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Abstract— In this paper we present a discrete event model
whose marked language, i.e., sequences of movements, make up
canonical warm-up routines in classical ballet. Through com-
position operations that trim physically infeasible transitions
and ensure that the rules of classical ballet are adhered to, a
richer model is obtained that supports the generation of free-
flowing dance sequences in the style of classical ballet. This
type of construction not only allows us to produce a rich set
of stylized human motions, but it also allows for variations in
the “personalities” of these motions through the potential use
of different composition specifications.

I. INTRODUCTION

In a number of emerging applications, the understanding
of human motion plays a key role. These applications range
from the production of natural gaits for bipedal humanoid
robots to image segmentation and computer animation (e.g.,
[15], [18], [8]). This paper should be understood in terms of
this larger dialogue about how to represent human movement
for recognition, imitation, and concise parameterization. A
number of human motions and tasks, such as reaching, draw-
ing, and arguably walking, have been successfully encoded
using dynamic motion primitives [6], [14]. These primitives,
or movemes [4], are designed to produce rich and complex
human-like motions through systematic, temporal composi-
tion. Traditionally, these primitives are obtained from empir-
ical data, e.g., collected using motion capturing devices, that
is segmented (often by hand, [3], but with progress towards
automatic segmentation, [7]) into appropriate motion chunks
and stored in a motion library [14].

These previous models pick up on very specific, character-
istic trajectories involved in short stereotyped movements. A
drawback of this representation is that it limits the models’
ability to capture longer, and ultimately produce, composite
movement sequences or actual behaviors. Rather than basing
the models on empirical data as in [6], [7], and [12], in
this paper, we draw inspiration from a highly constrained set
of motion patterns, namely, those found in classical ballet.
We aim to capture these particular patterns because there
are formal rules of movement organization in ballet, and
the execution of these rules produces highly sophisticated
and complex motions. These highly structured, yet highly
expressive, movements provide a convenient initial case
study that inspires the structure of our framework.

Dance choreography has been captured using various
formalization approaches, e.g., Laban notation [11], but in
this paper we model the motion patterns of ballet as a series
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of event-driven poses1. Hence, our model takes the form of
a finite automaton. The states of the resulting discrete event
system represent body poses while transitions between states
represent the motion or trajectory between poses.

In particular, we will consider the motions associated with
ballet’s traditional warm-up routine. These routines involve
a single leg – the working leg, and we will present a 10-
state finite state machine whose marked language produces
the set of feasible barre routines. By taking the Cartesian
composition of two such automata, a system is obtained
that now can be used to characterize more free-flowing,
two-legged movements – like those found in choreographed
performance sequences. However, the resulting system is
physically infeasible and, furthermore, recognizes sequences
of moves that can no longer be considered valid classical
ballet routines. To remedy this, we introduce two operations
that remove physically infeasible composite transitions as
well as prevents the system from reaching invalid (non-
balletic) states.

The reason for this line of inquiry is twofold. First, by
producing choreographic control scripts that are not only
dynamically feasible (the robot does not fall over or is not
asked to execute motions that are in violation of its kinematic
constraints) but also that satisfy certain aesthetic constraints,
this framework can be extended to endowing and recognizing
robotic motion with “personalities” – subtle, yet distinguish-
ing, behavioral quirks. In fact, humans do not behave in
tight, stereotyped manners. Rather, we stitch together short
movements into greater movement sequences (not only in
highly formalized movement schemes like ballet, but also
in casual, pedestrian movement modes like hand gestures
in conversation, which create patterns that are unique to
individuals). This feature will be reflected in the proposed
model as well.

Second, by capturing the discrete dynamics associated
with pose transitions, the proposed model differs from previ-
ous attempts (e.g., [3] and [10]) in that it encodes the actual
rules which ballet dancers and choreographers employ into
a mathematical construct – thus making a new set of tools
which can quantify aspects of choreography, facilitating new
debate among scholars and offering unbiased comparison to
other styles and genres. In this sense, the proposed model
can be considered a follow up to Laban’s early attempts at
quantification of aesthetic human behavior [11], [13].

1Ballet’s movement aesthetic is inherently goal-oriented in that the
movements often have a climax or final pose that is held for a moment
before the next [19]. For example, the goal pose may be an impressive
balance on one foot or a graceful breath of the arms that creates a transition
into a new movement theme. As such, this is a reasonable assumption.
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The work in this paper can thus be regarded as a first
attempt at producing a rich, discrete event model for the
actual movement patterns of complex behaviors – in par-
ticular, those of classical ballet. Even though ballet is an
art form characterized by the subjective effect of its flowing,
graceful movements, the movements themselves are on some
level objective in that they adhere tightly to a specific style.
This style is dictated not only by specific teachers whose
movement methods have been codified into systems of ballet
technique (which allow for efficient execution of difficult
jumps and turns), but also and especially by the choreog-
raphers who arrange the elements of ballet vocabulary to
produce compositions that elucidate a range of emotions
from their audience ([1], [19]). For example, a Romantic
ballet will paint a sweet, pastoral image of an innocent
princess in one scene and in the next provide a bitter, evil
picture of a jealous villain using essentially the same set of
basic motions. What differentiates these two sequences? This
paper aims to provide the beginnings of an answer to this
question – a quantitative articulation of “style” – based on
tools and techniques from discrete event systems theory.

