
Global Stabilization of a Chain of Integrators with Input Saturation

and Disturbances

Shreekant Gayaka and Bin Yao

Abstract— In this paper, the problem of global stabilization
for a chain of integrators in presence of input saturation and
disturbances is solved. A novel and elegant approach to solve
this problem, in absence of disturbances, was proposed by Teel
[1] using saturation functions and coordinate transformation.
With Teel’s work as foundation, many results have been
proposed to improve the performance of tracking/stabilizing
controllers for chain of integrators. However, in presence of
disturbances, the coordinate transformation can considerably
shrink the region where the controller is unsaturated. In this
work, we present a modified backstepping like approach to

solve the global stabilization problem which does not rely
on coordinate transformation. Comparative studies performed
using a third order integrator chain proves the effectiveness of
the proposed scheme.

I. INTRODUCTION

Controller design in presence of input saturation is a

theoretically challenging problem with deep practical impli-

cations. Among various approaches for dealing with input

magnitude saturation, anti-windup schemes, model predictive

control, and nested saturation functions are most popular. In

anti-windup based schemes ([2], [3], [4]), a controller is first

designed without any regard to the actuator limits, and then a

modification is introduced to minimize the adverse effects of

saturation. Model predictive control (MPC), which involves

solving an open-loop optimization problem at each step, is

adept at dealing with hard constraints and is fast becoming

a useful tool in dealing with saturation problems [5], [6].

The main challenge for MPC based techniques is to address

modeling uncertainties, which are inherent to any realistic

system model. Teel introduced two of the most widely used

tools for control of systems with input saturation – the nested

saturation functions [1] and the small-gain theorem [7]. The

nested saturation function approach was first proposed by

Teel in 1992 [1] to solve the problem of global stabilization

of a chain of integrators with input saturation. The first step

of the design involved a coordinate transformation, which

would transform the system to a feedforward form. In the

second step, saturation functions were used to construct a

nested control law in terms of the transformed coordinates

to achieve global stabilization. Subsequently, this approach

has been extended to various classes of nonlinear systems in
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feedforward form under various assumptions (see [8]). Anti-

wind up schemes [2], low gain designs [9], [10] and quadratic

programming based approaches were also used to solve this

problem. However, as noted in [11], it is either difficult to

obtain a stability proof for such techniques, or they are too

expensive computationally to be practical. The authors would

like to mention that the literature on saturated control is rich

enough that an exhaustive review of all techniques is beyond

the scope of this paper.

For systems which are chain of integrators type, many

ingenious modifications to Teel’s original design have been

proposed to improve the transient response and robustness

of the controller [12], [11], [13]. But, as all of these designs

were based on [1], they also inherited the limitations of that

approach. Particularly, as will be shown in the next section, in

presence of bounded input disturbance the region where the

controller is unsaturated shrinks drastically. In the worst case,

it may even become theoretically impossible to guarantee

the stability of such controllers. This is to be expected as

all the transformed coordinates depend on the last state of

the integrator chain, the dynamics of which includes the

input disturbances. Thus, the input disturbances affect the

dynamics of every state in the transformed coordinates. This

implies that the parameters for all saturation functions need

to be chosen conservatively to accommodate the effect of

input disturbances. It should be now evident that the design

conservativeness in presence of input disturbances can be

overcome and the tuning of controller parameters can be

made more transparent if the controller design can be carried

out directly based on the physical states of the actual system

instead of the fictitious transformed states in [1]. Along

this line, in [14], globally stable backstepping based designs

were proposed for the second order linear motor system in

presence of uncertainties, and experimental results showed

the effectiveness of the designs. However, the controller

design suffers from the same problems as the conventional

backstepping designs – “explosion” of terms with increasing

system order. Thus, aside from the complexity issue of the

resulting controller, extension of the approach [14] to higher

order systems proved to be very difficult. In this work, we

build on the framework proposed by Teel, but lay more

emphasis on the design of saturation functions such that a

modified backstepping like approach can be used to solve

this problem. Explicit and systematic selection of controller

parameters to quantitatively meet various performance re-

quirements is also given. Comparative simulation studies

have been performed on a third order integrator chain and

the obtained results have verified the effectiveness of the

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3784



proposed scheme.

II. MOTIVATION AND PROBLEM FORMULATION

Consider a chain of integrator with input disturbance

ẋ1 = x2

ẋ2 = x3

...

ẋn = u+ d(t)

y = x1 (1)

where |u| ≤ uM , |d(t)| ≤ dM and dM is a known constant.

