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Abstract— We consider a Voronoi-like partitioning problem
for a team of pursuers distributed in the plane. Each element
of the partition is uniquely associated with a pursuer in the
following sense: if a moving target at a given instant of time
resides inside a particular member of the partition, then the
pursuer associated with this set can intercept this moving target
faster than any other pursuer. In our problem formulation,
the moving target does not necessarily travel along prescribed
trajectories, as it is typically assumed in the literature but,
instead, it can apply an “evading” strategy in response to the
actions of its pursuer. It is further assumed that the structure

of the evading strategy of the target is only partially known to
the pursuers. We characterize an approximate solution to this
problem by associating it with a standard Voronoi partitioning
problem. Simulation results are presented to highlight the
theoretical developments.

I. INTRODUCTION

We address a Voronoi-like partitioning problem for a set of

pursuers (moving generators) whose objective is to capture

moving targets in the plane. The solution of this problem

furnishes a scheme that assigns a pursuer from a given team

of pursuers to a moving target with respect to a generalized

proximity metric, namely the minimum capture time (rather

than with the Euclidean distance metric as in the standard

Voronoi diagram problem). The problem considered in this

work can be put under the umbrella of dynamic Voronoi

diagram problems, that is, Voronoi-like partitioning problems

where the generators are moving points in the plane [1]–[8].

Specifically, we consider the following partitioning problem:

Given a team of n vehicles (pursuers), which are distributed

over n distinct locations in the plane, partition the plane into

n “capture zones,” such that each pursuer is assigned to a

unique capture zone. The rule that assigns each pursuer to

a capture zone is the following: a pursuer associated with a

particular capture zone, can capture a moving target traveling

within the same zone at a given instant of time, faster than

any other pursuer from the given set of pursuers. In our

problem formulation, we do not constraint the moving target

to follow a prescribed trajectory, as it is usually assumed

in the literature [3], [4]. Instead, the target can apply an

“evading” strategy in response to the actions of its pursuer.

The target’s strategy is a feedback control law that depends
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only on the relative position between the moving target and

its pursuer.

In the special case, when the “evading” strategy of the

target is perfectly known to the pursuers, one deals with a

problem of pursuit-with-anticipation [9]. It turns out that in

this case, the locally optimal control strategy of each pursuer

can be derived from the solution of the classic Zermelo’s

navigation problem (ZNP for short). The partitioning prob-

lem for this pursuit-with-anticipation scenario was addressed

in our previous work in [10]. In contrast to the approach

presented in [10], in the current framework, we assume that

the pursuers have only partial knowledge of the evading strat-

egy of the target. The standing assumption of the proposed

approach is that the projection of the target’s velocity on

the relative position vector of the moving target from its

pursuer is only a function of the relative distance between

the target and its pursuer. Under the previous assumptions, it

is shown that the globally optimal control strategy for each

pursuer can be characterized in feedback form by making

use of the results presented in [11], [12]. It turns out in this

case that the feedback control law that solves the optimal

pursuit problem is completely independent of the evading

strategy of the target. Furthermore, it is demonstrated that the

minimum capture time is a monotone function of the relative

distance between the pursuer and the target, thus allowing us

to associate the solution of the partitioning problem with the

standard Voronoi diagram generated by the initial positions

of the pursuers.

The rest of the paper is organized as follows. Sections II

and III present the formulation and the feasibility of the opti-

mal pursuit problem, respectively. Subsequently, Sections V

and IV present the formulation and an approximate solution

of the dynamic partitioning problem, respectively. Section VI

gives a short comparison of the proposed scheme and the

approach followed in our previous work [10]. Simulation

results are presented in Section VII. Finally, Section VIII

concludes the paper with a summary of remarks.

