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Abstract— The paper presents a new technique for the adap-
tive parameter estimation in nonlinear parameterized dynami-
cal systems. The technique proposes an uncertainty set-update
approach that guarantees forward invariance of the true value
of the parameters. In addition, it is shown that in the presence of
sufficiently exciting state trajectories, the parameter estimates
converge to the true values and the uncertainty set vanishes
around the true value of the parameters. Two simulation
examples are presented that demonstrate the effectiveness of
the technique.

I. INTRODUCTION

Parameter estimation in dynamical systems has been a

central theme in systems research for decades. Starting from

nonlinear regression techniques to the advent of nonlinear

adaptive control, the problem has received considerable at-

tention. Adaptive estimation of nonlinear systems remains a

relatively unexplored field. Most existing design techniques

are restricted to systems that are linear in the unknown (con-

stant) parameters. Representative techniques are discussed in

several references such as [9],[10], [11]. Work on nonlinearly

parameterized systems remains scarce. The most significant

approach to solve this problem can be found in several

papers by Annaswamy and co-workers ([6], [4], [8],[12]).

Their approach exploits convexity of the system dynamics

with respect to the parameters to develop a class of min-

max adaptive estimation routines. A gradient-based approach

is proposed subject to a worst-case parameter set. Several

authors have also studied this class of problems for specific

applications. One such application is the study of microbial

growth kinetics where most models, due to the importance

of classical enzyme kinetics models, are nonlinearly parame-

terized ([5],[16]). The nonlinearity of these models prevents

one from using normal techniques to establish parameter

convergence. For Monod models, one can show that param-

eter convergence can be achieved subject to a conservative

persistence of excitation condition that can only be derived

using highly tailored Lyapunov based arguments. Another

leading approach consists of approximating the nonlinearity

using neural networks ([15],[13],[7]). The main drawbacks

of these techniques is that such approximations cannot be

used to uniquely reconstruct the unknown parameter vector.

A parameter estimation scheme that allows exact recon-

struction of the unknown parameters in finite-time was de-

veloped in [1]. The finite-time (FT) identification method has
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two distinguishing features. The drawback of the identifica-

tion algorithm is the requirement to check the invertibility of

a matrix online and compute the inverse matrix when appro-

priate. To avoid these concerns and enhance the applicability

of the FT method in practical situations, the procedure was

exploited in [2] to develop a novel adaptive compensator

that (almost) recovers the performance of the FT identifier.

The compensator guarantees exponential convergence of the

parameter estimation error at a rate dictated by the closed-

loop system’s excitation.

The ability to guarantee the rate of convergence in finite-

time depends largely on the good knowledge of the process

model. That is, one needs to have a good handle on how

the unknown parameters enter the model. Finite-time con-

vergence can only be ensured in the absence of exogenous

disturbances and modelling error, if the parameters enter

the model equation linearly. In the presence of exogenous

variables, one must provide some mechanism to compensate

for the effect of disturbances on parameter estimates and

the ability to locate the unknown parameter values. In [3], a

novel parameter estimate routine was developed for linearly

parameterized systems in the presence of exogenous distur-

bances. The parameter estimation routine are used to update

the parameter uncertainty set, at certain time instants, in a

manner that guarantees non-expansion of the set leading to

a gradual reduction in the conservativeness or computational

demands of the algorithms.

In this paper, we propose an extension of the estimation

technique proposed in [3] for nonlinearly parameterized

nonlinear dynamical systems based on a similar set-update

approach. The paper is organized as follows. The prob-

lem statement is given in Section 2. Section 3 presents

the parameter and uncertainty set estimation routines. Two

simulation examples are given in Section 4 followed by short

conclusions in Section 5.

II. PROBLEM STATEMENT

Consider the uncertain nonlinear system

ẋ = f(x, u, θ) (1)

where x ∈ Rn is the vector of state variables, u ∈ Rm is the

vector of input variables, θ ∈ Rp is the vector of unknown

parameters. The objective of this study is to develop a

set-based parameter identification scheme for this class of

systems. The parameter identifier simultaneously estimates

the parameters and the parameter uncertainty set. The ap-

proach provides a new persistency of excitation condition

that guarantees the convergence of the parameter identifier
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to the true value of the unknown parameters. It is assumed

that θ is uniquely identifiable and lie within an initially

known compact set Θ0 = B(θ0, zθ0) where θ0 is a nominal

parameter value, zθ0 is the radius of the initial parameter

uncertainty set.

