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Abstract— Prey animals in a group constantly face the trade-
off between foraging gain and predation risk. The domain of
danger concept was developed by ethologists to measure the
predation risk taken by an individual within a group. In this
work we make the analogy between information gathering for
an autonomous agent team and food gathering for a group of
animals to explore bio-inspired strategies for autonomous agent
teams in an information gathering scenario. The sum of areas
of domains of danger of the team is used as the measurement of
risk taken by the whole team. Several movement rules that let
an agent gather food nodes and/or shrink its domain of danger
according to the current layout of the team and food nodes are
proposed. The performance on foraging efficiency and team
domain of danger of these movement rules are investigated by
simulation. The results show that trying to shrink the domain
of danger of each individual while no food can be gained in
the near future doesn’t degrade the foraging performance of
the team and can effectively lower the risk taken by the whole
team by prevention of over-spreading.

I. INTRODUCTION

Autonomous agent teams have received a lot of attention

in recent years. One of the most popular applications is

to deploy autonomous teams composed of multiple agents

to gather information or provide surveillance over a certain

region. This scenario can be categorized into different sub-

genres according to the nature of the goal and the resources at

hand. We can employ the static coverage framework when we

have enough sensory powers to provide satisfactory coverage

to the region of interest with a static layout, or when our

sensor platforms only have limited mobility after the initial

deployment. A detailed overview of the basic approaches

in static coverage is given in [1]. On the other hand, when

the team does not provide enough sensory power to monitor

the region with a stationary layout, dynamic coverage comes

in. One approach in this area is cellular decomposition. The

region to be covered is divided into cells and each agent is

assigned to one or many cells. The cells are usually required

to exhibit desirable geometric properties such as convexity

so that agents can scan through the whole cell systematically.

Various methods in this area are reviewed in [2].

Another approach to dynamic coverage that has drawn a

lot of attention is inspired by the work from Hussein and

Stipanovic [3]. They extended the locational optimization

approaches used by the static coverage framework. The
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coverage of a location in the region is defined as the sum of

the sensing power projected by all agents to that location over

time. A distributive control law that guarantees the whole

region will be satisfactorily covered is also proposed. When

the mission only requires that each location be covered once,

the problem fits more into the exploration framework. In the

recent work of Haumann et al. [4], the dynamic coverage

framework from Hussein and Stipanovic was combined with

the frontier-based exploration in [5] using an optimization-

based control scheme to control the orientation of each agent

to efficiently explore the region of interest.

In this paper we make the analogy between information

gathering for an autonomous agent team and food gathering

for a group of animals. Consider a region with information

as representative of food that our agents are trying to gather.

A pack of animals foraging in a group is solving the same

problem as the autonomous agent team. To forage efficiently

as a group, individuals in a group have to avoid foraging

interference when they get too close to each other. This

is very similar to the way we want a team of autonomous

agents to act on an exploration mission, avoiding the waste of

sensory power. The tendency to avoid foraging interference

serves as a imaginary repellent force that keep individuals

from getting too close to one another. What keeps individuals

within a group is the desire to avoid predation risk. An

individual that is separated from the group is more likely

to be targeted by a predator. The desire to forage without

interference and to avoid predation risk guides individuals

in the group foraging scenario. The purpose of this paper

is to look into these two different aspects that have rich

literature in ethology study and explore their potential in a

collaborative autonomous agent team framework.

II. PRELIMINARIES

A. Domain of Danger

The domain of danger (DOD) idea was proposed by

Hamilton in [6] as a measurement of predation risk taken

by each prey individual within a group. It is assumed that a

predator that is currently undetected by prey might show up

anywhere within the field, even inside of the group. Also,

when the predator shows up it will pursue the closest prey.