The objective of the present work is to design a globally

stabilizing controller such that

1) x1 tracks yd with steady-state error |ess| ≤ δ
2) ess(t) should have the desired transient performance

in the unsaturated region.

We will make the following assumption regarding the

extent of input disturbance and the reference trajectory

A1: The extent of disturbances and the desired trajectory

is such that

dM < uM − λM and

∣

∣

∣y
(n)
d (t)

∣

∣

∣ ≤ λM , ∀t (2)

Let us first investigate the effect of this disturbance on

Teel’s coordinate transformation based designs (e.g., [12]).

All those designs use the following coordinate transformation

[1]

yi =

n
∑

j=i

tij x̃j , j = 1, . . . , n

(3)

where x̃j = xj − y
(j−1)
d and T = [tij ] is the transformation

matrix given by

tij =







1, 1 ≤ i ≤ n, j = n
0, i = n, 1 ≤ j ≤ n− 1

∑n

m=i+1 kmtm,j+1, i ≤ n− 1, j ≤ n− 1

With this, the dynamics of the transformed states can be

expressed as










ẏ1
...

ẏn−1

ẏn











=











0 k2 · · · kn
...

. . .
. . .

...

0 · · · 0 kn
0 · · · · · · 0





















y1
...

yn−1

yn











+











1
...

1
1











[

u(t)− y
(n)
d + d(t)

]

(4)

The control law presented in [12] takes the following form

u = y
(n)
d (t)− σn (knyn + σn−1 (...+ σ1(k1y1))) (5)

where σi are non-decreasing saturation functions satisfying

(1) sσi(s) > 0, ∀s 6= 0

(2) σi(s) = s, ∀|s| < Li

(3) |σi(s)| ≤ Mi, ∀s ∈ R (6)

where Mi and Li are some positive design parameters with

Mi > Li. To account for the disturbances, the inequalities

proposed in [1] should be modified as follows to ensure that

the tracking error can be steered into a neighborhood of zero

globally:

|y
(n)
d | ≤ uM −Mn

Li+1 ≥ 2Mi + dM , i = 0, ..., n− 1 (7)

with M0 = 0. From (4), we see that due to the coordinate
transformation, the disturbance affects all the states, although
it appears only in the input channel in the original coordi-
nates. This makes the design procedure rather conservative
in terms of the level of disturbances which can be handled.
Specifically, for the conditions in (7) to be satisfied, it is
necessary that

uM > Mn > Ln

≥ dM + 2Mn−1 > dM + 2Ln−1

≥ dM + 2(dM + 2Mn−2) > dM + 2(d+ 2Ln−2)
..
.

..

.

≥ dM + · · ·+ 2n−1
dM = (2n − 1)dM

It is thus clear that if the input disturbance d(t) is large

enough such that dM ≥ uM/(2n − 1), then this approach

would not work as the robust stability conditions (7) can

never be met. For example, consider the stabilization problem

for a third order chain of integrator with uM = 10, and

dM = 4. As dM = 4 > 10/7, the above design cannot be

applied.

The above analysis shows the conservativeness of ap-

proaches which rely on coordinate transformation. In this

work, it will be shown that such conservativeness can be

removed by using a backstepping like technique, which does

not require coordinate transformation. In contrast to the

condition uM > (2n−1)dM a much less restrictive condition

of uM > dM as assumed in assumption A1 is sufficient for a

guaranteed global stability in the presence of disturbances.

III. MAIN RESULT

In this section, we present the proposed backstepping

based controller design for robust global stabilization of an

integrator chain and the main theoretical results. We begin

the section by introducing the saturation functions used in the

present work. Next, a set of inequalities are proposed such

that when satisfied, the states of the tracking error dynamics

will reach in a finite time an invariant region, where the

controller is unsaturated independent of the initial conditions.

Once within the unsaturated region, desired properties of

a linear controller, e.g., exponential rate of convergence,

desired transient response and arbitrarily good disturbance

rejection performance are guaranteed. Necessary and suf-

ficient conditions for the existence of such a control law,

and a systematic way of choosing the controller parameters

to achieve the desired closed-loop performance are also

presented.

