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Abstract— This paper presents a new approach to Load
Frequency Control (LFC) for a hydro-power plant. The control
algorithm combines sliding mode control with H∞ technique.
The dynamic model of an entire hydro-power plant has been de-
veloped. The sliding hyperplane is constructed by H∞ full state
feedback control method. The ideal lossless turbine-penstock
model is used in this paper to conduct the simulation. Results
are compared with those from traditional PI and LQR designs.
It is demonstrated that the proposed sliding mode control
blended with H∞ method improves the system performance
under a load disturbance and parametric uncertainties.

I. INTRODUCTION

Hydraulic power represents a major percentage of US
renewable energy. Currently, it provides between 6 to 9
percents of total US electricity. Hydro-power plant usually
consists of a mountain reservoir, penstock, wicket gate,
turbine with a generator attached and draft tube. Some plants
with long penstocks may have single or multiple surge tanks
to reduce water hammer. Therefore, a hydro-power plant has
complicated nonlinear dynamic characteristics. Since 1980s,
there have been very few newly built hydro-power plants. But
the turbines and the control systems have been constantly
upgraded to meet the changes of demand [1]. Here, we
will focus on the control system design. Load frequency
control (LFC) is an important part of electric power system
design. Since the load of the system is constantly changing,
to provide quality power (constant frequency and voltage)
a load frequency control system needs to be applied to
the entire power system. That control goal is achieved
through governors, which are used to control the wicket
gate positions to regulate the water flow in order to adjust
the power output to compensate the demand and stabilize
the frequency. Generally, there are two types of governors,
mechanical-hydraulic governor and electric-hydraulic gov-
ernor [2]. Before 1960’s, mechanical-hydraulic governors
with flyball speed sensing were widely used. From 1970’s,
electric-hydraulic governors became popular with implied
PID controller [3]. The classical PID controller methods
have been developed in [4]-[6]. IEEE has published a guide
for tuning PID coefficients based on system parameters
such as water starting time constant in [7], [8]. Reference
[9] indicated that coefficients of turbine model changed at
different operating points. Later investigations [9]-[11] using
state-space eigenvalue analysis showed that the boundary of
a stable system depends not only on the system operating
point but also on parameters of network [12] which it
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connects to. Those parameters change from time to time.
It is difficult to design a perfect PID controller for the
system, since it might not be an optimal controller or
might even be unstable controller in other situations. Above
problems lead to the “Gain Schedule for PID” [2], [13] for
which the controller has different coefficients at different
operating points. But it does not guarantee performance
against parametric uncertainties due to the wear and tear
during the operation. In recent years, many advanced control
methods such as fuzzy logic, adaptive control and neural
networks [14], [15] have been studied. Reference [16] shows
the application of H∞ method to govern the system. There
are also several studies on variable structure control (VSC)
which is a more general method than the sliding mode
[17]-[19]. Sliding mode control theory [20] is an effective
robust control method. Similar to VSC, the sliding mode
control method generates the control input which undergoes
structure change to force the state trajectories of the system to
reach the intersection of desired sliding hyperplanes and stay
on it. This approach provides a robust performance and is
insensitive to system uncertainties and external disturbances,
provided certain matching conditions are satisfied [20].

In this paper, we propose a new control method for hydro-
power system: sliding mode control (SMC) blended with
robust optimal H∞ theory, which is inspired by studies con-
ducted in vibration area [20], [21], in which no assumptions
on matching conditions are made. The H∞ control provides
the optimal choice of sliding surface and also minimizes
the impact of external disturbances. We have studied the
entire hydro-power plant system and a dynamic model is
developed in MATLAB/Simulink software. The simulation
results show the advantages of our method in comparison to
other traditional control techniques.