III. PARAMETER AND UNCERTAINTY SET ESTIMATION

Let the parameter estimate is given by:

θ = θ0 + δ.

In the first stage of the identifier, one attempts to estimate δ.

Let us consider the following state prediction system based

on the estimate of δ about the nominal parameter value θ0:

˙̂x = f(x, u, θ0 + δ̂) − ∆Ψ(θ0, δ̂)δ̂ + k(x − x̂) + c(t)T ˙̂
δ

(2)

where

∆Ψ(x, u, θ0, δ̂) =

Z

1

0

 

∂f(x, u, θ0 + λδ̂)

∂θ

!

dλ −

∂f(x, u, θ0)

∂θ
,

c(t) is a filter parameter whose dynamics is defined later and

k ≻ 0 is an n × n gain matrix.

The error dynamics are given by:

ė = f̃(x, u, θ0) + ∆Ψ(θ0, δ̂)δ̂ − kwe − c(t)T ˙̂
δ

The term f̃(x, u, θ0) = f(x, u, θ0 + δ)− f(x, u, θ0 + δ̂) can

be written as

f̃(x, u, θ0) = f(x, u, θ0 + δ) − f(x, u, θ0)

+ f(x, u, θ0) − f(x, u, θ0 + δ̂)

By the mean-value theorem, we get

f̃(x, u, θ0) =

∫ 1

0

(

∂f(x, u, θ0 + λδ)

∂θ

)

dλδ

−

∫ 1

0

(

∂f(x, u, θ0 + λδ̂)

∂θ

)

dλδ̂

Let,

Ψ(x, u, θ0, δ) =

∫ 1

0

(

∂f(x, u, θ0 + λδ)

∂θ

)

dλ

and

Ψ(x, u, θ0, δ̂) =

∫ 1

0

(

∂f(x, u, θ0 + λδ̂)

∂θ

)

dλ

then we obtain,

f̃(x, u,θ0) = Ψ(x, u, θ0, δ)δ − Ψ(x, u, θ0, δ̂)δ̂ (3)

One can define

Ψ(x, u, θ0, 0) =

∫ 1

0

(

∂f(x, u, θ0)

∂θ

)

dλ

and write (3) as

f̃(x, u,θ0) = Ψ(x, u, θ0, δ)δ − Ψ(x, u, θ0, 0)δ̃

+ Ψ(x, u, θ0, 0)δ̃ − Ψ(x, u, θ0, δ̂)δ̂ (4)

We finally come to the following form (3):

f̃(x, u,θ0) = ∆Ψ(x, u, θ0, δ)δ + Ψ(x, u, θ0, 0)δ̃

−∆Ψ(x, u, θ0, δ̂)δ̂ (5)

where

∆Ψ(x, u, θ0, δ) =

Z

1

0

„

∂f(x, u, θ0 + λδ)

∂θ

«

dλ −

∂f(x, u, θ0)

∂θ
.

As a result the error dynamics are given by:

ė = ∆Ψ(x, u, θ0, δ)δ + Ψ(x, u, θ0, 0)δ̃ − ke − c(t)T ˙̂
δ. (6)

Let the filter dynamics be selected as

ċ = Ψ(x, u, θ0, 0) − kwc c(t0) = 0. (7)

resulting in state prediction error e = x − x̂ and auxiliary

variable η = e − cT δ̃ dynamics:

ė = ∆Ψ(x, u, θ0, δ)δ + Ψ(x, u, θ0, 0)δ̃ − kw e − cT ˙̂
δ

e(t0) = x(t0) − x̂(t0) (8)

η̇ = −kw η + ∆Ψ(x, u, θ0, δ)δ (9)

η(t0) = e(t0). (10)

Since ∆Ψ(x, u, θ0, δ)δ is not known, an estimate of η is

generated from

˙̂η = −kwη̂, η̂(t0) = e(t0). (11)

with resulting estimation error η̃ = η − η̂ dynamics

˙̃η = −kw η̃ + ϑ, η̃(t0) = 0. (12)

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = ccT , Σ(t0) = α I ≻ 0, (13)

based on equations (8), (7) and (11), the preferred parameter

update law is given by

Σ̇−1 = −Σ−1ccT Σ−1, Σ−1(t0) =
1

α
I (14a)

˙̂
δ = Proj

{

Σ−1c(e − η̂), ‖δ̂‖ ≤ zθ0

}

,

δ̂(t0) = 0 (14b)

where Proj{φ, ‖δ̂‖ ≤ zθ0} denotes a Lipschitz projection

operator such that

− Proj{φ, ‖δ̂‖ ≤ zθ0}
T δ̃ ≤ −φT δ̃, (15)

‖δ̂(t0)‖ ≤ zθ0 ⇒ ‖δ̂(t)‖ ≤ zθ0, ∀ t ≥ t0. (16)

More details on parameter projection can be found in [10].

