11) with the distributed control law (2) is higher than

with the decentralized control law (3) and the whole system

remains stable.

The proof is straightforward from Theorem 4.1 and Propo-

sition 3.1.

Remark 4: The first constraint in (17) is not an LMI

problem due to the nonlinear terms PÂ and ÂPAdist in (14).

However, the optimization problem can be solved using

numerical BMI techniques.

Assumed that γi j = 1. The complexity of the design

approach for a given communcation links c in terms of

the number of combinations that has to be carried out is

given by
(

cmax

c

)

= cmax!
c!(cmax−c)! where cmax = N

2
(N − 1). Thus,

it may become very hard to solve (17) for large number of

subsystems. Next we propose a method in order to add the

communication link based on matrix perturbation theory.

V. WHERE TO ADD THE COMMUNICATION LINKS?

In this section we present a method to select which

controllers should communicate in order to improve the

performance of the overall system for a given number of

available communication links. The idea is to use matrix

perturbation theory in order to investigate how the structure

of the distributed controller influences the largest eigenvalue

of the overall system. Furthermore, for the sake of simplicity,

we constrain ourselves for the remainder of this paper by the

following assumptions:

A1 The subsystems are scalar, i.e. xi ∈ R

A2 The number of communication link c = 1 with γi j = 1

A3 The communication is bidirectional

A4 The distributed controller gain K is fixed and equal for

all subsystems which results in AT
dist = Adist.

We introduce assumption A4 since we are interested in

the design of the topology and in order to investigate the

influence of the controller gain on the overall system perfor-

mance. Moreover, the approach described in the following

can also be extended to the case when xi ∈ R
n and for

multiple communication links, i.e. c > 1 which however

results in a more complicated formulation.

The real part of the rightmost eigenvalues of (11), i.e.

Re{λmax} determines the decay rate of the whole intercon-

nected system. Thus, we are interested in the minimization

of the real part of the rightmost eigenvalue λmax. In this

section, the eigenvalue sensitivity is analyzed in order to

investigate how the structure of the distributed control law

affects λmax of (11). Eigenvalue sensitivity gives an insight
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on the behavior of the eigenvalues of a matrix when the

matrix is perturbed. Moreover, the magnitude of the eigen-

value sensitivity informs about the size of the eigenvalue

displacement in the complex plane. The eigenvalues of (11)

are equivalent to the roots of the characteristic equation

det(λ I −Adec −Adist eλ τ) = 0. (18)

Note that eq. (18) is a nonlinear eigenvalue problem and has

infinitely many solutions. However, the number of eigen-

values to the right of any vertical line, Re(λ ) ≥ r, with

r ∈R, is finite, and hence −∞ is the only accumulation point

for the real parts of the eigenvalues [20]. First we recall

the sensitivity analysis for the nonlinear eigenvalue problem

[18]. Consider a nonlinear eigenvalue problem depending on

a parameter h,Gh. Hence the sensitivity of a solution to the

nonlinear eigenvalue problem λ , which is the generalization

for the linear case is given by [18]

λ ′(h) =
v∗

dGh
dh

(λ )y

v∗(I − dGh

dλ (λ ))y
, (19)

where v and y are the left and right eigenvector respec-

tively with normalization v∗y = 1 where v∗ is the complex

conjugate transpose of v. Since the goal is to find the

communication topology such that the convergence rate of

the overall system (11) with the distributed control law is

higher than the one with the decentralized controller, we

would like to find the structure of the perturbation to the

rightmost eigenvalues λmax of (11) such that its sensitivity

is negative and the magnitude is maximum. Note that the

rightmost eigenvalues of (18) can be computed numerically

using, e.g. [19]. The function GK(λ ) is given as

GK(λ ) = Adec + Adist(K)e−τλ
. (20)

The sensitivity of the rightmost eigenvalues of (11) is

Lemma 5.1: Consider an interconnected system (11) un-

der assumption A1-A4. The sensitivity of the rightmost

eigenvalue λmax w.r.t. the structure of the distributed control,

i.e. the communication topology is given by

λ ′
max =

(v∗ri
yr j

+ v∗r j
yri

) sign(K)

eτλmax + Kτ(v∗ri
yr j

+ v∗r j
yri

)
(21)

where vr,yr are the left and right eigenvector w.r.t. λmax.