II. FORMULATION OF THE OPTIMAL PURSUIT PROBLEM

Consider a team of n pursuers located at time t = 0 at n
distinct points in the plane, denoted by P := {x̄iP ∈ R

2, i ∈
I}, where I := {1, . . . , n}. It is assumed that the kinematics

of the ith pursuer starting at point x̄iP ∈ P are given by

ẋiP = uiP , xiP(0) = x̄iP , (1)

where xiP := (xiP , y
i
P) ∈ R

2 and x̄iP := (x̄iP , ȳ
i
P) ∈ R

2

denote the position vectors of the ith pursuer at time t and t =
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0, respectively, and uiP is the control input (velocity vector)

of the ith pursuer. We assume that uiP ∈ UP , where UP

consists of all piece-wise continuous functions taking values

in the set UP = {z ∈ R
2 : |z| ≤ ūP}, where ūP is a positive

constant (maximum allowable speed of the pursuers). The

goal of each pursuer, which is initially located at a point in

P , is to capture a moving target detected in its vicinity. It

is assumed that the kinematics of such a moving target are

described by

ẋT = uT , xT (0) = x̄T , (2)

where xT := (xT , yT ) ∈ R
2 and x̄T := (x̄T , ȳT ) ∈ R

2

denote the target’s position vectors at time t and t = 0,

respectively, and uT is the control input (velocity vector)

of the target. It is further assumed that the moving target

can employ an evading strategy in response to the pursuer’s

actions. In particular, uT is a feedback control law, which

depends on the relative position of the target from the ith

pursuer, that is, uT = uT (xT − xiP ).

Assumption 1: There exists a Lipschitz continuous func-

tion f : R+ 7→ R such that the evading strategy uT of the

target satisfies the following condition

〈uT , xT − xiP 〉 = f(|xT − xiP |). (3)

The interpretation of Assumption 1 is as follows: The pro-

jection of the velocity vector of the moving target on the

relative position vector of the moving target from the ith

pursuer depends only on the relative distance between the

target and its pursuer. Furthermore, in this work, we do not

explicitly assume that the maximum allowable speed of the

target is strictly less than ūP . In order, however, to avoid

situations where the maneuvering target can always escape

capture if it is faster than its pursuer, it is assumed that the

structure of the evading strategy of the target is partially

known to each pursuer. Specifically, we assume that

f(z) ≤ f̄(z), for all z ≥ 0, (4)

where f̄(·) is a continuous function, which is known to all

of the pursuers. The function f̄ provides a bound on the rate

at which the target can move away from its pursuer. As it

will be shown in the sequel, condition (4) will allow us to

approximate the winning set of the ith pursuer, that is, the

set of initial positions of a moving target from which the ith

pursuer can capture the target in finite time.

To this end, let xT (·;uT , x̄T ) and xiP(·;u
i
P , x̄

i
P) denote

the trajectories of the target and the ith pursuer generated by

uT and uiP and originating from x̄T and x̄iP , respectively.

The objective of each pursuer is to determine an admissi-

ble pursuit strategy that minimizes the time Tf such that

|xT (t;uT , x̄T ) − xiP(t;u
i
P , x̄

i
P)| > ǫc for all t < Tf (time

of first capture), for a sufficiently small ǫc > 0, where ǫc is

the capturability radius of the pursuit problem.

To this end, let us consider the state transformation yi :=
xT − xiP . Equation (1) can then be written in the following

compact form

ẏi = ui + uT (y
i), yi(0) = ȳi := x̄T − x̄iP , (5)

where ui := −uiP . Thus, the optimal pursuit strategy of

the ith pursuer follows from the solution of the following

minimum-time problem.

Problem 1 (ith MTP): Let the system described by equa-

tion (5), and let uT satisfy Assumption 1. Determine the

control input ui ∈ UP such that

i) The trajectory yi∗ : [0, Tf ] 7→ R
2 generated by the

control ui∗ satisfies the boundary conditions

yi∗(0) = ȳi, |yi∗(Tf)| ≤ ǫc. (6)

ii) The control ui∗ minimizes, along the trajectory yi∗, the

cost functional J(ui) := Tf = Tf(ȳ
i).