We first need the following assumptions.

Assumption 1: The state and input variables of the dynam-

ical system evolve over a compact set X × U ∈ Rn × Rp.

Assumption 2: The map f : X × U × Θ0 → Rn is

continuously differentiable and the elements of the jacobian

matrix ∂f
∂θ

is Lipschitz in θ uniformly on X × U. That is,

there exists a constant L > 0 such that
∥

∥

∥

∥

∂f(x, u, θ1)

∂θ
−

∂f(x, u, θ0)

∂θ

∥

∥

∥

∥

≤ L‖θ1 − θ0‖,

∀θ ∈ Θ0, ∀(x, u) ∈ X × U.
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Note that by Assumptions 1 and 2, we get that the uncertain

term in (8) is such that

‖∆Ψ(x, u, θ0, δ)δ‖ ≤ L‖δ‖2 ≤ Lz2
θ0 = ϑ. (17)

Lemma 1: The identifier (14) is such that, for every θ0 ∈
Θ0, the estimation error δ̃ = δ − δ̂ and the auxiliary filter

error η̃ = η − η̂ are bounded.

Proof: Consider the dynamics of η̃ and pose the Lyapunov

function, Vη̃ = 1
2 η̃T η̃. The rate of change of Vη̃ gives,

V̇η̃ = −kwη̃T η̃ + η̃T ∆Ψ(x, u, θ0, δ)δ

such that

V̇η̃ ≤ −kw‖η̃‖
2 + ‖η̃‖ϑ.

As result we guarantee that V̇η̃ < 0 ∀η̃ ∈ Rn such that ‖η̃‖ >
ϑ

kw
. Now since, η̃(0) = 0 by construction, then ‖η̃(t)‖ ≤ ϑ

kw
,

∀t.

Let Vδ̃ = δ̃T Σ δ̃, it follows from (14) and the relationship

cθ̃ = e − η̂ − η̃ that

V̇δ̃ ≤ −2δ̃T c(e − η̂) + δ̃T ccT δ̃

= −(e − η̂)T (e − η̂) + ‖η̃‖2

≤ −(e − η̂)T (e − η̂) +

(

Lz2
θ0

kw

)2

. (18)

Since, ‖η̃‖2 is bounded it follows that ‖δ̃‖2 is bounded.

By the projection algorithm, we can always guarantee that

‖δ̃‖2 ≤ ‖δ‖2 + ‖δ̂‖2 ≤ 4z2
θ0.

Thus, keeping ‖δ̂‖ < zθ0 ensures that ‖δ̃‖2 ≤ 4z2
θ0 as long

as one can guarantee that ‖δ‖ < zθ0.

Using standard arguments, it is possible to provide a

statement of convergence of δ̃ to a neighbourhood of the

origin. The following persistency of excitation assumption

will be required.

Assumption 3: There exists positive constants T > 0 and

kN > 0 such that

∫ t+T

t

c(τ, θ0)
T c(τ, θ0)dτ ≥ kN (θ0), ∀t ≥ 0IN , (19)

∀θ0 ∈ Θ0 where kN (θ0) > 0, c(t) is the solution of eq.(7),

IN is the N-dimensional identity matrix.

Remark 1: Assumption 3 considers the dependence of the

filter parameter on the current value of the centre of the

uncertainty set, θ0. This is to highlight the fact that the

regressor matrix Ψ(x, u, θ0, 0) depends on θ0. Any update of

the centre value θ0 will cause a change or regressor vector

and, consequently, a change of the filter parameter dynamics.

First, we consider the convergence properties of the es-

timates δ̂ at a fixed value θ0. This can be viewed as a

standard result in the design of robust adaptive observers

which establishes convergence of the parameter estimates to

a neighbourhood of the true value δ.

Lemma 2: Assume that the signals of the system (1)

fulfill the persistency of excitation condition as stated in

Assumption 3.Then, the parameter estimation scheme (2),

(7), (11) and (14) is such that the parameter estimation error

converges exponentially to a neighbourhood of the origin.