A. Saturation Functions

For each of zi, i = 1, . . . , n, to be defined later, the non-

decreasing saturation function σi(zi) used in the proposed
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Fig. 1. Saturation function

design (see Fig.1) is required to satisfy a set of more stringent

conditions than those used in Teel’s work [1]:

(a) ziσi(zi) ≥ 0, ∀zi (8)

(b) σi(zi) = kizi, ∀|zi|≤li (9)

(c) σi(zi) = Mi(sign(zi)), ∀|zi|≥Li (10)

(d) 0 ≤
∂σi

∂zi
≤ ki, ∀zi (11)

where li, Li,Mi and ki are some positive design parameters

to be specified later. These parameters satisfy li = βiLi with

βi ≤ 1, and Mi = kili(1 + γi) with γi ≥ 0. Essentially,

the interval for zi is divided into three different regions -

Ωi1 = {zi : |zi| ≤ li}, Ωi2 = {zi : |zi| ≤ Li} and Ωi3 =
{zi : |zi| > Li}. For the last saturation function, we can

choose γn = 0, βn = 1 for σn, which implies Ωn1 = Ωn2.

B. Finite-time Convergence to Unsaturated Region

We will use the states of the tracking error dynamics given

by x̃i = xi− y
(i−1)
d to simplify the analysis. System (1) can

be rewritten as follows

˙̃x1 = x̃2

˙̃x2 = x̃3

...

˙̃xn = u− y
(n)
d + d(t) (12)

Step 1: A modified backstepping based approach will be

presented here to stabilize the tracking error dynamics (12).

Define z1 = x̃1 − α0, where α0 is used for uniformity of

notation and is given by α0 = 0. Let the virtual control

law for the first step be α1, and the virtual control law

discrepancy be given by z2 = x̃2 − α1. Then, we have

ż1 = ˙̃x1 = x̃2 = z2 + α1 (13)

In order to stabilize the z1-dynamics, we choose

α1(z1) = −σ1(z1) (14)

where σ1(z1) is as defined in the preceding section. Substi-

tuting (14) in (13), we get

ż1 = z2 − σ1(z1) (15)

Step 2: As in step 1, we choose α2(z2) = −σ2(z2) and

denote the virtual control input discrepancy by z3 = x̃3−α2.

Then, taking derivative of z2 = x̃2 + σ1(z1), we obtain

ż2 = ˙̃x2 +
∂σ1

∂z1
ż1 = x̃3 +

∂σ1

∂z1
(z2 − σ1(z1))

= z3 + α2(z2) +
∂σ1

∂z1
(z2 − σ1(z1))

= (z3 − σ2(z2)) +
∂σ1

∂z1
(z2 − σ1(z1)) (16)

The difference in the standard “cancellation” based back-

stepping design and the proposed approach should be clear

from (16). As opposed to typical backstepping based ap-

proach where the effect of α̇1 is completely canceled by

incorporating appropriate terms in α2, we do not cancel the

terms resulting from α̇1. Furthermore, the α2 is a function

of z2 only, whereas in standard backstepping designs, the

virtual control depends on z1 and z2. This results in a much

simpler control law for the proposed approach. Naturally,

the resulting closed-loop error dynamics of the proposed

approach will be significantly different from those in the stan-

dard backstepping based designs and novel global stability

and performance analysis will be needed as detailed later.

Step i: At the ith step of the proposed design, let the

desired virtual control law αi and the virtual control input

error zi be defined as follows

zi = x̃i − αi−1(zi−1)

αi = −σi(zi) (17)

Then, the following lemma can be proved.

Lemma 1. The derivative of the virtual control input error

zi is given by

żi = zi+1−σi(zi)+
i−1
∑

j=1

{[

j
∏

r=1

∂σi−r

∂zi−r

]

(zi−j+1 − σi−j(zi−j))

}

(18)

Proof. This lemma can be proved by induction and has been

omitted due to space restrictions. �

Thus, the virtual control law error dynamics żi can be

written as

ż1 = z2 − σ1(z1)
· · ·

żi = zi+1 − σi(zi)

+
i−1
∑

j=1

{[

j
∏

r=1

∂σi−r

∂zi−r

]

(zi−j+1 − σi−j(zi−j))

}

· · ·

żn = u+ d(t)− y
(n)
d

+
n−1
∑

j=1

{[

j
∏

r=1

∂σn−r

∂zn−r

]

(zn−j+1 − σn−j(zn−j))

}
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Theorem 1. Consider system (19). Let the control input

be

u = y
(n)
d − σn(zn) (19)

For simplicity, choose the design parameters used in σn(zn)
as ln = Ln and Mn = knln = u′

M , uM −λM . Choose the

design parameters of other saturation functions such that

kili > li+1 + ki−1Ni, i = 1, 2, ..., n− 1 (20)

knln > kn−1Nn + dM (21)

where

Ni , Li +Mi−1 +

i−2
∑

j=1

[

(

j
∏

r=1

ki−1−r)(Li−j +Mi−1−j)

]

and k0 , 0, ln+1 , 0. Then, for any set of initial conditions,

all states reach the linear unsaturated region (i.e.,
⋂n

i=1 Ωi1)

in a finite time.