Problem 1 can be interpreted as a problem of steering

an integrator from ȳi to a ball of radius ǫc centered at the

origin, in the presence of a spatially-varying drift uT (y
i) in

minimum-time. If the function uT is perfectly known to the

pursuers, then Problem 1 can be reduced to a special case

of Zermelo’s navigation problem. Here we employ, however,

a different approach that will allow us to characterize the

unique, global solution of Problem 1 in closed form, which

does not follow directly from the solution of the ZNP. The

following proposition gives the solution of Problem 1.

Proposition 1: If Problem 1 is feasible, then its solution

is unique, and it is given in feedback form as follows

ui∗ = −ūP
yi∗
|yi∗|

. (7)

Proof: Let |yi|2 = 〈yi, yi〉 and suppose that yi is

a trajectory generated from some admissible control ui on

[0, Tf ]. Then

d

dt
|yi|2 =

d

dt
〈yi, yi〉 = 2〈yi, ui + uiT (y

i)〉. (8)

In light of Assumption 1, and equations (5) and (8), it follows

that, for all t ∈ [0, Tf ],

η̇i =
f(ηi)

ηi
+ vi, ηi(0) = η̄i := |ȳi|, (9)

where ηi := |yi| and vi is a new scalar control input given

by

vi :=
〈ui, yi〉

ηi
. (10)

First, we show that ηi(t) = |yi(t)| > 0 for all t ∈ [0, Tf ].
Indeed, let us assume that |ȳi| > ǫc (if |ȳi| ≤ ǫc, then the ith

MTP admits a trivial solution and Tf = 0). By continuity, if

ηi(t1) = 0 for some t1 > 0, then there exists t2 < t1 such

that ηi(t2) = ǫc. By definition, Tf = inf{τ : ηi(τ) = ǫc}.

It follows that Tf ≤ t2 < t1, and hence ηi(t) ≥ ǫc > 0,

for all t ∈ [0, Tf ]. It follows that the rhs of equation (9) is

well-defined, and η̇i(t) exists for all t ∈ [0, Tf ].

By virtue of the Cauchy-Schwartz inequality, it follows

from (10) that |vi| ≤ ūP . Therefore, Problem 1 reduces to the

problem of determining a scalar control vi∗ with |vi∗| ≤ ūP
that will steer the scalar system described by equation (9)

to the interval [0, ǫc] in minimum time. In [11], it is shown

5445



that the solution of this scalar min-time problem is given by

vi∗ = −ūP . Therefore, (10) implies that

〈ui∗, y
i
∗〉 = −ūPη

i
∗, (11)

which implies that ui∗ is a vector of length ūP parallel to the

unit vector −yi∗/|y
i
∗|, thus completing the proof.

Proposition 1 implies, in particular, that the solution of

the optimal control Problem 1 is independent of the evading

strategy of the target, uT . However, as we shall see next, the

characterization of the winning set of the ith pursuer depends

on the evading strategy of the target, hence on f as well.

III. THE WINNING SETS OF THE PURSUERS

Next, we examine the feasibility of Problem 1 for a given

ȳi ∈ R
2. This will allow us to characterize the winning set

of the ith pursuer, that is, the set of the initial positions of

the target from which it can be captured by the ith pursuer in

finite time. In other words, the winning set of the ith pursuer

is given by

Wf (x̄
i
P ) := {x ∈ R

2 : Tf(x− x̄iP) <∞}, (12)

where Tf(x − x̄iP) is the time of capture of the target by

the ith pursuer, when the target resides initially at x. First,

note that if |ȳi| ≤ ǫc, then capture occurs trivially at t = 0.

Hence, the set {y ∈ R
2 : |y| ≤ ǫc} is necessarily a subset of

the winning set for each pursuer, regardless of the dynamics

of the pursuer or the target. Next, we compute the winning

set for the non-trivial case |ȳi| > ǫc.

