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Abstract— In this article, we solve the problem of unknown
actuator fault accommodation for a class of uncertain nonlinear
systems, with explicit consideration of input saturation. A
review of the existing literature reveals that fault-tolerant
controllers are often designed without any regard to actuator
saturation, and it is assumed that they will not saturate in spite
of faults. In reality, however, considerable amount of control
effort needs to be expended for suppressing the transients due to
actuator faults, which can easily saturate the working actuators.
In the present work, an indirect adaptive robust fault-tolerant
controller is proposed which explicitly takes into account the

actuator limits. Furthermore, the indirect design ensures that
adaptation mechanism is not affected adversely due to actuator
saturation. Finally, simulation studies performed on a nonlinear
hypersonic aircraft model are presented to demonstrate the
effectiveness of the proposed scheme in dealing with actuator
faults in presence of input saturation.

I. INTRODUCTION

In complex systems like chemical plants, nuclear reactors,

flight control systems etc., reliability is as important as

performance. As the performance of any control system

depends on the condition of actuators, any fault that affects

actuators can have serious consequences on the system

performance. In fact, actuator faults can not only lead to

degraded system performance, but may even result in overall

system instability. Therefore, it is important that the control

system possess a degree of fault tolerance with respect to

actuator faults. Among various approaches, adaptive control

based fault-tolerant schemes [1], [2] have found popularity

among researchers, as they have the ability to learn the

change in system parameters due to actuator faults. However,

input magnitude constraint - one of the most important

factors which can limit the performance of any control

system, has been largely overlooked in the literature.

The harmful effect of actuator faults on the system re-

sponse increases manifold in presence of actuator saturation.

In order to understand how actuator faults and actuator

saturation negatively reinforce their destructive effects, we

must first understand the inter-play of actuator fault-tolerant

control and actuator faults. The effect of a large class of

actuator faults e.g., loss in actuator efficiency, hard over etc.

can be captured as sudden jump in system parameters, which

can degrade the system performance in two chief ways -
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(i) undesirable transients and, (ii) unacceptably large steady-

state tracking errors. If the controller is designed without any

regard to saturation, it may generate large control signals

to attenuate the effect of undesired transients after a fault,

which may saturate the actuators. As the actuators saturate,

the tracking-error further increases, which in turn increases

the commanded control input, so on and so forth. Thus, the

actuator cannot pull out of the saturation, and the closed-loop

system may eventually become unstable. Another problem

which direct adaptive schemes suffer from is unreliable

parameter estimation in presence of input saturation. After

an actuator fault, the state-estimation error is a cumulative

effect of two causes – actuator faults and insufficient control

input due to saturation. As in direct adaptive schemes the

parameter estimation algorithm cannot differentiate between

these two causes, the estimated parameters are not accurate.

From the preceding discussion, it should be clear that if

a fault-tolerant controller can be designed which (a) relaxes

the performance criteria when the actuator saturates, and (b)

ensures reliable adaptation in spite of actuator faults, then the

design will become more practical. Although, many results

have been proposed in the past two decades to address the

problem of input saturation, the problem of actuator fault-

tolerant control in presence of saturation still remains largely

unexplored. Similarly, in spite of the growing volume of

literature on adaptive control based fault-tolerant designs, the

effect of saturation has largely been overlooked. A novel

model reference adaptive control (MRAC) based scheme

for accommodating actuator faults in linear systems was

proposed in [3]. For feedback linearizable nonlinear systems,

an effective neural-networks based adaptive scheme was

proposed in [4]. Note that most of the adaptation based fault-

tolerant designs fall under the category of direct adaptive

control, and primarily rely on two techniques to counter

the harmful effect os saturation – pseudo control hedging

(PCH) [4] and training signal hedging (TSH) [5]. The first

technique PCH involves artificially modifying the reference

model to bring the desired trajectory to a level where it

can be tracked without saturating the actuators. It should

be noted that this implies the trajectory being tracked is

no longer the desired trajectory generated by the reference

model and some of the properties which are a result of plant-

reference model matching in MRAC cannot be guaranteed

anymore e.g., stability of the overall system. The second

technique TSH modifies the error signal used for parameter

estimation. The main idea behind TSH is to remove the error

due to saturation from the total error, such that the resulting

error correlates only to the parameter mismatch. This leads
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to improved parameter estimation. This technique, although

effective, needs to be extended to nonlinear systems and

cases where reference models may not be linear.