II. BASIC HYDRO-POWER PLANT DYNAMIC
MODEL

The basic hydro-power plant scheme is shown in Fig. 1.
The entire plant with the control system can be divided
into four major components: Penstock, Electric-hydraulic
servo system, Turbine and Generator. These components
are modeled as follows. (Variables with bars are values
normalized to their rated values)

1.Penstock:
General transfer function between turbine head and flow

rate, which considers the elasticity of the pipe and water
hammer, can be expressed as [2], [8]:

∆h̄t(s)

∆ūt(s)
= −[φ̄p + zptanh(teps)] (1)
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Fig. 1. Hydro-power plant scheme [2]

where ∆h̄t: normalized value of change in turbine head
(p.u.), ∆ūt: normalized value of change in turbine water
velocity (p.u.), φ̄p: penstock friction loss, zp: hydraulic surge
impedance of the penstock, and tep: elastic time constant of
penstock (sec.). The symbol p.u. stands for per unit [2].

The function tanh(teps) is approximated as:

tanh(teps) =
1− e−2teps

1 + e−2teps
=
teps

∏n=∞
n=1 [1 + (

teps
nπ )2]∏n=∞

n=1 [1 + (
2teps

(2n−1)π )2]
(2)

If the penstock is short and water and pipe are considered
to be incompressible, the simplified version of the transfer
function (1) between water head and velocity is:

∆h̄t(s)

∆ūt(s)
= −tws (3)

with tw = lur

aghr

where tw: water starting time constant at the rated load
(sec.), ur: rated value of velocity in the conduit (m/s), hr:
rated value of head in the conduit (m), ag: acceleration due
to gravity (m/s2), l: length of penstock (m).

2. Electric-hydraulic servo system [22]:
Since the hydro-power system requires a large force to

move the wicket gate, the whole system usually contains
two cascaded systems. One is pilot actuator and the other
one is the main gate servo. The relationship between the
input signal u (volt) and the change in the pilot actuator
position ∆x̄e is:

∆x̄e(s)

u(s)
=

1

tps+ 1
(4)

where tp: pilot valve and servomotor time constant (sec.)
The relationship between the pilot actuator output ∆x̄e

and the change in the gate servo (gate) position ∆ḡ is:

∆ḡ(s)

∆x̄e(s)
=

1

tgs+ 1
(5)

where tg: main servo time constant (sec.)
3. Turbine:
The simplified nonlinear hydro-turbine model has been

obtained by treating the turbine as a valve [2], [8] as follows:

ut = kug
√
ht (6)

pm = kphtut (7)

where ut: turbine water velocity (m/s), g: ideal gate
opening, ht: hydraulic head at gate (m), pm: turbine power
(MW ), ku,kp: constant coefficients.

Equations (6) and (7) are linearized and normalized as
follows:

∆ūt = a11∆h̄t + a12∆ḡ (8)

∆p̄m = a21∆h̄t + a22∆ḡ (9)

with a11 = ∂ut

∂ht
, a12 = ∂ut

∂g ,a21 = ∂pm
∂ht

, and a22 = ∂pm
∂g

It should be noted that the partial derivatives with respect
to rotor speed have been neglected because they are usually
small. Values of coefficients in (8) and (9) are provided by
Kundur [2] : a11 = 0.5, a12 = 1.0, a21 = 1.5 and a22 = 1.0.

From (3), (8), and (9), the transfer function between power
change and gate position change is:

∆p̄m(s)

∆ḡ(s)
=

1− tws
1 + 0.5tws

(10)

The transfer function (10) is described as an ideal linear
lossless turbine-penstock model.

4. Generator [2]:
The generator transfer function is described as:

∆ω̄(s)

(∆p̄m(s)−∆p̄e(s))
=

1

ms+ d
(11)

where ∆ω̄: normalized value of deviation of the rotor
speed or frequency (p.u.), ∆p̄e: normalized value of load
deviation (p.u.), d: load-damping constant, m: total generator
inertia constant (MW − sec./MV A).

The block diagram of different components of the system
is shown in Fig. 2 with the conventional PI controller. If
the plant contains surge tanks, the system is separated into
two loops [2] such as “reservoir, tunnel, surge tank” and
“surge tank, penstock, turbine”; and then connected together
to obtain the entire dynamic model.

III. DESIGN OF H∞/ SLIDING MODE
CONTROLLER

A. Sliding Mode Controller [20]
The fundamental concepts of sliding mode control theory

can be found in [20], [23], [24]. Generally, there are two
steps for sliding mode control design as follows.