Following this assumption, the domain of danger of a specific

prey individual within the group is defined to be the region in

which, if the predator shows up, the individual will be closer
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to the predator than any other individual in the group. In other

words, the domain of danger of an individual is its Voronoi

polygon. Consider a set of n agents P= {p1, p2, ..., pn} where

pi ∈ R
2. The Voronoi polygon of an agent is denoted by:

V (pi) = {x|‖x− pi‖ ≤ ‖x− p j‖;∀ j 6= i}

However, under the standard definition of a Voronoi poly-

gon, agents on the boundary will have a Voronoi polygon

that extends to infinity. This will not only cause some

inconvenience in the computation of the Voronoi polygon,

but also implies that prey will be affected by predators that

show up at a distance of infinity, which is unrealistic. To

deal with this problem, James et al. proposed the limited

domain of danger idea in [7]. The idea of the limited domain

of danger is to limit the domain of danger within a certain

radius from the individual so that it doesn’t extend to infinity.

It can be formally defined as:

DOD(pi) =V (pi)∩CRd
(pi)

CRd
(pi) = {x|‖x− pi‖ ≤ Rd}

It is the intersection of a circle centered at an agent with

a radius Rd and its Voronoi polygon. In the seminal work

of optimal escape theory from Ydenberg and Dill [8], it

is stated that prey don’t always react to the presence of a

predator by fleeing. Prey will only start to flee from the

predator when the predator is closer than a certain distance

known as the optimal escape distance to preserve energy

and valuable foraging time. By using the limited domain of

danger concept with radius Rd , we assume that agents are

not concerned about a predator further away than Rd .

The area of the domain of danger can be easily translated

to the probability of being targeted by a predator in a scenario

where we know that there is exactly one predator in a certain

region. If we denote the probability of a predator being in a

region of area A by ε , then the predation risk of a prey pi is

ε×DOD(pi)/A. Although the exact number of predators and

the probability of their location in a certain region is usually

unavailable, it’s certain that the sum of the areas of domains

of danger of the team is proportional to the predation risk

taken by the whole team, which we denote by PR. We can

write

PR ∝
n

∑
i=1

DOD(pi)

With the domain of danger concept, several movement

rules for predator avoidance have been proposed. The sim-

plest Nearest Neighbor rule where each prey moves toward

its closest neighbor is proposed by Hamilton in [6]. Viscido

et al. later on proposed the Local Crowded Horizon rule

(LCH) where each prey moves toward the most crowded

direction instead of just toward the closest neighbor in [9].

James et al. also proposed a Minimum Time movement rule

(MT) in [7] which takes into account the orientation of the

prey.

The original DOD model and movement rules are for

the case where prey don’t have explicit knowledge of the

predator’s location. In [10], Viscido et al. proposed a post-

detection movement rule for the scenario where the predator

has been detected. The resulting movement of this rule

is a combination of moving away from the predator and

shrinking one’s DOD. The weighting on the away-from-

predator direction is inversely proportional to the distance

from the prey to the predator. Some empirical evidence for

this model is provided in [11].

Almost all of the aforementioned movement rules are

heuristic-based approaches to shrink one’s domain of danger.

In this paper, we propose a new approach that explicitly uses

the size of DOD as the objective function to be minimized

by each individual. The details of the new movement rule

based on this approach will be described in section IV.

B. Producer-Scroungers/Information Sharing

Besides predation risk avoidance, another important aspect

for group-living animals is foraging. The Producer-Scrounger

(PS) model, as explained in [12], assumes some agents

are producers that actually search for food and others are

scroungers that just share the food found by producers. In

most of the PS models, the finder of a food patch gets a

finder’s share from the patch and then shares the rest of

the patch with scroungers that join the patch. The effect

of finder’s share on the dynamics of Producer-Scrounger

interaction is investigated by Giraldeau et al. in [13]. Ob-

viously a group with more producers will find food more

efficiently. But individually, a scrounger might have higher

food gain than a producer since it can join different food

patches found by different producers without spending time

searching for them. While most of the literature in this area

of research uses game theoretical approaches to investigate

the ratio between producers and scroungers, there is a set of

research that focuses on the impact of the producer-scrounger

role on the spatial properties of the group, such as the work

of Flynn et al. in [14]. It is shown that the producers are more

likely to be on the boundary of the group to avoid potential

competitors, and the scroungers are more likely to stay near

the center of the group to monitor multiple producers at once

to maximize the chance of sharing a food patch.

Besides the PS model, there is the Information Sharing

(IS) model which is based on slightly different assumptions.