Proof: Note that the parameter estimation error dynamics is

given by,

˙̃
δ = −Proj

{

Σ−1c(cT δ̃ + η̃), ‖δ̂‖ ≤ zθ0

}

.

Consider the candidate Lyapunov function, Vδ̃ = δ̃T Σδ̃. It

follows by the property of the projection algorithm that the

rate of change of Vδ̃ along the trajectories of the closed-loop

system about the nominal parameter value θ0 is

V̇δ̃ ≤ −2δ̃T ccT δ̃ − 2δ̃T cη̃ + δ̃T ccT δ̃

≤ −δ̃T ccT δ̃ − 2δ̃T cη̃ (20)

Consider the Lyapunov function, W = Vδ̃ + η̃T η̃. Its rate of

change is given by

Ẇ ≤ −δ̃T ccT δ̃ − 2δ̃T cη̃ − kwη̃T η̃ + η̃T ∆Ψ(x, θ0, δ)δ

Completing the squares, there exist positive constants k

and kw, kw > k > 1, such that,

Ẇ ≤ −

(

1 −
1

k

)

δ̃T ccT δ̃ − (kw − k)η̃T η̃

+η̃T ∆Ψ(x, θ0, δ)

≤ −k1δ̃
T ccT δ̃ − k2η̃

T η̃ + k3η̃
T η̃ +

1

k3
(Lz2

θ0)
2

Thus for k2 > k3, one obtains

Ẇ ≤ −k1δ̃
T ccT δ̃ − k4η̃

T η̃ +
1

k3
(Lz2

θ0)
2.

As a consequence of Assumption (3), it follows that

Ẇ ≤ −γ1c1Vδ̃ − k4η̃
T η̃ +

1

k3
(Lz2

θ0)
2

≤ −k5W +
1

k3
(Lz2

θ0)
2

which confirms that the parameter estimation error δ̃ and the

η-estimation error η̃ converges exponentially to a neighbour-

hood of the origin for any value of θ0 ∈ Θ0.

The analysis above guarantees the boundedness of the

estimation error δ̃ and its convergence to the origin subject

to a persistency of excitation condition. This convergence

result applies for any given value of the parameters θ0.

Thus, it remains to show that one can update the position

of the centre, θ0, of the uncertainty set Θ0 to the true values

of the parameters. The strategy considered in this paper

is to provide an update mechanism for the uncertainty set

Θ(θ0, zθ0) such that, as the centre of the uncertainty set, θ0,

and the radius of the uncertainty ball, zθ0, are updated, the

uncertainty set is guaranteed to contain the true value of the

parameters, θ. The update mechanism monitors the shrinking

of the uncertainty set using an upper bound on the Lyapunov

function Vδ̃ denoted by Vzθ0
. When the shrinking of the set

can be done in a way that guarantees containment of the

unknown value of the parameters θ, the value of the centre

is moved to the current parameter estimate (i.e., θ0 + δ̂) and
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the radius of the uncertainty set (or ball) is updated according

to the decrease of the upper bound Vzθ0.

An update law that measures the worst-case progress of the

parameter identifier in the presence of disturbance is given

by:

zθ(t) =

√

Vzθ(t)

4λmin(Σ(t))
(21a)

Vzθ(t0) = 4λmax [Σ(t0)] (zθ0)
2 (21b)

Vη(0) = ‖η̃(0)‖2 = 0 (21c)

V̇zθ =







0 if (e − η̂)T (e − η̂) ≤ Vη(t)
−(e − η̂)T (e − η̂) + Vη(t)

otherwise

(21d)

V̇η = −kwVη +
(Lz2

θ0

kw

)2

(21e)

Using the parameter estimator (14) and its error bound zθ

(21), the uncertain ball Θ , B(θ0, zθ) is adapted online

according to the following algorithm:

Algorithm 1: Beginning from time ti−1 = t0, the param-

eter and set adaptation is implemented iteratively as follows:

1 Initialize zθ(ti−1) = zθ0, δ̂(ti−1) = 0, θ̂(ti−1) =
θi−1, η̂(ti−1) = e(ti−1), c(ti−1) = 0 and Θ(ti−1) =
B(θ̂(ti−1), zθ(ti−1)).

2 At time ti, using equations (14) and (21) perform the

update

(θi, Θ) =











(

θi−1 + δ̂(ti), Θ(ti)
)

,

if zθ(ti) ≤ zθ(ti−1) − ‖δ̂(ti)‖
(θi−1, Θ(ti−1)) , otherwise

(22)

3 Iterate back to step 2, incrementing i = i + 1.

The algorithm ensure that Θ is only updated when zθ value

has decreased by an amount which guarantees a contraction

of the set. Moreover zθ evolution as given in (21) ensures

non-exclusion of θ as shown below.