In the present work, we attempt to combine nested sat-

uration functions, indirect adaptive control and a modified

backstepping based approach to solve the actuator fault-

tolerant problem in presence of saturation. In the proposed

approach, bounded feedback control laws are designed such

that performance is compromised when the error-variables

are far away from zero and more emphasis is laid on

bringing the error-variables to a region where the controller is

unsaturated. This ensures unrealistically high control inputs

are not demanded of the saturating actuators after a fault.

Once within the unsaturated region, the desired performance

can be recovered. In order to deal with unreliable parameter

estimates due to saturation, an indirect adaptive scheme

is proposed. The indirect scheme automatically accounts

for the actuator saturation, and no artificial modification to

the reference model or error is required. Furthermore, the

indirect scheme does not require the system or reference

model to be linear. Additionally, it will be shown that the

proposed controller is ISS with respect to estimation error

in the unsaturated region. This allows us to show that good

final tracking accuracy – asymptotic tracking in presence of

parametric uncertainties only – can be achieved using the

proposed design. The main contributions of the proposed

work lies in - (i) design of a control law that accommodates

unknown actuator faults with desired closed-loop perfor-

mance in the unsaturated region, (ii) explicit consideration

of actuator limits in the controller design, which allows the

controller to pull out of saturation phase after faults and, (iii)

reliable adaptation regardless of saturation.

II. PROBLEM FORMULATION

In this paper, we consider systems which can be written

as

ẋ = f(x) + g(x)[b1u1 + · · ·+ bquq] + w(x)d(t)

y = h(x), |uj(t)| ≤ uM , j = 1, ..., q (1)

where w(x) is the distribution matrix for the disturbance. It

will be assumed that f(x), g(x), w(x) and h(x) are smooth

functions. The plant parameters bi, which are assumed to be

unknown, belong to a known region i.e., bi ∈ [bi,min, bi,max].
In the present analysis, we focus our attention to the class

of systems for which the following assumption holds.

A1: System (1) has a well-defined relative degree m with

respect to the output y = h(x) such that there exists a

diffeomorphism T (x) which transforms the state-vector x

to [ζ, η]′ coordinates as follows

[

ζ

η

]

=






















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


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














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




















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























(2)

Thus, the dynamics can be rewritten as

ζ̇1 = ζ2

ζ̇2 = ζ3
...

ζ̇m = Lm
f h(x) + LgL

m−1
f h(x)[b1u1 + · · ·+ bquq]

+LwL
m−1
f h(x)d(t)

η̇ = fη(ζ, η, d(t)) (3)

where it is assumed that the disturbance distribution matrix is

such that LwL
j
f = 0 for all j = 1, ...,m−2 and LwL

m−1
f 6=

0, and Lm
f h(x) 6= 0, for all x ∈ R

n.

In the present work, we will also make the following

assumption about the zero-dynamics.

A2: The η-dynamics is input to state stable (ISS) with

respect to ζ and d(t) as inputs.

Assumption A2 guarantees the boundedness of all closed-

loop signals when a stable controller can be designed for the

ζ-dynamics.

In this work, we will consider actuator faults which can

be modeled as

uj(t) =















ūj, ∀t ≥ Tf ,

if jth actuator gets stuck at Tf

ηjju
∗

j(t), ∀t ≥ Tf ,

if jth actuator loses efficiency at Tf

(4)

where u∗

j(t) represents the control command to the jth

actuator, ūj is an unknown constant value at which the

actuator gets stuck, Tf is the unknown instant of failure

and ηjj represents actuator loss in efficiency with ηjj ∈
[(ηjj)min, 1], (ηjj)min ≥ 0. It will be assumed that ūj

belongs to a known interval i.e., ūj ∈ [ūj,min, ūj,max].

