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Abstract— This paper describes a novel sensor fusion im-
plementation to improve the accuracy of robot localization by
combining multiple visual odometry approaches with wheel and
IMU odometry. Discrete and continuous Homography Matrices
are used to recover position, orientation, and velocity from
image sequences of tracked feature points. An Inertial Mea-
surement Unit (IMU) and wheel encoders also measure linear
and angular velocity of mobile robot. A Kalman filter fuses
the measurements from the visual and inertial measurement
systems. Time varying matrices in the Kalman filter allow each
sensor to receive higher or lower weight in situations where
each is more or less accurate. Experiments are performed with
a camera and a IMU (Wiimote controller) mounted on a mobile
robot.

I. INTRODUCTION

Building mobile robotic systems that are capable of real-

time autonomous navigation is a complex, multi-faceted

problem. One of the primary aspects of this problem is the

task of localization. Localization, or pose-estimation, refers

to the task of estimating the position, orientation and velocity

(both angular and linear) of the robot over time. There are

many established ways to approach the task of localization

including wheel odometry [1], inertial sensors [1], GPS [1],

sonar [2], and IR/laser-based range finding sensors [3].

There have been significant results in localization tech-

niques based solely on vision data. Visual odometry is a

method of localization that uses one or more cameras to

constantly capture images or video frames taken of a scene

[4]. The frames are analyzed sequentially using various

computer vision techniques. The analysis of these frames

estimates the angular and linear velocities of the camera

between each time step. These velocities are integrated over

time to estimate how the camera has moved.

Some vision-based localization techniques are designed

to calculate the pose of the camera relative to a well

known reference object that appears in each frame [5], [6].

These techniques are usually dependent on accurate prior

knowledge regarding the geometric properties of the scene

or a reference object. In many situations, there exists little

accurate prior knowledge regarding a scene and the objects

therein. In such cases, two frames can be compared with

one another based on a set of feature points which exists in

both frames. Once a set of feature points is identified in both

frames, a mapping of the feature points from one frame onto
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the next must exist. This mapping encapsulates the rotation

and translation of the camera that occurs between the taking

of each picture. In practice, the Essential matrix or Euclidean

Homography Matrix is used to estimate a camera’s pose in

terms of rotational and translational transformations [7], [8].

Over the years, numerous control systems have been

designed that utilize Essential or Homography Matrices in

vision-based robotic tasks [9]–[17]. Of particular interest,

is the application of the Euclidean Homography Matrix as

a means of estimating velocity [18]. The Euclidean Ho-

mography Matrix can be used in both a continuous and a

discrete form [8]. However, it seems that there has not been

as much work done regarding applications of continuous

Homography Matrix. If one does a discrete homography-

based estimation of the camera position and orientation (i.e.

pose), then one can also integrate the continuous estimate

of the velocity at each time step to extract the pose as well.

Discounting the effects of noise, the pose estimate obtained

from integrating the continuous homographic estimate of

angular velocity must agree with the discretely estimated

position of the camera. This notion was initially explored

in [19], and verified with simulations.

A pose estimate produced in this manner can be further

enhanced by combining visual odometry with traditional

wheel odometry and other sensor devices. This can be

achieved through various signal processing techniques known

as sensor fusion. The Kalman filter is particularly useful for

fusing signals from multiple sensors and removing errors in

localization that occur due to many factors such as sensor

noise, quantization, flawed process modeling, and sensor bias

or drift [1], [20].

Vision-based Kalman filter approaches have been used for

years in robot localization and mapping problems. Soatto et

al. give two Kalman filter approaches for motion estimation

based on the Essential matrix [21]. Some other methods

use image features as inputs to the Kalman filter with

pose and/or velocity as output. These methods are more

computationally efficient and avoid the constraints inherent

to the pose reconstruction methods [22], [23]. Zhang et al.

use a trinocular stereo system mounted on a mobile robot

to build a local map of the environment while the robot

explores it [24]. A Kalman filter is used to merge matched

line segments from the trinocular stereo system. In [25], a

multi-sensor, on-the-fly, localization system is proposed to

fuse estimations from visual sensors with other types of

sensors, such as laser range finders. Furthermore, Gutmann

developed a vision-based Markov-Kalman method for robots

observing known landmarks, which combines the accuracy
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of Kalman filter and robustness of Markov method [26].