Proposition 2: Let ǫc > 0. Then Problem 1 is feasible for

the ith pursuer for all |ȳi| > ǫc if and only if

f(z) < ūPz, for all ǫc ≤ z ≤ |ȳi|. (13)

Proof: Proposition 1 implies that the closed loop

dynamics of (5) can be written in terms of ηi = |yi| as

follows

η̇i =
f(ηi)

ηi
− ūP , ηi(0) = η̄i. (14)

Condition (13) implies that

η̇i =
f(ηi)

ηi
− ūP < 0, for all ǫc ≤ ηi ≤ |ȳi|. (15)

From (15) it follows that the set {z : 0 < z ≤ ǫc} is

an attractive invariant set for (14) for all initial conditions

ηi(0) > ǫc. Furthermore, η̇i < 0 for ηi = ǫc. It follows that

there exists T = T (ǫc), such that ηi(t) ≤ ǫc for t ≥ T (ǫc),
thus showing feasibility of the Problem 1.

Conversely, suppose there exists η̃i = |ỹ|, where ỹ ∈ R
2,

such that ǫc ≤ η̃i ≤ |ȳi| and

f(η̃i) ≥ ūP η̃
i. (16)

Notice that the set S := {z : z ≥ η̃i} is invariant for (14)

since f(z)/z − ūP ≥ 0 for all z ∈ bdS. Since ηi(0) ∈ S,

it follows that ηi(t) ≥ η̃i, for all t ≥ 0, which implies that

the Problem 1 is not feasible for ǫc < η̃i. If, on the other

hand, ǫc = η̃i then either f(ǫc) > ūPǫc or f(ǫc) = ūPǫc.

In the first case, any trajectory starting from ηi(0) > ǫc
can never reach the set {z : 0 ≤ z ≤ ǫc}. In the second

case, ηi = ǫc is an equilibrium solution for (14). Since the

right hand side of (14) is Lipschitz continuous at ηi = ǫc,
this equilibrium can only be reached asymptotically [13]. In

both cases, Problem 1 is infeasible.

Henceforth, we refer to (13) as the capturability condition

of Problem 1. In order to characterize the winning set of the

ith pursuer, let

η̄f := inf{z ∈ [ǫc,∞) : f(z) ≥ ūPz}. (17)

Note that η̄f ≥ ǫc. If f(z) < ūPz for all z ∈ [ǫc,∞), we

take η̄f := ∞, and hence Wf (x̄
i
P ) = R

2. If f(z) ≥ ūPz
for all z ∈ [ǫc,∞), then η̄f = ǫc, and hence Wf (x̄

i
P ) =

{x ∈ R
2 : |x̄iP − x| ≤ ǫc}. Finally, if ǫc < η̄f < ∞,

then it follows readily from (17) that f(z) < ūPz for all

ǫc ≤ z < η̄f and hence, in light of Proposition 2, Wf (x̄
i
P ) :=

{x ∈ R
2 : |x̄iP − x| < η̄f}. For all cases the winning set of

the ith pursuer can be defined compactly as

Wf (x̄
i
P) := {x : |x̄iP−x| < η̄f}∪{x : |x̄iP−x| ≤ ǫc}. (18)

Note, however, that the ith pursuer does not know exactly its

winning set, since it has only partial knowledge of f , and

consequently of η̄f as well. As a result, each pursuer can

only compute an approximation of its actual winning set. To

this end, let

η̄f̄ := inf{z ∈ [ǫc,∞) : f̄(z) ≥ ūPz}. (19)

In light of (4), it follows that η̄f̄ ≤ η̄f . Let

Wf̄ (x̄
i
P) := {x : |x̄iP −x| < η̄f̄}∪{x : |x̄iP −x| ≤ ǫc}. (20)

Clearly, Wf̄ (x̄
i
P) ⊆ Wf (x̄

i
P ). Hence, Wf̄ (x̄

i
P ) is a conser-

vative approximation of the winning set Wf (x̄
i
P). Note that,

contrary to Wf (x̄
i
P), the ith pursuer has perfect knowledge

of Wf̄ (x̄
i
P ). Furthermore, the closeness of the approximation

of the winning set of the ith pursuer with Wf̄ (x̄
i
P) depends

on the difference η̄f − η̄f̄ .