Lemma 3: The evolution of Θ = B(θ̂, zθ) under (14), (21)

and algorithm 1 is such that

i) Θ(t2) ⊆ Θ(t1), t0 ≤ t1 ≤ t2
ii) θ ∈ Θ(t0) ⇒ θ ∈ Θ(t), ∀t ≥ t0

Proof:

i) If Θ(ti+1) * Θ(ti), then

sup
s∈Θ(ti+1)

‖s − θ̂(ti)‖ ≥ zθ(ti). (23)

However, it follows from triangle inequality and algo-

rithm 1 that Θ, at update times, obeys

sup
s∈Θ(ti+1)

‖s − θ̂(ti)‖

≤ sup
s∈Θ(ti+1)

‖s− θ̂(ti+1)‖ + ‖θ̂(ti+1) − θ̂(ti)‖

≤ zθ(ti+1) + ‖θ̂(ti+1) − θ̂(ti)‖ ≤ zθ(ti),

which contradicts (23). Hence, Θ update guarantees

Θ(ti+1) ⊆ Θ(ti) and the strict contraction claim fol-

lows from the fact that Θ is held constant over update

intervals τ ∈ (ti, ti+1).

ii) We know that Vδ̃(t0) ≤ Vzθ(t0) (by definition). The

value of Vδ̃(t) at some t > t0 is given by

Vδ̃(t) = Vδ̃(t0) +

∫ t

t0

V̇δ̃(τ)dτ

Let t be such that the value of the uncertainty radius

remains at zθ0.

This means that, by projection algorithm, ‖δ̃(t)‖2 ≤
4z2

θ0. As a result, it follows that

Vδ̃(t) = δ̃(t)T Σ(t)δ̃(t) ≥ λmin [Σ(t)] ‖δ̃(t)‖2 ≤ 4z2
θ0

or

‖δ̃(t)‖2 ≤
Vδ̃(t0)

λmin [Σ(t)]
+

1

λmin [Σ(t)]

∫ t

t0

V̇δ̃(τ)dτ.

Since, it can always be shown that λmin [Σ(t0)] ≤
λmin [Σ(t)] for any t ≥ t0, it follows that

‖δ̃(t)‖2 ≤
Vδ̃(t0)

λmin [Σ(t0)]
+

1

λmin [Σ(t)]

∫ t

t0

V̇δ̃(τ)dτ

≤ 4z2
θ0 +

1

λmin [Σ(t)]

∫ t

t0

V̇δ̃(τ)dτ.

Thus, the expansion of the uncertainty set that would

occur as a result of
∫ t

t0
V̇δ̃(τ)dτ > 0 would not be

violate the fact that θ ∈ Θ(t0). It is therefore equivalent

to write the last inequality using the update (18) as

follows,

‖δ̃(t)‖2 ≤ 4z2
θ0 +

1

λmin [Σ(t)]

∫ t

t0

V̇zθ(τ)dτ

= 4z2
θ0 +

{

0 if V̇δ̃(τ)dτ ≥ 0

V̇δ̃(τ) otherwise
(24)

As a result, one can guarantee that the set update

algorithm is such that

‖δ̃(t)‖2 ≤ min

[

4z2
θ0,

Vzθ(t)

λmin(Σ(t))
(= 4z2

θ(t))

]

, (25)

∀t ≥ t0. Hence, if θ ∈ Θ(t0), then θ ∈ B(θ̂(t), zθ(t)),
∀t ≥ t0.

Thus the update mechanism guarantees that the unknown

value of the parameters are always contained within the

uncertainty set. It also ensures that the uncertainty set is com-

pletely contained within its previous estimate, ensuring that

the magnitude of the certainty can be be effectively reduced

without including unlikely parameter values. It remains to

show that the set update algorithm can guarantee that the

uncertainty ball radius can reduce to zero if the process

dynamics are sufficiently exciting.

This requires a modified notion of persistency of excitation

which we state as follows.

Assumption 4: The trajectories of the system are such that

lim
t→∞

λmin [Σ(t)] = ∞. (26)

Remark 2: Note that Assumption 4 can be seen as an

alternative to Assumption 3.
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The final result of this paper can now be stated.