Proof. We first show that the following claims are true.

Claim1. For any initial conditions

(a) if |zn(0)| > Ln, then zn(t) reaches Ωn1 = Ωn2 in a finite

time

(b) if |zn(0)| ≤ Ln, i.e., zn(0) ∈ Ωn1, then zn(t) ∈ Ωn1, ∀
t > 0.

Claim 2. Assume |zi+1| ≤ li+1, ∀t > t0, i.e., zi+1 ∈
Ω(i+1)1. Then

(a) if |zi(t0)| > Li, zi(t) reaches Ωi2 in a finite time

(b) if zi(t0) ∈ Ωi2\Ωi1, zi(t) reaches Ωi1 in a finite time

(c) if zi(t0) ∈ Ωi1, zi(t) ∈ Ωi1, ∀t > t0
If both claims are true. Then, from claim 1, we have |zn| <

Ln = ln after a finite time. Theorem 1 then follows from

a recursive application of claim 2 to the intermediate states

zj , j = n− 1, · · · , 1. Thus, we will be done if we can show

that both the claims are true. Due to space restrictions, only

proof of claim 1(a) and 1(b) will be given.

Proof of Claim 1, Part (a). Without the loss of generality

(w.l.o.g), assume zn(0) ≥ Ln. To prove case (a), the

contradiction method will be used. Namely, assuming that

zn(t) does not reach Ωn1 = Ωn2 in a finite time, then,

zn(t) ≥ Ln, ∀t. Thus, u = −Mn + y
(n)
d and from (17) we

get

˙̃xn = −Mn + d(t)

⇒ x̃n(t) ≤ x̃n(0)− (Mn − dM )t

⇒ zn(t) + αn−1(t) ≤ zn(0) + αn−1(0)− (Mn − dM )t

⇒ zn(t) ≤ zn(0) + αn−1(0)− αn−1(t)− (Mn − dM )t

≤ zn(0) + 2Mn−1 − (Mn − dM )t (22)

in which the fact that |αn−1(t)| ≤ Mn−1 due to the use

of the saturation function is used. Since the right hand side

of (22) goes to negative infinity as t → ∞, a contradiction

results. Thus zn(t) will reach Ωn1 = Ωn2 in a finite time tn32.

In fact, an upper-bound for tn32 can be obtained by letting the

right hand side of (22) equal to Ln:

tn32 ≤
zn(0)− Ln + 2Mn−1

Mn − dM
(23)

This completes the proof of case (a).

Part (b). To prove (b), all one has to do is to show that the

tangent vector points inward at the boundaries of Ωn1, i.e.,

to show znżn ≤ 0 whenever zn = ±Ln. For this purpose,

first note that when (21) is true, there exists δn > 0 such

that

knln −δn =
n−1
∑

j=1

[

(

j
∏

r=1

kn−r)(Ln−j+1 +Mn−j)

]

+ dM(24)

When zn = ±Ln, from (19), u = y
(n)
d −Mnsign(zn). Thus,

from (19),

znżn = zn (−Mnsign(zn) + d(t)+

n−1
∑

j=1

{[

j
∏

r=1

∂σn−r

∂zn−r

]

(zn−j+1 − σn−j(zn−j))

}





≤ |zn| (−knln + dM+

n−1
∑

j=1

[

(

j
∏

r=1

kn−r)(Ln−j+1 +Mn−j)

]



 (25)

in which the fact that
∂σn−j+1

∂zn−j+1
= 0 whenever |zn−j+1| >

Ln−j+1 and |∂σn−r

∂zn−r
| ≤ kn−r are used in deriving the

upper bound of the terms inside the summation operation.

Combining (24) and (25), when zn = ±Ln,

znżn ≤ −|zn|δn < 0 (26)

This completes the proof of the claim (b). �

C. Controller Parameter Selection

There are two important questions which need to be

answered at this stage: (i) the existence of a solution to

inequalities (20)-(21) assumed in the controller design, and

(ii) how to select the controller gains such that the desired

closed-loop performance can be achieved when such a so-

lution exists. In the following subsection, we first state and

prove the main result regarding the necessary and sufficient

condition for the existence of a solution to the inequalities.