In this paper, we propose a novel localization technique

involving vision-based estimates of pose and velocity from

continuous and discrete Homography matrices, an IMU,

and wheel encoders. The visual odometry method uses a

single camera rigidly mounted on the robot. The change in

camera pose is estimated by using the discrete form of the

Euclidean Homography Matrix, while the continuous form

of the Euclidean Homography Matrix is utilized to estimate

the velocity of the camera over time. The IMU measures

angular velocity, and the wheel encoders of the mobile robot

measure linear and angular velocity. The system utilizes a

Kalman filter to fuse all the estimates and remove error which

accrues over time due to integration, noise, and quantization

[20]. Furthermore, a low-cost IMU is used, specifically a

Nintendo Wiimote. The results obtained, despite the poor

performance of the IMU, show the strength of the system and

the possibility of low-cost alternatives for localization. Some

sensors are more accurate in certain regimes of operation.

The proposed system alters the covariance matrices used in

the Kalman filter based on the system state. This allows

sensors that are currently more accurate to receive a higher

weighting in the sensor fusion. This results in a more

accurate estimate and allows for improved estimation of bias

on certain sensors.

Section II will clarify the terminology used in this paper

as well as formally define and model the problem. Section

III will explain the proposed sensor fusion approach. We

present experiment results in section IV that illustrate the

effectiveness of the proposed system. Finally, in section V

we will espouse the conclusions reached from this work.

II. BACKGROUND

Different conventions exist for the notation and termi-

nology used in the vision-based estimation and robot con-

trol. For example, the vision community typically assigns

a Cartesian reference frame to a camera with the z-axis

oriented along the optical axis, while the robotics community

typically assigns a reference frame to a wheeled mobile

robot with the z-axis oriented perpendicular to the plane of

motion. In this paper, we follow the separate conventions

for the vision system and mobile robot when discussing the

development of each. The coordinate system of the camera

is mapped to the robot frame through a constant rotation.

A. Formal Definition and Terminology

Navigation sensors, including cameras, make measure-

ments with respect to an inertial frame and measured in

a moving body frame, here called Fb for camera body

frame and Fr for robot body frame. These measurements

are then rotated to obtain localization with respect to the

world frame, here called Fw. In this paper, the orientation

and position (collectively referred to as pose) of a body frame

with respect to the world frame is expressed as a function

of time by including the index number for a given time step

in parentheses. For example, in Fig. 1 Fb (t0) describes the

pose of the body frame Fb attached to a camera at time

Fig. 1. Translation and Rotation (Tk, Rk) of Body/Camera Frame Fb int
planar scenes

index t0 as measured from Fb (t0), while Fb (tk) describes

the pose of Fb at time tk as measured from Fb (t0).
The changes in the pose of Fb that occur over the

time interval [t0, t1, ..., tk−1, tk] are described in terms of a

translation vector Tk ∈R
3 and a rotation matrix Rk ∈ SO(3).

At any given time tk, the instantaneous linear and angular

velocities of the body frame Fb are described, as a pair

of vectors (vk,ωk), where vk ∈ R
3 and ωk ∈ R

3. We will

use subscript k to denote the value at time step tk for other

variables in the sequel.