First step is to determine the sliding hyperplane which is
defined as follows:

sl(t) = gx(t) = 0 (12)

where x is the state vector and g is a vector which needs to be
determined. It should be noted that there is only one sliding
hyperplane as there is only one control input, u, equation
(4).

Second step is to determine the control law.
The control input signal u which is the input voltage for

the electric-hydraulic servo system is generated to achieve
the following condition:

slṡl < 0 (13)

The condition (13) ensures that the system will reach the
sliding hyperplane and remain on it.
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B. Problem Statement

Based on hydro-power plant dynamic model, the states for
the entire plant model as shown in Fig. 1 can be described
as

x =


x1

x2

x3

x4

x5

 =


∫ t

0
∆ω̄

∆x̄e
∆ḡ

∆p̄m
∆ω̄

 (14)

All of these states can be easily measured. Therefore, full
state feedback sliding mode control will be designed.

The state-space model for the system without any con-
troller is generated by (4), (5), (10), and (11):

ẋ = Ax + bu+ d∆p̄e (15)

where

A =


0 0 0 0 1
0 − 1

tp
0 0 − 1

tprp

0 1
tg

− 1
tg

0 0

0 − 2
tg

( 2
tw

+ 2
tg

) − 2
tw

0

0 0 0 1
m − d

m

 (16)

b =


0
− 1
tp

0
0
0

 and d =


0
0
0
0
− 1
m


Since vectors b and d are independent, matching condition

[20] is not satisfied. It will be assumed that

|∆p̄e| ≤ qu (17)

where qu is the upper bound of the load disturbance.
Step 1. Constructing the sliding surface [20].

Fig. 2. PI control block diagram

First, the following similarity transformation is applied to
the state vector x(t):

q(t) = Hx(t) (18)

Fig. 3. Sliding mode control block diagram

where H =
[
N b

]T
and N is composed of basis

vectors of the null space of bT . Combining (15) and (18).

q̇ = Āq(t) + b̄u(t) + d̄∆p̄e (19)

where Ā = HAH−1, b̄ = Hb and d̄ = Hd.
Because of the definition of H matrix, equation (19) can

be written as

q̇ =

[
Ā11 Ā12

Ā21 Ā22

] [
q1

q2

]
+

[
0
b̄r

]
u +

[
d̄1

d̄2

]
∆p̄e

(20)
where

q =

[
q1

q2

]
(21)

It should be noted that q1 is a 4 dimensional vector where
as q2 is a scalar. From (20),

q̇1 = Ā11q1 + Ā12q2 + d̄1∆p̄e (22)

Here, q1 and q2 are viewed as states and input for the
construction of sliding hyperplane via full state feedback

q2 = −kq1 (23)

where k is the state feedback gain vector. In this case,
sliding hyperplane becomes

sl =
[

k 1
]
q (24)

Using equations (12) and (18), the sliding hyperplane
vector g is defined as:

g =
[

k 1
]
H (25)

Because the matching condition [20] is not satisfied,
d̄1 6= 0 and disturbance will affect the system response on
the sliding hyperplane. The objective is to select the state
feedback gain vector k or equivalently the sliding hyperplane
vector g via H∞ technique such that the effect of disturbance
is minimized. For this purpose, the block diagram, Fig. 4, is
developed, where the matrix M is based on (22): q̇1

e
y

 = M

 q1

∆p̄e
q2

 (26)
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Fig. 4. A full state feedback control system

where

M =

 Ā11 d̄1 Ā12

C1 0 D12

I4 0 0

 (27)

Matrices C1 and D12 are determined by cost function
to be minimized. The objective ‖Te4p̄e‖H∞

< γ (Te∆p̄e is
the transfer function from e to ∆p̄e) is equivalent to the
minimization of the following objective function

J =
1

2

∫ ∞
0

(eT e− γ2∆p̄Te ∆p̄e)dt (28)

where γ > 0
Utilizing the expression of e from (26) and (27),

J =
1

2

∫ ∞
0

(qT
1Q11q1+2qT

1Q12q2+qT2 Q22q2−γ2∆p̄Te ∆p̄e)dt

(29)
where Q11 = CT1 C1, Q12 = CT1 D12, Q22 = DT

12D12.
It should be noted that

eT e = qT

[
CT1
DT

12

] [
C1 D12

]
q = xTQ̄x (30)

where

Q̄ = HT

[
CT1
DT

12

] [
C1 D12

]
H (31)