Then, a systematic way of choosing the controller gains

in accordance with this theorem is proposed such that the

desired closed-loop performance can be achieved.

1) Necessary and sufficient conditions for the existence of

controller parameters: After a series of derivations, (20)-

(21) can be rewritten in a matrix form as

AL < D, (27)

where L = [l1, l2, · · · , ln−1, ln]
T , D = [0, 0, · · · , 0,−dM ]T .

And A is a matrix whose elements are functions of ki given

by

A =













−k1 1 0 · · · 0

k21(1 + γ1)
(

k1

β2
− k2

)

1 · · · 0

· · · · · · · · · · · · · · ·

an1 an2 an3 · · ·
(

kn−1

βn
− kn

)













,

(28)
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where

aij = ki−1kj
i−j−1
∏

r=1
ki−r−1(1 + γj)

+ki−1

i−j
∏

r=1
ki−r−1

1
βj
, ∀i > j.

aij = −ki +
ki−1

βi
, ∀i = j

aij = 1, ∀j = i+ 1
aij = 0, ∀j > i+ 1

(29)

For any γi > 0 and 0 < βi ≤ 1, if we fix a set of

positive ki, then the control law is feasible if and only if

there exist l1, l2,..., ln > 0 such that (27) is satisfied. In

other words, at least one solution to (27) should lie in the

region {(l1, · · · , ln) : li > 0}. The following theorem gives

the necessary and sufficient condition for kis such that the

control law is feasible.

Theorem 2. For any γi > 0 and 0 < βi ≤ 1, with a set

of positive ki, at least one solution to (27) lie in the region

L ∈ {(l1, · · · , ln) : li > 0} iff the kis satisfy the following

set of inequalities:

k1 > 0,

k2 >
a21p1+

k1
β2

p2

p2
= (1 + γ1 +

1
β2
)k1,

· · ·

ki >
∑i−1

j=1
aijpj+

ki−1

βi
pi

pi
, ∀i < n

· · ·

kn > uM−λM

uM−(λM+dM) ·
∑n−1

j=1
anjpj+

kn−1

βn
pn

pn
,

(30)

where the coefficients pis are computed recursively using the

formula
p1 = 1

pi = −
∑i−1

j=1 ai−1jpj
(31)

Proof 2. Due to space restrictions, the proof has been

omitted and can be obtained from the authors upon request.

2) Controller gain selection: a recursive root-locus de-

sign: Suppose, the steady-state error is required to be less

than δ and the slowest closed-loop pole needs to be to the

left of p0 for fast enough transient responses, then it is

sufficient to place all the closed-loop poles to the left of pcl =

min{− n

√

dM

δ
,−p0}. We make the following observation

from the general principles of root-locus design: if a system

is such that the open-loop transfer function (OLTF) is given

by OLTF = K Pm(s)
sm+1 , where K is the open-loop gain, Pm

is a polynomial of degree m, such that all the roots of Pm(s)
lie to the left of −pcl. Then, as the difference in number of

poles and zeros is one, for sufficiently large gain K there

always exists an asymptote along the negative real axis. We

shall use this fact for the recursive root-locus design. In the

first step of the design, select k1 > −pcl such that the root

of the equation s + k1 = 0 lie to the left of s = pcl. In

the second step, let the virtual open-loop system be k2
s+k1

s2

such that the virtual closed-loop characteristic equation is

s2 + k2s+ k1k2 = 0. To determine k2, draw the root locus

of k2
s+k1

s2
. Then, from the observation above, there exists

a k2 large enough such that: (a) the first inequality of (30)

is satisfied and, (b) all the roots of s2 + k2s + k1k2 = 0
lie to the left of s = pcl, on the real axis. Continuing in

this fashion, for the last we let the virtual open-loop system

be kn

sn−1+kn−1s
n−2+···+

n−1∏

j=1

kj

sn
, such that the virtual closed-

loop characteristic equation is exactly the same as that of

the actual system, i.e., kns
n−1+knkn−1s

n−2+ · · ·+
n
∏

j=1

kj .

Then, from the observation mentioned above, we can always

find a large enough kn such that (a) the last two inequalities

of (30) are satisfied and (b) all the closed-loop poles lie

to the left of s = pcl on the real axis. Thus, we can

choose the controller gains such that the desired closed-loop

performance is achieved, as well as the conditions imposed

for the existence of a feasible control law given by (30) are

also satisfied simultaneously.