In this work, a camera is rigidly attached to a wheeled

mobile robot. The Cartesian reference frame of the camera,

Fb, is oriented such that the z-axis is oriented along the

optical axis, the x-axis is oriented along the horizontal di-

rection of the image plane, and the y-axis is oriented parallel

to the vertical direction of the image. This is illustrated in

Fig. 1. The reference frame of the robot, Fr, is attached to

the robot’s center of rotation, with x-axis aligned along the

robot’s heading, y-axis oriented to the left of the robot along

the horizontal direction, and z-axis oriented upwards along

vertical direction. Fr (tk) denotes the pose of Fr at time tk.

This is illustrated in Fig. 2.

Without loss of generality, the origin of Fb and Fr are

the same. As discussed, the z-axis of Fb is coincident with

the x-axis of Fr,and the x-axis of Fb is coincident with the

y-axis of Fr. Thus they are separated by a constant rotation

Rbr. An IMU is rigidly attached to the robot, with its axes

aligned with Fr. Only rotations are measured by the IMU in

this work. In this paper, the static world frame Fw is defined

as the initial pose of the robot, i.e. Fw = Fr (t0).

B. Robot, Wheel Encoders and IMU

The wheeled robot follows the kinematic unicycle model

[27] and moves in a plane spanning the x and y axes of Fw

and Fr. It has two degrees of freedom. It can rotate about

the z-axis of Fr with an angular velocity ωzk and translate

along the x-axis with a linear velocity vxk with respect to

Fr. The location of the robot in Fw is the origin of Fr(tk),
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Fig. 2. Translation and Rotation of Robot Frame Fr

given by [xpk,ypk,0]
T . The orientation of the robot is θk, and

is measured by the angle between the x-axes of Fw and Fr.

This is illustrated in in Fig. 2.

Wheel encoders are used to measure the angular velocity

of each wheel and can provide information for odometry and

localization. The angular velocity of the left and right wheel

are given by ωLk and ωRk respectively, as shown in Fig. 2.

These measurements are converted into linear velocity of the

wheels by

vL = ωL × r

vR = ωR × r

where r ∈R
+ is the constant radius of the wheels. Denoting

the constant distance between the wheels as b ∈ R
+, the

linear and rotational velocity of the robot is given by

vx =
vL + vR

2
(1)

ωz =
vL − vR

b
. (2)

By numerically integrating the estimates of vxk and ωzk over

time, the pose estimate of the robot in Fw is given by




xpk

ypk

θk



=
tk

∑
i=t0











−sinθk∆t 0

cosθk∆t 0

0 ∆t





[

vxk

ωzk

]







where ∆t ∈R
+ is the time different between two time steps.

The IMU detects linear acceleration using accelerometers,

and detects angular velocities using gyroscopes. Due to the

limited motion of the robot, we use only one of the gyros

to measure angular velocity ωz. The orientation of the robot,

as estimated using the rate gyros, is given by

θk =
tk

∑
i=t0

ωzk∆t.

C. Pinhole Camera Model

Fig. 1 illustrates a camera taking two images from two

different poses F ∗
b and Fb (tk). F ∗

b is considered a static

reference frame, such as the pose at time t = 0. Fb (tk) is

considered a moving frame or current frame. The changes

which exist between the two poses are encapsulated by

(Tk,Rk). Fig. 1 also shows a collection of feature points that

all lie in the plane πs. The 3D coordinates of each feature

point, as measured from the reference frame Fb (tk), are

defined as vectors m j (tk)∈R
3. Similarly, the 3D coordinates

of each feature point as measured from F ∗
b are defined in

terms of constant vectors m∗
j ∈ R

3. Formally these vectors

are given as

m∗
j ∈R

3 =
[

x∗j ,y
∗
j ,z

∗
j

]T
,∀ j ∈ {1, . . . ,N}

m j (t) ∈R
3 = [x j (t) ,y j (t) ,z j (t)]

T
,∀ j ∈ {1, . . . ,N}.