For the system described by (1), subjected to unknown

actuator faults (4) and bounded disturbances, the objective

is to design a control law such that the output tracking error

converges to a sufficiently small neighborhood of zero where

the controller is unsaturated, and has desired closed-loop per-

formance and disturbance attenuation properties within the

unsaturated region. It is also desired that the tracking error

asymptotically converges to zero in absence of disturbances.

III. ADAPTIVE ROBUST ACTUATOR FAULT-TOLERANT

CONTROL

Denote fζ(x) = Lm
f h(x), gζ(x) = LgL

m−1
f h(x) and

wζ = LwL
m−1
f h(x). In the present work, we will assume

that control commands to all the actuators are the same i.e.,

u∗

1 = · · · = u∗

q = u0. With this control input, and fault

model described by (4), the healthy and faulty actuators can

be parameterized in the following way

uj(t) = ηjj(1− σjj)u0(t) + σjj ūj

⇒

q
∑

j=1

bjuj(t) = κu0(t) + µ (5)

3767



where

σjj =

{

0 before jth actuator gets stuck

1 after jth actuator gets stuck

ηjj =

{

1 before jth actuator loses efficiency

[(ηjj)min, 1] after jth actuator loses efficiency

κ =

q
∑

j=1

bjηjj(1 − σjj), µ =

q
∑

j=1

bjσjj ūj

We will make the following practical assumption regarding

the extent of uncertainties present in the system.

A3: The unknown parameters θ , [κ, µ]T and disturbance

satisfy,

θ ∈ Ωθ , {θ : θmin ≤ θ ≤ θmax} (6)

wζ(x)d(t) ∈ Ωd , {wζ(x)d(t) : |wζ(x)d(t)| ≤ dM}(7)

Now, that we have established a parametric fault-model,

we are ready to present the bounded control laws to be used

in the backstepping based design. We will use the coordinate

transformation x̃i = ζi−y
(i−1)
d to simplify the analysis. The

designed virtual control law αi and the corresponding error

zi are given by

zi = x̃i − αi−1(zi−1),

αi = −σi(zi),

˙̃xi = zi+1 + αi, i = 1, ..., n− 1 (8)

where σi(zi) are saturation functions (see fig. 1 in [6]). The

saturation functions are defined as

(a) ziσi(zi) ≥ 0, ∀zi (9)

(b) σi(zi) = kizi, ∀|zi|≤li,

σi(zi) = (sign(zi))Mi, ∀|zi|≥Li (10)

(c) |σi(zi)| ≤ Mi, ∀zi (11)

(d)
∂σi

∂zi
≤ ki, ∀zi (12)

Also, li = βiLi with βi ≤ 1, and Mi = kili(1 + γi) with

γi > 0. The interval for zi is divided into three different

regions - Ωi
1 = {zi : |zi| ≤ li}, Ωi

2 = {zi : |zi| ≤ Li} and

Ωi
3 = {zi : |zi| > Li}. Note that the nonlinear transition

region of the saturation function (Ωi
2\Ω

i
1) needs to be at

least second order differentiable, as the backstepping design

involves taking derivatives of σi. σm, however, need not have

a smooth transition region, as this appears in the last step.

The lm and Lm parameters used in the definition of σm

depend on the extent of uncertainties, and will be defined

later.

Now, substituting (8) in (3), the error dynamics can be

written as

ż1 = z2 − σ1(z1)

...

żi = zi+1 − σi(zi)

+

i−1
∑

j=1

{[

j
∏

r=1

∂σi−r

∂zi−r

]

(zi−j+1 − σi−j(zi−j))

}

(13)

...

żm = fζ(x) + κgζ(x)u0 + µgζ(x) + wζ(x)d(t) − y
(m)
d

+

m−1
∑

j=1

{[

j
∏

r=1

∂σm−r

∂zm−r

]

(zm−j+1 − σm−j(zm−j))

}

(14)

A. Parameter Estimation

We will use x-swapping lemma (Ch.6, [7]) to implement

least-squares estimation scheme, and then use discontinuous

projection to ensure that the parameters stay within a known

region in presence of disturbances. Note that as all unknown

parameters appear in the mth channel in the ζ coordinates,

we need only ζ̇m dynamics for estimation purposes.