Proof: Assume that the perturbation K works on Āi j

and Ā ji of Adist. From (19) with GK(λ ) given by (20), the

sensitivity of λmax can be written as

λ ′
max(K) =

v∗r
dGK
dK

(λmax)yr

v∗r (I −
dGK

dλmax
(λmax))yr

, (22)

with
[

dGK
dK

]

i j
=

[

dGK
dK

]

ji
= sign(K)e−τλmax and zero other-

wise. Moreover,
[

dGK

dλmax

]

i j
=

[

dGK

dλmax

]

ji
= Kτe−τλmax and zero

otherwise. After some straightforward computation, we have

λ ′
max =

e−τλmax(v∗ri
yr j

+ v∗r j
yri

) sign(K)

∑yri
v∗ri

+ Kτeτλmax(v∗ri
yr j

+ v∗r j
yri

)
. (23)

Since v∗r yr = 1 and after some calculation, we have

λ ′
max =

(v∗ri
yr j

+ v∗r j
yri

) sign(K)

eτλmax + Kτ(v∗ri
yr j

+ v∗r j
yri

)
. (24)

As can be observed from (21), the sensitivity of the rightmost

eigenvalue depends on the distributed controller gain K,

time delay τ and also the elements of the eigenvectors

corresponding to the rightmost eigenvalue λmax. When the

rightmost eigenvalue is complex, only the movement along

the real axis, i.e. Re{λ ′
max} is needed to be considered. The

communication link is then added according to

Proposition 5.1: Consider an interconnected system (11)

under assumption A1-A4 with a constant time delay τ .

The convergence rate of the overall system with distributed

control law (2) is maximized by adding a communication

link between subsystem i and j which is the solution to

maximize
i, j

|Re{λ ′
max}|

subject to Re{λ ′
max} < 0.

Proof: Since we want to have the real part of the right-

most eigenvalue of (11) to be smaller than the one with the

decentralized control law, it is required that Re{λ ′
max} < 0.

Moreover, the movement of the real part of the perturbed

rightmost eigenvalue has to be maximum in order to have

the highest convergence rate of (11).

Next we have the following result on the stability in the

presence of permanent communication link failures.

Corollary 5.1: The stability of the interconnected

system (11) is guaranteed under any combination of

permanent communication link failures.

Proof: Since the convergence rate of the

interconnected system (11) with distributed control

law (2) is higher than with the decentralized control

law (3), we have Re{λmax(Ā)} <Re{λmax(Adec)} < 0.

Furthermore, due to the local continuity of each

eigenvalue w.r.t. the paramater [20], the rightmost

eigenvalue of the overall system under any combination

of communication link failures, i.e. Re{λmax(Ã)} will be

Re{λmax(Ā)} < Re{λmax(Ã)} < Re{λmax(Adec)} < 0.

VI. NUMERICAL EXAMPLE

We consider an interconnected system consisting of 10

scalar subsystems as shown in Fig. 2. Assumed that γi j = 1,

time delay τ = 0.01 and the distributed control gain is set

to 1. The closed loop system with the decentralized control

law, i.e. Adec in eq. (4) is given by
























−5 0 0 3 4 0 0 0 0 0
0 −25 6 0 3 0 0 0 0 0
0 6 −3 1 0 0 2 0 0 0
3 0 1 −10 0 0 0 0 0 0
4 3 0 0 −6 1 0 0 0 0
0 0 0 0 1 −7 0 0 0 8
0 0 2 0 0 0 −9 0 1 0
0 0 0 0 0 0 0 −8 2 5
0 0 0 0 0 0 1 2 −15 0
0 0 0 0 0 8 0 5 0 −20

























.
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Fig. 2. Interconnection system consists of ten subsystems. The solid
and dash lines represent the physical interconnection and the optimal
communication topology for number of links equal to 2 respectively.
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1
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||
x
||

distributed control c=2

distributed control c=43

decentralized control

time

Fig. 3. The convergence of the interconnected system with the distributed
control law and the decentralized control law.

First we consider the case when c = 2. The optimal com-

munication topology is shown in Fig. 2. As can be ob-

served from Fig. 3, the interconnected system with the

distributed control law (2) converges faster than with the

decentralized control law (3). Furthermore, by solving the

optimization problem (16) using the YALMIP toolbox [21],

the performance-guaranteed time delay bound for the result-

ing topology is τmax = 0.91. Next we compute the optimal

topology for c = 43. The optimal topology is achieved

without connecting local controller of subsystems 3,5 and

3,6 from 45 links needed to make a full graph while the

performance is shown in Fig. 3. Moreover, the time delay

bound τmax = 0.11. As indicated from the results, having

more communication links may result in a lower τmax which

also indicates that the number of links should be reduced

when τ becomes large.

VII. CONCLUSION AND FUTURE WORKS

This paper introduces an approach for the joint design

of the controller gain-communication topology for the dis-

tributed control of large-scale interconnected systems in

order to optimize the overall system’s performance in the

presence of constant time delay and guarantee its stability

when the communication links are failed. After stabilizing

the overall system using a decentralized control law, the

performance is then improved by designing the distributed

control law, including the communication topology, by also

considering the time delay in the networks. The problem

is formulated as a mixed-integer optimization problem. Fur-

thermore, a method based on matrix perturbation theory is

discussed in order to design the communication topology.

The proposed method also provides information on how the

time delay and controller gain influence the performance of

the overall system. The ongoing work is focusing on solving

the optimization problem in a distributed manner in order to

reduce the design complexity of the proposed approach and

to make it scalable with the number of the subsystems.
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