The IS model assumes that an agent can search for food and

monitor its groupmates for opportunities to join a food patch

at the same time. The differences and similarities of the PS

and IS model are throughly discussed in [13], [15], and [16].

Vickery et al., in [15], introduce an opportunistic foraging

strategy as an intermediate strategy between producer and

scrounger. An opportunistic agent can search for food and

be aware of joining opportunities at the same time with a dis-

counted efficiency. Various factors that affect the distribution

of population using each strategy are also identified.

In this paper we will investigate movement rules that lead

agents to switch between two strategies, gathering food by

themselves or following other agents, according to various

factors such as the distribution of food in the field and the

layout of the team.
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(a) 10th step (b) 30th step (c) 90th step

Fig. 1. (a),(b), and (c) are snapshots of a simulation run in different time
steps. Green squares represent food nodes. Yellow grids are empty. Black
dots are the agents. A circle in blue around each agent is the foraging region
of that agent. The red line extended from the agent indicates the current
heading of that agent. The red polygons around the agent represent the DOD
of that agent.

III. PROBLEM STATEMENT AND SIMULATION

We define our field to be the R2 space. The region of

interest is a subset of the field. Agents are considered to live

in the field, always moving with a constant speed and able

to change their heading direction with an unlimited turning

rate. We assume agents can see every food node as well as all

other agents, and hence are capable of generating the DOD

of current or nearby positions.

A food node is a point in the field that contains a unit

amount of food. Food nodes are spread in the region of

interest with a fixed density on a grid. This can be considered

as discretizing the field and placing one food node on the

center of each grid. An agent will collect every food node

within its foraging radius. Once a food node is collected

by an agent it is removed from the field. When foraging

regions of multiple agents overlap, we randomly pick one of

the agents to gather all the food nodes within the overlapped

area.

The simulation is coded in Java using the MASON multi-

agent simulation toolkit 1. At the beginning of every sim-

ulation the region of interest is filled with food nodes and

agents will only be initialized within the region of interest

using a random seed. Note that although the placement of

the food nodes involves discretization of the field, agents and

food nodes still live in a continuous field. Once the agents

are initialized, the simulation starts to advance in steps.

At the beginning of each step, agents are fed with the

information of the position of all food nodes and other

agents. Each agent then proposes a position to move to

according to the movement rule it uses. After each agent has

proposed a position, agents are moved from their current

location to the proposed position in a random order. Food

nodes that are within the foraging radius along the path

are removed from the field and considered gathered by the

agent. Fig.1 shows snapshots of different time steps of one

simulation run.

IV. MOVEMENT RULES

In this section we describe different movement rule in

detail in the form of pseudo-codes. Some basic notations

1MASON: Multi-Agent Simulator Of Neighborhoods/Network.
http://cs.gmu.edu/˜eclab/projects/mason/

and operations are explained as following:

p ∈ R2: current position of the agent

P = {pi, i = 1, ...,n}: set of n candidate positions

F = { fi, i = 1, ...,m}: set of all available food positions

DODp: the domain of danger of agent at p

FoodGain(pa, pb): food gain by moving from pa to pb

RandomPick(P): randomly pick an element from set P

NearestPosToFood(P, f ) : p ∈ P that’s closest to food f

NearestFoodTo(p,F) : nearest food to p in set F . If F is

empty, then return /0

The candidate position set P are filled with the possible

positions the agent can be in the next time step. In the

simulation we pick eight evenly spaced positions on a circle

centered at the agent with a radius that is equal to the distance

an agent can move in one step.

A. Greedy Foraging

Movement Rule A Greedy Foraging

1: for all pi ∈ P do

2: FoodGainAt[pi]← FoodGain(p, pi)
3: end for

4: if max(FoodGainAt[])> 0 then

5: return argmax(FoodGainAt[])
6: else

7: fNear← NearestFoodTo(p,F)
8: if fNear = /0 then ⊲ No food left

9: return RandomPick(P)
10: else

11: return NearestPosToFood(P, fNear)
12: end if

13: end if

Agents using this movement rule compute the food to be

gained by moving to each candidate position and picking the

one with the most food gain. When there is no food to be

gathered in one time step, the agent picks the position that

will bring it closer to the closest food in the field. When

there is no food left in the field, agents move randomly.