The ζm-dynamics can rewritten as

ζ̇m = fζ(x) + κgζ(x)u0 + µgζ(x) + wζ(x)d(t)

= fζ(x) + φ(x, u)T θ + wζ(x)d(t) (15)

where θ , [κ, µ]T and φ(x, u)T = [gζ(x)u0, gζ(x)]. Follow-

ing the standard steps of x-swapping, we define the following

filters

Ω̇0 = A(Ω0 + ζm)− fζ(x) (16)

Ω̇T = AΩT + φ(x, u)T (17)

Define the prediction error as ǫ = ζm +Ω0 −ΩT θ̂, which is

calculable. It is shown in [7] that ǫ can be rewritten as

ǫ = ΩT θ̃ + ǫ̃ (18)

where ǫ̃ is governed by ˙̃ǫ = Aǫ̃, which exponentially

converges to zero. Thus, we have a static model (18), that is

linearly parameterized in terms of θ̃ with an additional term ǫ̃

which exponentially decays to zero. With this static model,

various estimation algorithms can be used to estimate the

unknown parameters. In the following, we present the least-

squares estimation scheme which will be used in the present

work.

˙̂
θ = Γτ, τ =

Ωǫ

1 + νtr{ΩTΓΩ}

Γ̇ = −Γ
ΩΩT

1 + νtr{ΩTΓΩ}
Γ, Γ(0) = Γ(0)T > 0, ν ≥ 0(19)

In order to guarantee certain desired properties, we will
use the following discontinuous projection algorithm.

˙̂
θ = Projθ̂(Γτ ) (20)

Projθ̂i =







0 if θ̂i = θi,max and •i > 0

0 if θ̂i = θi,min and •i < 0
•i otherwise

(21)
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This guarantees that the parameters do not drift away

and stay within known bounded region even in presence of

disturbances.

B. Controller design

In this section, we present the proposed adaptive robust

fault-tolerant controller and prove the overall stability of the

system using the following steps:

1) In the first step, it is shown that for any set of initial

conditions zi(0), all error-variables can be driven to

an invariant region where the controller is unsaturated,

as long as a set of controller parameters exist which

satisfy certain inequalities.

2) Next, sufficient and necessary conditions for the ex-

istence of the controller parameters is proposed and

proved.

3) In the last step, asymptotic convergence of the adaptive

system is proved in absence of disturbances within the

unsaturated region.

Define ua = −fζ(x) − µ̂gζ(x). Control law to be used

u0 = σm

[

1

gζ(x)κ̂
(σa(ua) + y

(m)
d − kmzm)

]

(22)

where

σa(ua) =

{

ua, for |ua|≤Ma

sign(ua)Ma, for |ua| > Ma

and

σm(u0) =

{

u0, for |u0|≤uM

sign(u0)uM , for |u0| > uM

Note that as system (3) may not necessarily be stable,

the model-compensation component ua can easily become

unbounded. In the context of bounded control, some assump-

tions must be made on the growth rate of the nonlineari-

ties and the extent of uncertainties to make the stabiliza-

tion/tracking problem feasible.

A4: In the present work, it will be assumed that the

nonlinearities are such that the following conditions are

satisfied within a finite time of occurrence of the fault

(i) the deficit in model-compensation i.e., σa(ua) = Ma,

can always be bounded above by a known constant i.e.,

|σa(ua)− ua| ≤ ũaM

(ii) the extent of uncertainty due to fault-parameter

estimation mismatch can be bounded above by a known

constant i.e., |φT (x, u)θ̃| ≤ hM .

(iii) gζ(x) is such that 0 < gζ,min ≤ |gζ(x)|≤gζ,max.

Consider the ζ−dynamics of system (3) along with as-

sumptions (A1-A4). The following theorem states that in

spite of unknown actuator faults (5), the error dynamics can

be driven to small neighborhood around zero, where the con-

troller is unsaturated and desired closed-loop performance

can be recovered.