The gain matrix k for the minimum value of J is [20]

k = Q−1
22 (Ā12P +QT12) (32)

where P is the unique, symmetric, positive semi definite
solution of the following ARE (Algebraic Riccati Equation):

P (Ā11 − Ā12Q
−1
22 Q

T
12) + (ĀT11 −Q12Q

−1
22 Ā

T
12)P

−P (Ā12Q
−1
22 Ā

T
12 − γ−2d̄1d̄T

1 )P + (Q11 −Q12Q
−1
22 Q

T
12) = 0
(33)

MATLAB Robust Control Toolbox is used to solve the
equation (33).

Step 2. Determine the control law to satisfy the reaching
condition slṡl < 0.

From (12),

ṡl = gẋ = g(Ax + bu+ d∆p̄e) (34)

Since sl is a scalar,

slṡl = sl(gAx + gbu+ gd∆p̄e) (35)

TABLE I
PARAMETER VALUES FOR SIMULATION

Symbol Quantity Unit
tw 1.3 Second
tg 0.2 Second
tp 0.02 Second
Rp 0.5 Unit less
m 6 Second
d 1 Second

The input signal u can be divided into two parts.

u = ueq + uun (36)

where
gAx + gbueq = 0 (37)

Therefore,
ueq = −(gb)−1(gAx) (38)

And, uun is used to make sure that the condition (13) is
satisfied; i.e.,

slṡl = sl(gbuun + gd∆p̄e) < 0 (39)

or
uun = −(gb)−1eusgn(sl) (40)

where eu = |gd| qu + η and η > 0.
In order to eliminate the chattering effect, sgn(sl) is

replaced by a saturation function [20]

sat(sl) =

{
sgn(sl) if |sl| > ρ
sl/ρ otherwise

(41)

where ρ is the boundary layer thickness around the sliding
hyperplane.

IV. SIMULATION RESULTS
The values of our simulation model parameters are in

Table 1. The controller is designed with qu = 0.5, η = 0.05
and ρ = 0.05. Simulation is conducted with a step load
change of 0.03 (p.u.).

Since the main objective is to minimize deviations in
generator speed and change in the power output, the cost
function Q̄ in (31) is chosen as:

Q̄ =


250 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 50 0
0 0 0 0 250

 (42)

In Fig. 5, ∆ω̄ is plotted for three types of control systems:
PI, H∞/sliding mode and LQR control ( r = 1) for which
the objective function is defined as

J =
1

2

∫ ∞
0

(xTQ̄x + ru2)dt (43)

It is obvious that the sliding mode blended with H∞ method
gives the shortest responding time and lowest overshoot value
as shown in Fig. 5.
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When the system is controlled by H∞/sliding mode
method, the response of the system is quite insensitive
to parametric uncertainties, Fig. 6 for -20% deviation in
turbine model parameter tw only and -10% difference on all
parameters (tw, tg ,tp, m, and d). Note that the robustness
of the traditional PI controller is significantly less as shown
in Fig. 7

Fig. 5. Frequency deviation ∆ω̄ versus time under constant load change

V. CONCLUSIONS
A sliding mode controller blended with H∞ full state

feedback control has been developed for governing hydro-
power plant. The sliding hyperplane is constructed based
on the dynamic model of the plant by full state feedback
H∞ theory. The saturation function is used to eliminate the
chattering effect. The performance of our control method
in the presence of disturbance and parametric uncertainties
has been evaluated via MATLAB/Simulink software. The
results from simulation have shown the advantages which
our method brings to the controller design. Currently, we
are also investigating the performance of more complicated
dynamic model under our proposed control method. Also,
controllers will be designed by simultaneously considering
parametric uncertainties and external disturbances.

Fig. 6. Frequency deviation ∆ω̄ with parametric uncertainties under
H∞/sliding mode control
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