Pseudo-code is shown in movement rule A.

B. Greedy Foraging with De-conflict

For this movement rule we need to define two more

notations:

DODp: the limited Voronoi polygon for the agent at p. 2

FDODp : the set of available food that is within DODp.

Movement Rule B Greedy Foraging with De-conflict

Replace line 7 in movement rule A with:

fNear← NearestFoodTo(p,FDODp)

This movement rule is the same as movement rule A when

there is still food to be gathered in one step. But when no

food can be gathered in one step, the agent only tries to move

2For the generation of Voronoi partition, we use the Mesh library which
is kindly shared by Lee Byron on http://www.leebyron.com/
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toward the closest food within its limited Voronoi polygon.

Since every food node within the Voronoi polygon is closer

to the agent than any other agents, the agent is guaranteed to

get the food node it aims for before other agents. Adding this

de-conflict mechanism eliminates the less efficient behavior

where multiple agents aiming for the same food node will

have to backtrack for other food nodes when the food is

gathered by the closest agent.

C. Greedy Foraging then DOD

For this movement rule, one more operation is introduced:

Area(DOD(pi)): Area of DOD when agent is at pi.

Movement Rule C Greedy Foraging then DOD

Replace line 7 in movement rule A with:

fNear← NearestFoodTo(p,FDOD(p))

And replace line 9 in movement rule A with the following

lines:

1: for all pi ∈ P do

2: DODAt[pi]← Area(DOD(pi))
3: end for

4: return argmin(DODAt[])

This movement rule takes into account the risk avoidance

aspect which was left out in movement rule A and B. When

there is no food left in one’s DOD, instead of moving

randomly, the agent tries to minimize the size of its DOD.

It does this by calculating the size of the DOD at each

candidate position assuming all other agents are stationary. In

other words, when an agent can not contribute to the foraging

efficiency of the team, it tries to shrink the DOD of itself and

of the team. What will then often happen is after following a

groupmate for a while, an agent’s Voronoi polygon will again

cover some available food nodes and the agent can gather

them. This strategy of following group-mates and sharing

the food found by them is similar to the scrounger strategy

mentioned in section II-B.

D. Greedy DOD then Foraging

In this movement rule the risk avoidance aspect is given

a higher priority than food gathering. A position in the

candidate position set is safe if the size of DOD there is

smaller than a safety threshold. When there are no safe

positions, the agent moves to the position with the smallest

DOD. When safe positions are present, the agent picks the

one with the most food gain or brings it closer to the closest

food within its DOD. If there is no food left in its DOD

at this point, the agent will go to the safe position with the

smallest DOD.

V. RESULTS AND DISCUSSION

To investigate the performance of all these movement

rules, we ran 200 simulations using the same set of randomly

generated initial layouts of agents. The size of the food

region is 100 by 100. Agents have a speed of 1, foraging

radius of 5, and radius of DOD of 100. Each run will stop

Movement Rule D Greedy DOD then Foraging

1: for all pi ∈ P do

2: DODAt[pi]← Area(DOD(pi))
3: if Area(DOD(pi))≤ threshold then

4: Sa f ePos[pi]← Area(DOD(pi))
5: end if

6: end for

7: if Sa f ePos[] = /0 then ⊲ No safe enough position

8: return argmin(DODAt[]) ⊲ Try to shrink DOD

9: else

10: for all pi ∈ Sa f ePos do

11: FoodGainAt[pi]← FoodGain(p, pi)
12: end for

13: if max(FoodGainAt[])> 0 then

14: return argmax(FoodGainAt[])
15: else

16: fNear← NearestFoodTo(p,FDODp)
17: if fNear = /0 then ⊲ No food left in DOD

18: return argmin(DODAt[])
19: else

20: return NearestPosToFood(Sa f ePos[], fNear)
21: end if

22: end if

23: end if

when the 500th step is reached or when the termination

condition is met. We use different termination conditions for

different movement rules. For movement rules A and B, once

all food nodes are gathered, agents start to move randomly.

The run is terminated when this happens. For movement rule

C we terminate the simulation when there is no food in the

region and when the team DOD stops changing for 20 steps.