IV. THE DYNAMIC VORONOI PARTITIONING PROBLEM

Next, we formulate a dynamic Voronoi-like partitioning

problem based on the minimum time-to-go of the ith MTP,

which will allow us to assign a pursuer starting from a point

in P to a moving target traveling in the plane. The space we

wish to partition, denoted henceforth as W , is the union of

all Wη̄f (x̄
i
P), where i ∈ I.

Problem 2: Given a collection of n pursuers, initially

located at distinct points in P , and the cost function

ci(x, x̄iP ) := Tf(x− x̄iP), (21)

where Tf is the minimum time from the solution of Prob-

lem 1, determine a partition V = {V i : i ∈ I} of V such

that

i) W =
⋃
i∈I Vi

ii) for all x ∈ V i, c(x̄iP , x) <∞
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iii) c(x̄iP , x) ≤ c(x̄jP , x) for i, j ∈ I with j 6= i.

Henceforth, we shall refer to the solution of Problem 2 as

the Optimal Pursuit Dynamic Voronoi Diagram (OP-DVD).

The set V i, constitutes a Voronoi cell (Dirichlet domain) of

the OP-DVD. We say that the ith and jth pursuers, where

i, j ∈ I, are neighbors if and only if the set V i ∩ Vj

is neither non-empty nor a singleton. Because the evading

strategy of any moving target is not perfectly known, we

can only provide approximate solutions to Problem 2, as it

is discussed next.

V. CONSTRUCTION OF AN APPROXIMATE OP-DVD

In order to construct an approximate OP-DVD, we will

first investigate whether the minimum time-to-go of Prob-

lem 1 belongs to a class of generalized metrics that are

associated with Voronoi-like partitions, for which efficient

computational techniques exist in the literature [1].

To this end, observe that direct integration of equation (14)

yields

Tf(ȳ
i) :=






0, if 0 ≤ |ȳi| ≤ ǫc,∫ |ȳi|

ǫc

µ dµ

ūPµ− f(µ)
, if ǫc < |ȳi| < η̄f ,

∞, otherwise.

(22)

The following result will be useful in the subsequent

analysis

Proposition 3: Let η̄f > ǫc. Given two points ξ, ψ ∈ R
2,

with |ξ|, |ψ| ∈ (ǫc, η̄f ), the minimum-time of Problem 1

satisfies

ǫc < |ξ| < |ψ| < η̄f ⇔ 0 < Tf(ξ) < Tf(ψ) <∞, (23)

and, furthermore,

ǫc < |ξ| = |ψ| < η̄f ⇔ 0 < Tf(ξ) = Tf(ψ) <∞. (24)

Proof: First, notice that the minimum-time of Prob-

lem 1 satisfies

Tf(ψ)− Tf(ξ) =

∫ |ψ|

|ξ|

φ(µ) dµ, φ(µ) :=
µ

ūPµ− f(µ)
.

The function φ : (ǫc, η̄f ) 7→ R is continuous and strictly

positive on (ǫc, η̄f ). From the mean value theorem for

Riemann integrals [14], it follows that there exists ǫc < |ξ| ≤
ζ ≤ |ψ| < η̄f such that

Tf(ψ) − Tf(ξ) =

∫ |ψ|

|ξ|

φ(µ) dµ = φ(ζ)(|ψ| − |ξ|). (25)

Since φ(ζ) > 0 for all ǫc < ζ < η̄f , the result follows

readily.

Corollary 1: Let η̄f > ǫc and let ξ, ψ be two given points

in R
2. Then the minimum-time of Problem 1 satisfies

|ξ| ≤ |ψ| ⇒ Tf(ξ) ≤ Tf(ψ). (26)

Proof: The statement of the corollary for the case

when ǫc < |ξ| ≤ |ψ| < η̄f has already been proved in

Proposition 3. The proof for the other cases, namely, when

|ξ| ≤ ǫc < |ψ| < η̄f , or |ξ| ≤ |ψ| ≤ ǫc, or ǫc < |ξ| < η̄f ≤
|ψ|, and η̄f ≤ |ξ| ≤ |ψ| follows trivially from (22).

Next, we present the solution of Problem 2.