Theorem 1: Let the trajectories of the system be such

that Assumption 4 holds. Let the system be such that

Assumptions 1 and 2 hold then the set update (21), algorithm

1 and the parameter estimation routine ((2),(7),(11) and

(14)) guarantee that the parameter estimates θ̂ converge

asymptotically to their true values, θ.

Proof: As a result of the proof of Lemma 3 one can always

write

‖δ̃(t)‖2 ≤ min
[

4z2
θ0, 4zθ(t)

2
]

where zθ(t)
2 = Vzθ(t)

4λmin[Σ(t)] . Since Vzθ is non-increasing and

thus bounded, it follows that

lim
t→∞

Vzθ(t)

2λmin [Σ(t)]
= 0.

and limt→∞ zθ(t)
2 = 0 or limt→∞ ‖δ̃‖2 = 0. By Lemma 3,

the set update guarantees that the centre of the uncertainty

set must converge to the true value of the parameters as

limt→∞ zθ(t)
2 = 0.

IV. SIMULATION EXAMPLES

A. Monod Kinetics

Consider the following system representing a chemostat

operating under Monod kinetics

ẋ1 =
θ1x1x2

θ2 + x2
− Dx1

ẋ2 =
−θ3x1x2

θ2 + x2
+ S0 − Dx2

Where θ = [µmax, Ks,
1

Yx/s
]T , with values θ =

[0.33, 0.5, 0.66]T . The constant S0 = 5 and the control input

D is oscillated such that 0.05 ≤ D ≤ 0.15

The results shown in Figure 1 show that the parame-

ter estimates converge to their true values. The parameter

uncertainty set update is shown in Figure 2. As expected,

the uncertainty set update guarantees forward invariance of

each new uncertainty set which contain the true value of

the parameters. Figure 3 shows that the magnitude of the

δ variable error is always less than the radius of the set.

Since the δ variable error is equal to the parameter estimation

error, it is possible to verify that the true parameters remain

within the uncertainty set throughout the simulation. It is

important in this case that the parameter converge to their

true values faster than one is allowed to shrink the radius of

the uncertainty set. This property shows that the performance

of the parameter estimation scheme is far superior to the

worst case estimate monitored by the set update mechanism.

B. Nonisothermal CSTR

Next, we consider the estimation of the chemical kinetics

in a nonisothermal CSTR where a first order reaction is

taking place. A model describing its dynamics is given by:
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Fig. 2. Phase portrait of the update of θ1 and θ2. The circles represent
the progression of the uncertainty sets
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Fig. 4. Time course plot of the parameter estimates and true values under
the parameter uncertainty set algorithm, the dashed lines (- -) represent the
true parameter values, the solid lines (–) represent the parameter estimates
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where x1 is the concentration of chemical species A

(mol/min), x2 is the reactor temperature (Kelvins), θ1 and

θ2 are the so-called Arrhenius law parameters. The model

parameters are: the reactor flowrate F (m3/min), the reactor

volume V (m3), the inlet reactor temperature T0 (K), the

inlet concentration of A (mol/min), the inlet cooling jacket

temperature TcIn (K), the heat of reaction ∆Hr (cal/mol), the

heat transfer coefficient UA and the reference temperature

Tref (K). The reactor is initially at x(0) = [0.265, 393].
The true value of the parameters is θ = [0.7, 0.03]. The

initial estimate is θ̂(0) = [1.20.1]. It is assumed that the true

value belongs to a ball of radius zθ0 = 0.75. A sinusoidal

signal is injected in the inlet concentration CA0 and the inlet

temperature T0.

The estimation of Arrhenius parameters is generally rec-

ognized as a very difficult estimation problem (see, for

example [14]). Figure 4 shows the resulting estimates of the

parameters. As expected, the parameters converge to their

unknown true values. The corresponding progression of the

uncertainty set is shown in Figure 5. The method is shown

to perform well in this case.

V. CONCLUSIONS

The paper presents a new technique for the adaptive

parameter estimation in nonlinear parameterized dynamical

systems. The technique proposes an uncertainty set-update

approach that guarantees forward invariance of the true value

of the parameters. In addition, it is shown that in the pres-

ence of sufficiently exciting state trajectories, the parameter

estimates converge to the true values and the uncertainty
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Fig. 5. Phase portrait of the update of θ1 and θ2. The circles represent
the progression of the uncertainty sets

set vanishes around the true value of the parameters. Future

work will be focussed on the generalization of this technique

to discrete-time nonlinear systems and adaptive extremum-

seeking control.
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