When the run is terminated before 500 steps we assume that

the team DOD stays the same from termination until the

500th step. For movement rule D, we set the safety threshold

for DOD as 1
2
×1002

π , which is half the size of the full DOD

circle. No termination condition is enforced for movement

rule D.

At each time step, the percentage of the food left with

respect to the initial amount of food nodes at the beginning

of each run is logged. Also, the ratio of the size of the team

DOD to the maximum possible size of the team DOD is

logged. The team DOD is at its maximum when the DOD

of each agent is a full circle with a radius of 100. We

also compute an ideal optimal foraging rate as a reference

point for the foraging performance of the team in different

movement rules. The rate is calculated by assuming that at

every step each agent gathers the maximum amount of food

possible according to the size of its foraging region. For

example, an agent with a foraging radius of 5 and a speed

of 1 can cover an area of (5× 2)× 1 = 10. Assuming this

area is full of food nodes, we can calculate the ideal optimal

foraging rate with a given food density. This ideal optimal

rate can only be achieved in some very special cases but

nevertheless serves as a good upper bound of the foraging

performance.
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A. Foraging Performance of Different Movement Rules

From Fig. 2 we can see that all four movement rules

give similar performance in foraging efficiency. The offset

of the initial food left from 100% is due to the fact that at

step zero, agents gather all the food without even moving.

In the first 50 steps, all four movement rules have almost

the same efficiency as the ideal optimal foraging rate. For

movement rules A, B, and C, this is because when the field

is still densely populated with food nodes, agents are likely

to still have some candidate position that will give the ideal

optimal food gain. It is the same for movement rule D but

agents might not be able to move to these positions due to

constraints on DOD size. At the beginning of each run agents

are more likely to have a DOD bigger than the threshold,

so agents will try to gather together to shrink their DOD.

However, food nodes in the field are still abundant at this

stage, so agents can still have a very high foraging rate even

if they are not trying to gather the most food they can.

After the first 50 steps, we can see that the foraging effi-

ciency of all four movement rules start to degrade gradually.

The difference from the ideal optimal rate starts to get more

noticeable around step 100. At this stage there are only about

60% of the food nodes left in the field. For most of the

agents, there are now no candidate positions that can provide

the ideal optimal foraging rate. The four different movement

rules still perform fairly similarly.

When there is less food left in the field, movement rule

D performs worse than other rules. This is due to the fact

that once agents gather into a packed group, the threshold on

DOD will prevent them from moving too far away from the

group. This hampers the ability of the team to gather food

nodes near the boundary of the region of interest.

From step 300 to the end, we can see that movement rules

B and D perform very similarly and are slightly better than

movement rule A. At this stage, there are usually few left-

over food nodes distributed sparsely in the region. Movement

rule A doesn’t have a de-conflict mechanism, so multiple

agents will often move toward the same food node and hence

converge into a small pack; when that food node is collected

by one of the agents, this small pack of agents will again

aim for the same food node that is closest to all of them. The

lack of de-conflict mechanism greatly impacts the foraging

efficiency when food nodes are sparse.

B. Domain of Danger Performance

Fig.2(b) shows how each movement rule performs in the

domain of danger aspect. Since we use the same set of 200

layouts for all movement rules, they have exactly the same

team DOD in the beginning.

Movement rule A and B do not take DOD into account,

yet they display fairly constant trends in team DOD. The

team DOD for movement rule A stays around the same level

for the first 200 steps and then drops gradually after that.

As mentioned in section V-A, when food nodes are sparse

agents using movement rule A tend to gather into a small

pack, which results in a small team DOD. On the other hand,

agents using movement rule B tend to spread out due to the
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Fig. 2. Average performance of different movement rules over 200 runs
with 5 agents.
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Fig. 3. Average performance of different movement rules over 200 runs
with 10 agents.

de-conflict mechanism when the food distribution becomes

sparser. So the team DOD rises significantly toward the end

of each run.

Movement rule C has a similar performance in team DOD

as movement rule B until the 200th step. This is predictable

in that agents using these 2 movement rules act exactly the

same when there are still food nodes within the agents’ DOD.