Theorem 1: Let V := {V i, i ∈ I} be the standard

Voronoi partition generated by the set P , and assume that

η̄f > ǫc. The solution of Problem 2 is given by

V i = V i ∩Wf (x̄
i
P ), i ∈ I, (27)

where Wf (x̄
i
P ) is the winning set of the ith pursuer, given

by (18).

Proof: Let x ∈ V i ∩Wf (x̄
i
P). In particular, x ∈ V i if

and only if |x− x̄iP | ≤ |x− x̄
j
P |, for all j 6= i, which implies,

in light of Corollary 1, that Tf(x− x̄iP) ≤ Tf(x− x̄
j
P ) for all

i 6= j. Furthermore, if x ∈ Wf (x̄
i
P ) then Tf(x − x̄iP) < ∞.

It follows that x ∈ V i and hence V i ∩Wf (x̄
i
P ) ⊆ V i for all

i ∈ I.

Next, assume x ∈ V i. By the definition of V i, it follows

that Tf(x − x̄iP) < ∞ and Tf(x − x̄iP ) ≤ Tf(x − x̄
j
P), for all

j 6= i. If 0 < Tf(x − x̄iP ) ≤ Tf(x − x̄
j
P ) < ∞, it follows

from Proposition 3 that |x − x̄iP | ≤ |x − x̄
j
P |, for all j 6= i.

In addition, it follows readily that Tf(x− x̄iP ) ≤ Tf(x− x̄
j
P )

implies that |x − x̄iP | ≤ |x − x̄
j
P |, for all j 6= i and x ∈ V i,

when Tf(x− x̄
j
P) = 0 and Tf(x− x̄

j
P ) = ∞ as well. Thus x ∈

V i. Furthermore, since Tf(x− x̄iP) <∞, then x ∈ Wf (x̄
i
P ).

Hence x ∈ V i ∩Wf (x̄
i
P) and V i ⊆ V i ∩Wf (x̄

i
P ) for i ∈ I.

Theorem 1 suggests that the ith element of the partition

that solves Problem 2 is the intersection of the winning set of

the ith pursuer with the cell of the standard Voronoi diagram

generated by the set P that is associated with the generator

x̄iP . Note that the OP-DVD encodes the proximity relations

between a target and the pursuers with respect to time of

capture, for all pursuers in P .

The following proposition deals with the neighboring

relations between the set of pursuers in V .

Proposition 4: Let V := {V i : i ∈ I} be the standard

Voronoi partition generated by the set P and let i, j ∈ I
with i 6= j. Then the ith pursuer is a neighbor of the jth

pursuer in the OP-DVD if and only if

i) The generators x̄iP and x̄
j
P correspond to two neigh-

boring nodes of the dual Delaunay graph of V .

ii) |x̄iP − x̄
j
P | ≤ 2η̄f .

Proof: The proof follows immediately from Theorem 1

and the definition of η̄f , and it is thus omitted.

Theorem 1 provides an efficient way for the construction

of the exact OP-DVD provided, however, that the sets

Wη̄f (x̄
i
P), where i ∈ I, are perfectly known. The following

corollary, which follows readily from Theorem 1, furnishes

an approximate solution to Problem 2.

Corollary 2: Let V := {V i : i ∈ I} be the standard

Voronoi partition generated by the set P . An approximate
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solution of Problem 2 is given by

Ṽ := {Ṽ i, i ∈ I}, Ṽ i = V i ∩Wη̄f̄
(x̄iP ), i ∈ I. (28)

One important question that arises in the context of the

previous discussion is whether the approximate OP-DVD

can provide us with reliable information regarding the actual

proximity relations among the pursuers in P (this informa-

tion is encoded in the exact OP-DVD).

Proposition 5: Let V := {V i : i ∈ I} be the standard

Voronoi partition generated by the set P . The ith pursuer is

a neighbor of the jth pursuer if

i) the generators x̄iP and x̄
j
P correspond to two neighbor-

ing nodes of the dual Delaunay graph of V
ii) |x̄iP − x̄

j
P | ≤ 2η̄f̄ .