IV. SIMULATION EXAMPLE

A 3rd order chain of integrators is used to demonstrate the

effectiveness of the proposed scheme. In figures (2) and (3),

the following correspondence is noted between the various

control laws and the legend - Marchand and Hably refers to

Thm.3 of [11]; Zhou and Duan 07 refers to control law 3 of

[15]; Zhou and Duan 08 refers to Thm. 2 of [16]; Zhou and

Duan 09 refers to Thm. 13 of [17]; and Kaliora and Astolfi

refers to proposition 4 of [8]. For all except last control law,

please refer to the corresponding article for parameter values.

For Kaliora and Astolfi, we use ǫ1 = 0.24, ǫ2 = 0.25, ǫ3 =
0.51 and λ1 = .008, λ2 = 0.12, λ3 = 0.6. Note that we

cover a wide variety of designs for comparative studies - two

designs which use state-dependent saturation functions ([11],

[17]) to improve performance, one approach which uses [(n+
1)/2] saturation functions to improve convergence ([15]) and,

two designs which do not require coordinate transformation

and need only assumption A1 ([8], [16]).

Simulation 1: The goal of this simulation study is to

investigate the convergence rate of the proposed scheme

against a transformation based approach for large initial con-

ditions. The third order chain of integrators ẋ1 = x2, ẋ2 =
x3, ẋ3 = u has been used in most of the articles used

for comparative studies and thus, provides a level platform

to compare the various approaches. Same initial conditions

[−3,−3, 3] as used in [16], the other non-transformation

based approach, has been used for ease of comparison.

The controller parameters for the proposed scheme are:

[k1, k2, k3] = [0.2, 0.9, 100], [l1, l2, l3] = [6.5, 0.7, 0.01],
[β1, β2, β3] = [0.99, 0.99, 1], [γ1, γ2, γ3] = [0.001, 0.001, 0].
The parameter selection scheme proposed in the previous

section was used as a starting point, and then it was tuned to

improve the performance. As seen from Fig. (2), we achieve

slightly faster convergence with the proposed scheme. This

shows that the performance of the proposed technique in

terms of achievable convergence rate is at least as good as

that of a transformation based approach for large initial con-

ditions. However, the true strength of the proposed controller

and its performance robustness against input disturbances
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is demonstrated in the next set of simulations when large

disturbances are considered.

Simulation 2: TThe purpose of this simulation study was

to compare the convergence rate and steady-state error for a

third order integrator chain in presence of input disturbances.

The input disturbance and initial conditions were chosen

to be d(t) = 0.1 sin(πt2 ) and x(0) = [0.8,−0.6, 0.5]
respectively. The initial conditions were chosen to be smaller

than the previous case in order to highlight the effect of

disturbance on steady-state error. Controller parameters are

same as used in the previous simulation. The disturbance

attenuation capability of the proposed scheme over a coordi-

nate transformation based approach is evident from Fig. (3).

One of the main observations from the simulation studies

was that as compared to other techniques, higher gains could

be chosen in the proposed technique to improve disturbance

rejection without significantly sacrificing convergence prop-

erties. On the other hand, increasing controller gains in other

designs result in improved disturbance rejection, but at the

expense of drastic degradation in convergence performance.

Thus, the proposed scheme has better convergence and dis-

turbance rejection properties as compared to other designs.
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Fig. 2. Comparative results for stabilization in absence of disturbances
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Fig. 3. Comparative results for stabilization in presence of disturbance

V. CONCLUSIONS

The main contribution of the paper lies in proposing a

conceptually different approach to solve the problem of

global stabilization of a chain of integrators in presence of in-

put disturbance with desired performance in the unsaturated

region. Based on Teel’s work, many modifications have been

proposed in the literature to improve the performance of the

controller. In our analysis, it was clearly shown that all such

schemes exhibit poor robustness properties with respect to

input disturbance and leads to conservative design. These

limitations cannot be overcome by any modification based

on Teel’s work, as coordinate transformation is an essential

step in all such designs. In order to remove these limitations,

we take a fundamentally different viewpoint and propose a

scheme which does not rely on coordinate transformation,

and is directly based on the actual tracking error dynamics.

The resulting controller is easy to implement and tune, as we

only deal with the original coordinates. Comparative studies

have been performed on a third order chain of integrator to

show the superior performance of the proposed technique

over other designs.
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