Two images are captured by the camera at the two poses F ∗
b

and Fb (tk). This is modeled by projecting the feature points

onto the 2D image planes. The coordinates of the feature

points in these 2D planes are expressed as a normalized set of

3D coordinates, where depth along the z-axis is normalized

to one. The normalized image plane coordinates, as measured

from Fb (tk) are defined as vectors m j (tk) ∈ R
3. Similarly,

the normalized image plane coordinates of each feature point

measured from F ∗
b are vectors m∗

j ∈ R
3. These vectors are

expressed as

m∗
j ∈ R

3 =

[

x∗j

z∗j
,

y∗j

z∗j
,1

]T

,∀ j ∈ {1, . . . ,N}

m j (t) ∈ R
3 =

[

x j (t)

z j (t)
,

y j (t)

z j (t)
,1

]T

,∀ j ∈ {1, . . . ,N}.

D. Discrete and Continuous Euclidean Homography

In this work, a visual odometry method is developed from

the discrete and continuous Euclidean Homography matrices.

This gives a vision-based estimate of position, orientation,

and linear and angular velocities. While the discrete homog-

raphy has been used extensively, the continuous homography

seems to attract less attention.

Both planar homography cases assume all feature points

are coplanar1. Consider two images of points m(tk) on plane

πs. The transformation between the two images is given by

[7], [8]

m j = Rm∗
j +T. (3)

The relationship in (3) can be rewritten in terms of image

points as

m j = (R+
1

d∗
T n∗T )m∗

j

where n∗ = [n∗x,n
∗
y ,n

∗
z ]

T is the constant unit normal vector

of plane πs measured in F ∗
b , and d∗ is the constant scalar

distance from the optical center of the camera (i.e. the origin

of F ∗
b ) to the plane πs [7]. We assume that d∗ is known in

this initial investigation2. The matrix

Hd = R+
1

d∗
Tn∗T

1Methods to move beyond the assumption of coplanar points include
virtual parallax [16] or using continuous and discrete Essential matrices.
This is an avenue of future work.

2Depth estimation from motion is an open, but well investigated topic
[28], and will be included in future work
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is the well known Euclidean Homography Matrix, which we

will refer to as the discrete Homography Matrix. Given four

or more points, the matrix Hd(tk) can be recovered and used

to estimate the translation vector Tk and the rotation matrix

Rk [7].
In the continuous case, image point m j (tk) and its optical

flow ṁ j (tk) are measured rather than the image pair m∗
j and

m j (tk). The time derivative of m j (tk) satisfies

˙̄m j = ω̂m̄ j + v (4)

where ω̂(tk) is the skew-symmetric matrix of ω(tk). The

relationship in (4) can be rewritten as [8]

ṁ j = (ω̂ +
1

d∗
vn∗T )m j −

ż j

z j
.

The matrix

Hc = ω̂ +
1

d∗
vn∗T

is defined as the continuous Homography Matrix. Similar to

the discrete form, an algorithm exists to solve for Hc(tk) and

estimate the linear velocity vk and angular velocity ωk of the

camera.

III. APPROACH

We propose a localization method through fusion of

vision-based pose and velocity estimates with velocity es-

timates from an IMU and wheel odometry. The simulation

results from the fusion of vision-based estimates of pose

and velocity showed promise in [19]. By fusing the vision

system with an IMU and wheel odometry, the addition of

pose measurements and multiple velocity measurements will

improve the accuracy of localization. A Kalman filter is

used to perform the sensor fusion and incorporate the known

kinematics of the system to reduce the effects of sensor noise.
The system is described by the discrete system equations

xk = Fk · xk−1 + qk (5)

yk = Hk · xk + rk. (6)

In (5) and (6), xk is the state vector, Fk is the state transition

matrix, yk is the measurement vector, Hk is the measurement

matrix, and qk and rk are normally distributed random

processes with zero mean and covariance matrices Qk and

Rk respectively.
Localization of a kinematic unicycle mobile robot requires

knowledge the robot position xpk and ypk and rotation θk, all

measured in the world frame Fw. Robot velocity vxk and

angular velocity ωzk are included in the state, as measured

in the robot frame. A bias term βωk is included in the state

vector to cancel out the effect of the IMU measurement drift.
The state vector is given by

xk =
[

θk,βωk,ωzk,xpk,ypk,vxk

]T
∈ R

6
.