Theorem 1. Consider the error-dynamics represented by

(14). With the control law given by (22), and the chosen

parameter update law (19), if a set of controller parameters

can be chosen such that

kili > li+1 + ki−1Ni, i = 1, ...,m− 1 (23)

kmlm > km−1Nm + hM + dM + ũaM , (24)

kmlm ≤ κ̂mingζ,minuM − (Ma + λM ) (25)

where

Ni = Li +Mi +

i−2
∑

j=1

[

(

j
∏

r=1

ki−1−r)(Li−j −Mi−1−j)

]

and k0 = 0 then, the error variables zi reach a region

where the controller is unsaturated in a finite time (i.e.,

z ∈
⋂m

j=1 Ω
j
1), for any set of initial conditions and any fault

pattern.

Proof. The proof follows along the same line as outlined

in [6] and has been omitted due to space restrictions. ▽

C. Controller Parameter Selection

1) Necessary and sufficient conditions for the existence of

controller parameters: After a series of derivations, (23)-

(24) can be rewritten in a matrix form

AL < D, (26)

where L = [l1, l2, · · · , lm−1, lm]T , D =
[0, 0, · · · , 0,−(hM + dM + uaM )]T . And A is a function of
ki given by

A =











−k1 1 0 · · · 0

k2

1(1 + γ1)
(

k1

β2
− k2

)

1 · · · 0

· · · · · · · · · · · · · · ·

am1 am2 am3 · · ·
(

km−1

βn
− km

)











,

(27)
where

aij = ki−1kj
i−j−1
∏

r=1

ki−r−1(1 + γj) + ki−1

i−j
∏

r=1

ki−r−1
1

βj
, ∀i > j.

aij = −ki +
ki−1

βi
, ∀i = j

aij = 1, ∀j = i+ 1
aij = 0, ∀j > i+ 1

(28)

For any γi > 0 and 0 < βi ≤ 1, if we fix a set of positive

kis, then the control law is feasible if and only if the there

exist l1, l2,..., lm > 0 such that (inequality3) and (26) are

satisfied. In other words, at least one solution to (inequality3)

and (26) should lie in the region {(l1, · · · , lm) : li > 0}.

The following theorem gives the necessary and sufficient

condition for kis such that the control law is feasible.

Theorem 2. For any γi > 0 and 0 < βi ≤ 1, with a set of

positive kis, at least one solution to (inequality3) and (26)

lie in the region L ∈ {(l1, · · · , lm) : li > 0} iff the kis
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satisfy the following set of inequalities:

k1 > 0,

k2 >
a21p1+

k1
β2

p2

p2

= (1 + γ1 +
1
β2

)k1,

· · ·

ki >

∑i−1

j=1
aijpj+

ki−1

βi
pi

pi
, ∀i < m

· · ·

km >
κ̂mingζ,minuM−(Ma+λM )

κ̂mingζ,minuM−(Ma+hM+ũaM+λM+dM ) ·
∑n−1

j=1
anjpj+

kn−1

βn
pn

pn
,

where, the coefficients pis are computed recursively using

the formula

p1 = 1

pi = −
∑i−1

j=1 ai−1jpj
(29)

Proof. The proof has been omitted due to space restrictions,

but can be obtained from the authors upon request.

2) Controller gain selection: a recursive root-locus de-

sign: Please refer to [6] for an outline of recursive root-locus

design technique.

D. Asymptotic Stability

In the linear unsaturated region, the dynamics can be

represented as

ż = Aclz +Bθ̃θ̃ +Bdwζ(x)d(t) (30)

where

Acl =

















−k1 · · · 0
... · · ·

...

−ki−1...k
2

1 · · · 0
... · · ·

...

−ki−1...k
2

1 · · · −(km − km−1)

















(31)

Bθ̃ =









0 0
.
..

.

..
0 0

φ1(x, u) φ2(x, u)









, Bd =









0
.
..
0
1









From the preceding discussion, we know Acl is stable and

‖φ(x, u)T ‖ is bounded, as |gζ(x)| is bounded below and

above by known positive constants, |u| ≤ uM . Thus, it can

be easily verified using a Lyapunov function Vz = zT z that

z(t) is Input to State Stable (ISS) with respect to the inputs

θ̃ and wζ(x)d(t). Now we are ready to state an important

result which shows that the proposed controller preserves

the desired property of an adaptive controller - asymptotic

tracking in presence of parametric uncertainties only.