When the food nodes become sparse, agents using rule B will

spread and the team DOD will grow. There is no mechanism

to shrink the team DOD. Agents using movement rule C will

also spread due to the de-conflict mechanism, but when an

agent has no food within its DOD, it tries to shrink it. This

counteracts the spread and result in the shrinkage of team

DOD. The fact that these 2 movement rules have almost

identical foraging efficiency indicates that trying to shrink the

DOD when there is no food to be gained does not degrade

the foraging efficiency and helps the team tremendously in

maintaining a smaller DOD.

For movement rule D, the team DOD drops in the first

50 steps because most agents will have a DOD above the

safety threshold initially and are actively trying to shrink

it. As mentioned in section V-A, this makes food nodes on

the boundary hard to gather. With a lowered team foraging

efficiency, fewer agents will have empty DODs and be in

DOD shrinking mode. As a result the performance in team

DOD of this rule is lower than that of rule C.
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C. Scaling of performance

Another 200 runs of simulation with 10 agents are per-

formed with the same set of parameters to investigate the

scaling of performance. The result is shown in Fig. 3. With

10 agents, the ideal foraging rate is doubled and the finishing

time is cut in half. Fig. 3 (a) and Fig. 2 (a) show the

same characteristic. All movement rules perform closely

to the ideal case in the beginning, and then the foraging

performance degrades gradually. What is slightly different

from the 5-agent case is that the foraging performance of

movement rule D is no longer significantly different from

other rules. It can also be observed from Fig. 3 (b) that

the dip of team DOD in the beginning of the simulation

is not that noticeable anymore. The drop toward the end is

faster than that of rule A. This indicates that with double the

amount of agents but still the same region, the initial layout

of the team no longer placed that many agents above the

safety threshold. Agents using movement rule D can start

gathering food greedily right away. Also even toward the

end of each run when the food nodes are sparse, agents can

still gather food without suffering too much from the safety

constraint.

From Fig. 3 (b) we can also see that the performance data

on different movement rules are smoother, which indicates

the performances are more consistent throughout the 200

runs. Teams using movement rule B still spread out when

the food is sparse, while the performance of other rules are

very similar, especially before 200th step. When the agent-to-

area ratio is high, agents will have food nodes in their DOD

most of the time, where the behavior from rules A, C, and

D are similar. Also, in this situation rule A although lacking

a de-conflict mechanism, doesn’t suffer much in foraging

efficiency.

VI. CONCLUSIONS

In this paper we proposed and investigated several move-

ment rules inspired by the DOD concept and the producer-

scrounger game in animal behavior studies. DOD is used by

ethologists to measure and model the predation risk taken by

an individual within a group. The producer-scrounger game

focuses on two different tactics used by group-living animals

in group foraging situations. Producers search for food by

themselves, and scroungers follow producers to share their

findings.

This paper formulates a problem where a team of agents

with perfect information have to gather all the food within

the region of interest and also keep the team DOD small.

Four movement rules are proposed and their performances in

foraging and team DOD are investigated. All four movement

rules have similar foraging efficiency when the food is

still abundant in the region and the performances gradually

degrade as the food becomes sparser. Most of the time

the team takes twice as long as the ideal optimal case to

finish collecting all the food nodes, except rule D. The

constraint on size of DOD degrades the foraging performance

significantly when food nodes are sparse. In most runs with

5 agents, movement rule D is not capable of collecting all the

food nodes in time. When the agent-to-food ratio is higher,

the difference in foraging performance and team DOD of

different movement rules becomes smaller. A Voronoi-based

de-conflict mechanism can indeed enhance the foraging per-

formance of the team, but without a counteract mechanism

the team DOD performance will suffer greatly when food

is sparse. Trying to shrink the DOD while there is no food

to be gained in the near future doesn’t degrade the foraging

performance and also results in good performance on team

domain of danger.

VII. FUTURE WORK

The authors are currently focusing on formalizing the

DOD-based risk avoidance behavior in an optimization

framework as a gradient descent algorithm. They are also

developing a modified domain of danger definition to take

into account additional factors such as vigilance, cues from

predators, and obstacles, to further enhance the bio-inspired

risk avoidance algorithm.
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