The state time-varying transition matrix Fk ∈ R
6×6 is given

by

Fk =

















1 0 ∆t 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 cosθk∆t

0 0 0 0 1 sinθk∆t

0 0 0 0 0 1

















.

where ∆t is the time different between tk−1 and tk. The state

process noise covariance matrix Qk ∈ R
6×6 is defined as

Qk =

















σω
3 0 σω

2 0 0 0

0 σ
β
1 0 0 0 0

σω
2 0 σω

1 0 0 0

0 0 0 σ v
3 0 cosθkσ v

2

0 0 0 0 σ v
3 sinθkσ v

2

0 0 0 cosθkσ v
2 sinθkσ v

2 σ v
1

















.

The process noise is designed as random walks between

the angular velocity and orientation, and linear velocity and

position. According to the random walk model, the change

of the state vector over time is constrained since some states

depend on each other, i.e. θk depends on ωzk and xpk, ypk

depend on vxk. The off-diagonal elements in Qk reflect such

constraints. The process noise on βωk is independent of the

other states. The elements of Qk are defined as

σω
2 =

(σω
1 )

2

2

, σω
3 =

(σω
1 )

3

3

and σω
1 is a tunable constant reflecting the expected amount

of change in ω . The terms σ v
i (i=1,2,3) and σ

β
1 are defined in

the same manner for linear velocity and bias.

In system equation (6), the measurement vector yk is

defined as

yk = [ωw,ωg,vw,vc,ωc,θd ,xd ,yd ]
T ∈ R

8
. (7)

In (7), ωw, ωg, ωc are measurement of angular velocity ωzk

from the wheel encoders in (2), rate gyro, and the contin-

uous Homography respectively. The terms vw and vc are

measurement of linear velocity vxk from wheel encoders and

continuous Homography. Since different conventions were

used to define camera and robot frame, all measurements

made from the vision-based estimation in yk are converted

from the camera frame to the robot frame by the constant

rotation matrix Rbr. The measurement matrix Hk ∈ (R)8×6 is

defined accordingly as

Hk =

























0 0 1 0 0 0

0 1 1 0 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

























.

The measurement noise covariance matrix Rk ∈ R
8×8 is

a diagonal matrix. For simplicity, the diagonal elements are

listed as a vector

diagonal(Rk) =
[

σω
w ,σω

g ,σ v
w,σ

v
c ,σ

ω
v ,σθ

d ,σ
x
d ,σ

y
d

]

∈R
8
.

The elements of Rk vary with according to the state of the

robot. Namely, σω
w and σ v

w are defined as

σω
w = (δ ω

w ∗∆t ∗ωw)+ (δ ω
w ∗∆t ∗ vw) (8)

σ v
w = (δ v

w ∗∆t ∗ωw)+ (δ v
w ∗∆t ∗ vw) (9)

where δ ω
w and δ v

w are constants. The other σ terms are con-

stants tuned according to the variance of each measurement.

1295



The value of diagonal elements in Rk determine the effect

of the corresponding measurements at the update step of

Kalman filter. A noisier measurement is considered to be less

trustworthy. Increasing the corresponding element in Rk will

give less weight to a less trustworthy measurement during

the Kalman filter update.

It is known that the wheel encoders provide accurate

measures of linear and angular velocity when the robot

has no motion. However, when the robot is in motion,

measurements from wheel encoders become less trustworthy.

Equation (8) and (9) show that when linear and angular

velocity measurements from wheel encoders are both zero,

the robot is still, and σω
w , σ v

w are zero, which means the

wheel encoder estimation dominates the other two sensors

modalities. If the robot is in motion, the values of σω
w , σ v

w

are proportional to velocity, therefore wheel encoders are

trusted less, and measurements from gyros and vision-based

estimation are taken into account to improve the estimates.