Theorem 3. In presence of parametric uncertainties only

i.e., when d(t) = 0, by using the control law given by (22),

and the parameter update law (19) along with filters (16-17),

asymptotic output tracking is also achieved i.e., z → 0 as

t → ∞.

Proof. The proof follows from the fact that the controller is

ISS w.r.t θ̃ and θ̃ ∈ L∞ for least-square estimation using x-

swapping lemma (see (Ch.6, [7])). This, in turn implies that

ż ∈ L∞, and from Barbalat’s lemma, we obtain z → 0 as

t → ∞. �

IV. SIMULATION EXAMPLE

An adaptive robust control (ARC) based approach was
recently proposed to solve the unknown actuator fault accom-
modation for linear [8], [9] and nonlinear [10], [11] systems.
The superior performance of an ARC based approach in
achieving desired transient response, as well as small steady-
state tracking error over a robust adaptive control based
design was demonstrated through comprehensive simulation
studies. In the present work, we compare the performances
of the proposed scheme and the recently developed ARC
based fault-tolerant controller in presence of saturation. A
nonlinear longitudinal reduced-order model of hypersonic
aircraft cruising at a velocity of 15 mach, at an altitude of
110, 000 feet is used to test the effectiveness of the proposed
scheme. Below, we only present the final form of the system
model after coordinate transformation and refer the reader to
[11] for the details.

ζ̇1 = ẏ = x2 + a1y + a2 sin(y) + a3y
2 sin(y) + a4 cos(x3)

ζ̇2 = a5y
2 + a6y + (a7 + a8y + a9y

2)x2

+ (a1 + a2 cos(y) + 2a3y sin(y) + a3y
2 cos(y))ζ2

− a4 sin(x3)(a10 cos(x3)− a1y − a2 sin(y))

+b1u1 + b2u2 +∆(t) (32)

where a1 = −0.0427, a2 = −3.4496×10−4, a3 =
5×10−5, a4 = 0.0014, a5 = −4.2006, a6 = 1.0821, a7 =
−3.6896, a8 = 0.1637, a9 = −0.1242, a10 = 0.0014, b1 =
0.8, b2 = 0.8 and ∆(t) = 0.02 sin(3t) represents the input

disturbance.

As can be seen from fig. (1), in ARC based technique, once

the controller saturates, it cannot return to the unsaturated

region of controller operation. On the other hand, as seen

in fig. (2), in the proposed design the controller saturates

temporarily, but returns to the unsaturated region. This can

be explained as follows. Following an actuator fault, the

performance requirements necessitate that the transients be

suppressed using large feedback action. However, as the

control input is limited, the transients cannot be suppressed

effectively which further increases the transient error. This,

in turn, demands larger control input, leading to a controller

saturation scenario, which is unsalvageable. In the proposed

approach, on the other hand, when the error is large, we

sacrifice the model compensation to certain extent, and use

the available control input to supply maximum possible

feedback action −kizi, such that żi can be made negative,

and the error can be reduced to an extent which allows the

controller to be unsaturated. This can also reduce the required

model-compensation. The problem of unreliable parameter

estimation in presence of saturation should also be evident

from the simulation results.

V. CONCLUSIONS

In this article, an indirect adaptive robust scheme was

proposed to accommodate unknown actuator faults in pres-

ence of actuator magnitude constraints. The proposed scheme

combines indirect adaptation and nested-saturation functions

in a modified backstepping-like framework, such that if the

actuator saturates after fault, the control-system ensures that

it can pull out of the saturation. Furthermore, the indirect

adaptation ensures that adaptation mechanism is not affected
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Fig. 1. Comparative results for stabilization in absence of disturbances

adversely in spite of faults. Comparative studies proved the

efficiency of the proposed scheme in dealing with actuator

faults in presence of saturation.
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