Proof: The proof follows readily from Proposition 4

and the definition of η̄f̄ and η̄f .

VI. THE SOLUTION OF THE iTH MTP AND ITS RELATION

TO THE ZERMELO’S NAVIGATION PROBLEM

In this section, we highlight the advantages of the scheme

for addressing Problem 2 presented in Section V, by com-

paring it with the approach introduced in our previous work

[10]. Specifically, in [10], we assumed that the evading

strategy uT was perfectly known to the pursuers (pursuit-

with-anticipation), thus reducing the ith MTP to the Zer-

melo’s navigation problem (ZNP). The extremal control

ui∗ of the ZNP has necessarily the following structure:

ui∗ = ūP(cos θ
i
∗, sin θ

i
∗), where θi∗ satisfies the following

differential equation, known as the navigation formula (for

more details see for example [15, pp. 239-247, pp. 370-373])

θ̇i∗ = (µ1 − ν2) cos θ
i
∗ sin θ

i
∗ + ν1 sin

2 θi∗ − µ2 cos
2 θi∗, (29)

where µ := 〈(1, 0), uT 〉, ν := 〈(0, 1), uT 〉, and µ1, µ2, ν1, ν2
denote partial spatial derivatives. It follows that the optimal

control ui∗ is determined up to a single parameter, namely

θ̄i = θ∗(0) ∈ [0, 2π); we subsequently write ui∗(t; θ̄
i).

One key observation here is that the solution of the ZNP

depends explicitly on uT and its partial derivatives through

the navigation formula (29), in contrast to the solution of the

ith MTP which is independent of uT under Assumption 1.

Furthermore, the control ui∗ solving the ZNP is not express-

ible, in general, in closed form, given that (5) along with (29)

form a coupled system of three nonlinear equations, which

does not admit, in general, an analytic solution.

Additionally, the navigation formula (29) does not nec-

essarily furnish a global optimal solution to the ZNP. In

particular, the pursuit strategy ui∗(t; θ̄
i) may either be: 1)

maximizing (locally or globally) the time of capture, 2)

minimizing (locally or globally) the time of capture or 3)

be an abnormal control law (that is, an extremal law that

corresponds to an abnormal extremal curve of the ZNP [16]).

The following proposition provides a sufficient condition for

determining whether an extremal control ui∗ maximizes or

minimizes locally the time of capture of the moving target

or it is an abnormal control law [15]–[17].

Proposition 6: Let yi∗(τ) be the extremal curve generated

by ui∗(τ ; θ̄
i), for τ ∈ [0, t]. If the functional

I[yi∗, u
i
∗] := ūP + 〈uT (y

i
∗), u

i
∗〉, (30)

satisfies I[yi∗, u
i
∗] > 0 (< 0) for all τ ∈ [0, t], then the control

ui∗(τ ; θ̄
i) minimizes (maximizes) locally or globally the final

time of Problem 1. Furthermore, if I[yi∗, u
i
∗] = 0 for all τ ∈

[0, t], then ui∗ is an abnormal control law of Problem 1.

The main caveat here is that Proposition 6 does not allow one

to characterize the global minimizing extremals of the ZNP,

whereas the optimality (local or global) of any abnormal

extremals is still inconclusive. Therefore, in general, there

does not exist a straightforward method to conclude global

optimality of the solution of ZNP without either resorting to

exhaustive numerical techniques or restricting our attention

to particular classes of drift terms, as those examined in detail

in [10].

VII. SIMULATION RESULTS

In this section, we present simulation results to illustrate

the previous developments. We consider a scenario where

the maneuvering target is faster than the ith pursuer, but the

winning set of the ith pursuer is non-empty as a result of the

information pattern employed in Section II. In particular, it is

assumed that the target has a constant speed and its evading

strategy is given by

uT (y
i) =





αyi + ρ(yi)Syi, for ǫc ≤ |yi| ≤
M

α
,

M
yi

|yi|
, for |yi| >

M

α
,

(31)

where M and α are some positive constants with M >
max{ūP , α}, S is a nonzero skew symmetric matrix in R

2×2,

and ρ(yi) :=
√
M2 − α2|yi|2/|Syi|. Note that

f(yi) := 〈uT , y
i〉 =





α|yi|2, for ǫc ≤ |yi| ≤
M

α
,

M |yi| for |yi| >
M

α
,

(32)

satisfies Assumption 1.