For comparison, a Kalman filter without visual odometry

method is also designed. The state vector and matrices in

(5) remain the same. There are only three measurements,

namely the first three measurements in (7). Therefore, the

measurement vector of the reduced system yk ∈ R
3 and the

measurement matrix Hk are made of first three rows of Hk.

Comparison of the experimental results for each system is

given in next section.

IV. EXPERIMENTAL RESULTS

Experiments were performed to test the proposed localiza-

tion method. For comparison purposes, the full system fusing

vision-based estimation, IMU measurements and wheel en-

coders is compared to the reduced system fusing only IMU

and wheel encoders. The robot used in experiments is a

Pioneer 3-DX differential drive robot. A laptop with Intel

Core Duo processor was fixed to the robot and collected all

measurements as well as performed all signal processing and

Kalman filter operations. The IMU is a Nintendo Wii Remote

(Wiimote) with MotionPlus. This IMU costs approximately

$42 (U.S. dollars), and represents an extremely low cost

option for an IMU.

A. Testing the Reduced System

In order to establish the performance of the reduced sys-

tem, simple experiments were performed. A human operator

drove the robot along a simple path in the hallways of the

Engineering and Computer Science building at the University

of Texas at Dallas. The path begins facing east and makes

four left turns of 90◦ to return to the starting point. The total

distance is approximately 100m.

Fig. 3 is a cropped section of an image that the reduced

system renders while in operation. The background image is

from Google maps, showing the location of the experiment.

As seen in the legend of Fig.3 the star denotes the starting

point of the robot. The green dashed line was added after-

wards in order to show the path that the robot was driven

along. The red line represents the path estimated using only

the wheel encoders to measure angular velocity. The blue

Fig. 3. Fusion of Wheel Encoders with IMU

“blob” represents the path of the robot estimated by using

only the Wiimote’s measurement of angular velocity. The

magenta line represents the path of the robot estimated using

the reduced system’s Kalman filter-based fusion of both

sets of angular velocity measurements. The wheel encoders

have several sources of error, which cause the path estimate

to appear crooked. As the distance traveled increases, the

encoders become less and less reliable. The MEMS rate-

gyros inside the Wiimote’s have a severe bias. This causes the

Wiimote’s estimated path to appear as circling around in an

epicyclic manner. Inspection of Fig.3 shows that the Wiimote

estimate is useless on its own. Despite this, the reduced

system manages to create an accurate and useful estimate of

its path simply by fusing the devices’ faulty measurements

and estimating the bias of the IMU. This gives a good

example that the reduced system is accurate. The addition

of pose and orientation estimates and an additional set of

velocities measurements will ideally improve the estimate

further.

B. Results of the Full System and Comparison With the

Reduced System

The full system is described in the body of this paper. The

experimental setup includes the same equipment described

earlier. The Wiimote and camera are mounted on top of the

robot. The camera used is a Matrix Vision BlueFox with

USB 2 interface. It has a resolution of 1024× 768 pixels.

The frame rate of the camera, when including all image pro-

cessing and Kalman filter calculations, is 24 frames/second.

The camera is calibrated to learn its intrinsic parameters and

lens distortion parameters. In order to establish an accurate

baseline across multiple experiments, two laser pointers are

mounted on the robot facing the floor, one on the front and

one on the back.

The camera is mounted such that the center of the camera’s

imaging surface is aligned with the robot’s center of rotation.

Efforts were made to align the camera axes with the robot

axes. A target consisting two white rectangles provide a set

of eight co-planar feature points. In this paper, the Wiimote

measures only angular velocity and thus can be mounted

anywhere on the robot as long as the axes are aligned and
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Fig. 4. Experimental Environment

it is tightly strapped down to the surface of the robot.

A straight-forward experiment was devised and ran for

each system. The robot is placed at the starting point as

pictured in Fig. 4. At the start, the robot’s wheels are aligned

with two marks on the start line. The laser pointers are

used to make sure the robot always has the same start

position, which is marked on the floor. For the full system,

a human operator selects the eight planar feature points that

are tracked with the Kanade-Lucas tracker [29].

The remainder of the experiment is fully automated and

is the same for both systems. The robot is commanded to

move along a V-shape trajectory and then go back along the

same path to the starting point. In reality, the robot can not

return to the exact starting point due to the drift, as shown

in Fig. 5(c). The laser pointers are used to note the stopping

point, which provides a ground truth. Before performing the

experiments, we first measure the distances from the robot

center of rotation(the mid-point between two wheels) to the

front laser point (called a) and back laser point (called b)

respectively. After each trial, the positions of laser points

are recorded as a′ and b′. Therefore the new position of

robot center can be located on line a′b′, and the offset to the

starting point is measured. The orientation offset is calculated

as

θ = arctan(
ya′ − yb′

xa′ − xb′
)

where (xa′ ,ya′) and (xb′ ,yb′) are the coordinates of a′ and b′

in the world frame.

Figs. 5 (a)-(c) show typical estimation results for a run of

experiment. Computation time did not allow both estimates

to run at the same time. The experiment was repeated 10

times for each system. The offset of the final robot position

from the staring point is measured and recorded as ground

truth for each trial. Then the estimation error is calculated

as the difference between the estimated offset from Kalman

filter and the ground truth. The sample mean and sample

standard deviation of the error along the world frame x-

axis, y-axis, the norm of the pose error, and the world frame

orientation θ , are presented for both systems in Table I and

graphically in Fig. 6. It is clear that both the mean and

variance of full system are significantly lower than that of the

reduced system for all measurements. The results show that

the full system with visual odometry effectively improves the

accuracy of the pose estimate when a planar scene is kept in

the field of view.
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Fig. 5. Typical estimation results of one trial: (a) pose V.S. time; (b)velocity
V.S. time; (c)position on y-axis V.S. position on x-axis

TABLE I

PERFORMANCE OF FULL SYSTEM VS. REDUCED SYSTEM

Full System Reduced System

Axis µ(E) σ(E) µ(E) σ(E)

FX
w -5.8271 12.9903 9.7607 15.7477

FY
w -7.3093 28.9184 -62.4058 53.0139

∥

∥R
2
∥

∥ 9.3478 31.7021 63.1645 55.3034

F θ
w 1.0829 1.4260 4.9971 3.4915
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Fig. 6. Summary of Experimental Data (10 trials of each system)

V. CONCLUSION

This paper presents a novel sensor fusion approach for

localization of a mobile robotic system. Continuous and

discrete forms of the Euclidean Homography Matrix are

used to recover pose and velocity information from camera

images. Wheel encoders and a low-cost IMU (a Wii Remote

controller), measure the linear and angular velocity of the

robot. A Kalman filter is used to fuse the velocity and

pose estimates from different sensors. Experiments were per-

formed to explore the performance of the proposed method.

It can be seen from experimental results that neither the

wheel encoders nor the Wiimote by themselves can be used

alone to accurately localize a robot. Fusion of wheel odom-

etry with an IMU does give a somewhat accurate estimate

of the actual robot motion. Fusing this type of system with

the proposed visual odometry method further improves the

accuracy of the system with respect to localization.

There are several avenues open for future work. Methods

such as virtual parallax and/or the continuous and discrete

Essential matrix will be used to perform visual odometry

with non-coplanar feature points. A method must be de-

termined for handling large scale movements of the robot

and camera, such that feature points can be allowed to enter

and leave the camera field of view without disrupting the

estimation, such as in [30]. Finally, extensive experiments

will be performed where the robot will navigate through

large-scale environments.
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