The intuition behind the evading strategy (31) is as fol-

lows: Let e1(y
i) := yi/|yi| be the unit vector along the

line connecting the target and the ith pursuer (“line-of-sight”

direction), and let e2(y
i) be the unit vector orthogonal to

e1(y
i) (“tangential” direction). The strategy of the target is to

allocate its velocity vector, which has a constant magnitude

M > uP , along the directions e1(y
i) and e2(y

i) so that

it moves with constant speed M along the line-of-sight

direction when it is sufficiently far away from the pursuer,

and it uses an increasingly larger tangential component as its

distance from the pursuer decreases, in an effort to maneuver

away or confuse its pursuer.

Assume for this example that the set P consists of ten

locations, and let f̄ be defined as f modulo the replacement

of α by ᾱ, where ᾱ is a positive scalar with α ≤ ᾱ <
M . In this case, the capturability condition (13) reduces to
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ηi(0) < ūP/α, which implies that η̄f = ūP/α < M/α and

η̄f̄ = ūP/ᾱ < M/ᾱ. Furthermore, it is easy to show that for

ǫc < |ȳi| < η̄f the minimum-time to capture for Problem 1

is given by

Tf(ȳ
i) = −

1

α
ln

(
ūP − α|ȳi|

ūP − αǫc

)
. (33)

Figure 1(a) illustrates the exact OP-DVD along with the level

sets of Tf(ȳ
i) for α = 0.7, ǫc = 0.05 and ūP = 1.2. An

approximation of the OP-DVD for ᾱ = 0.95 is illustrated in

Fig. 1(b).

Next, we examine the discrepancies between the neigh-

boring relations among the pursuers of the exact and the

approximate OP-DVDs. In light of Proposition 5, given

i, j ∈ I with i 6= j, the ith and j th pursuers are neigh-

bors provided that the generators x̄iP , x̄
j
P ∈ P correspond

to two neighboring nodes of the dual Delaunay graph of

the standard Voronoi diagram generated by the set P and

|x̄iP − x̄
j
P | < 2η̄f̄ = 2ūP/ᾱ. For this particular example, we

can explicitly compute a lower bound of ∆η̄ := η̄f − η̄f̄
as a function of the error ∆α := ᾱ − α. Specifically,

∆η̄ = ūP/α − ūP/ᾱ = ūP∆α/ᾱα, which implies that

∆η̄ ≥ ūP∆α/ᾱ
2. It follows readily from Propositions 4

and 5 that if |x̄iP − x̄
j
P | < 2η̄f̄ + 2ūP∆α/ᾱ

2 ≤ 2η̄f , then

the ith and j th pursuers are neighbors of the exact OP-DVD

although they may not be neighbors of the approximate OP-

DVD. Consequently, the accuracy of the knowledge about

the neighboring relations between the pursuers of the exact

OP-DVD is contingent upon the smallness of the error ∆α.

The situation is illustrated in Fig. 1, where the approximate

OP-DVD conceals the fact that the 1st and the 10th, and

the 7th and the 8th are neighboring pursuers of the exact

OP-DVD.
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(a) Minimum-time wave fronts for
Problem 1.
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Fig. 1. The exact and an approximate solution of Problem 2 for a
team of ten pursuers.

VIII. CONCLUSION

In this article, we have formulated a new dynamic parti-

tioning problem that deals with the characterization of the

sets of initial conditions from which a pursuer, from a given

team of pursuers, can capture a moving target faster than

any other pursuer from the same team. It is assumed that the

target can employ a feedback “evading” strategy in response

to the pursuers’ actions, which is only partially known to

the pursuers. We have presented an efficient scheme for the

construction of an approximate solution of this partitioning

problem by associating it with a standard Voronoi diagram.
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