The outline of this paper is as follows: in Section II, we
develop a discrete event model for classical ballet barre. This
canonical one-legged routine can be crisply described by a
10-state barre automaton in which the states correspond to
poses while the transitions correspond to moves. Moreover,
these moves constitute the basic building blocks in ballet as
they are the primary tool used to warm and train muscle
patterns at the start of every ballet class. The construction of
our two-legged system from the one-legged automaton is the
main topic of Section III. A direct, Cartesian composition
of two one-legged automata (one for each leg) will result
in a system with physically impossible configurations and
motions. As such, we propose a composition which trims
physically infeasible transitions by checking the outputs
associated with the joint transitions. We then further con-
strain this physically consistent system with a supervisor that
prevents the system from reaching states that are incongruous
with the aesthetics of classical ballet. Eventually, different
such supervisors can specify different dance styles and even
stylistic variations on ballet, e.g., the Cecchetti and Vaganova
methods. To demonstrate the viability of our construction, we
consider random sample paths through the final system which
are viable dance sequences, in the style of classical ballet.
Finally, in Section IV we provide philosophical motivation
for our approach.

II. THE BARRE AUTOMATON

In order to understand and implement the rules of classical
ballet, we draw inspiration from established warm-up exer-
cises, the barre. A concept central to ballet’s doctrine is that
the barre trains and safely warms the muscle groups critical
to the correct execution of the freestanding, full-fledged
movements that comprise the second portion of class and
performances. Hence, these canonical exercises contain the
poses and allowable trajectories through them that construct
the more rich and expressive remaining vocabulary of ballet.

Fig. 1. The discrete states are interpreted as poses corresponding to three
joint angles: hip, knee, and ankle and are restricted to the body’s coronal
plane.

The term “barre” refers to the physical hand-railing, or bar,
that dancers hold on to in order to balance during the warm-
up. Exercises typically focus on one side of the body and are
repeated twice in order to work both sides of the body. The
working leg is the leg that is away from the bar and is more
active than the other (standing or supporting) leg during a
given iteration of the exercise. For now, we limit our focus to
positions with the working leg in the body’s coronal plane.

We define 10 states which correspond to poses constructed
from a triplet of joint angles, as seen in Fig. 1. These poses
represent shapes critical to the experience of ballet. They
are chosen from goal positions at the barre and, as such,
are highly recognizable snapshots from the vocabulary of
ballet that are found in more complex movements used
for choreography. The state transitions are given by events
modeled as the movements from the barre exercises. These
movements are listed in the table below, together with
the transition labels (assigned according to the first four
letters of the name of the movement from which the event
was derived). Additionally, we distinguish two transitions
for each movement listed in the table using a subscript to
indicate an in and out variant. The variants stem from the
fact that each movement has a goal end pose; during a
movement sequence, the dancer system is either on its way
out to the goal pose or on its way back in, to a previous
state. [19]

Movement Transition Label
plié plie
relevé rele
battement tendu tend
degajé dega
coupé coup
frappé frap
grand battement gran
possé poss
battement batt
développé deve
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Fig. 2. A discrete event model of the working leg of a dancer during
a ballet barre exercise. States correspond to poses defined by three joint
angles: hip, knee, and ankle. Events are given by primary ballet movements
plus the empty event (or hold), which corresponds to undrawn self-loops.
Images of the poses and corresponding states are shown for clarity. Here it
is clear that, in our model, state 44 is physically the same as state 4. We
differentiate these two related states based on whether the motion of the
leg is to remain low (below the hips) or high (at or above hip level) before
returning to a neutral state and beginning the next movement. These levels
generally correspond to specific movements which stem from two variants
of this pose: one where the foot is wrapped around the ankle and one where
the foot is fully pointed and placed next to the ankle, as described in [19].

Formally speaking, we will model our system as the finite
state machine

G = (X,E,O, f,Γ, o, x0, Xm, ε, ω), (1)

where X is the finite state space, E is the event set, O is an
output set, f : X × E → X is the state transition function,
Γ : X → 2E is the set of feasible events (at a given state),
o : X × E → O is the output map, x0 ∈ X is the initial
condition, and Xm ⊆ X is a set of marked states. In order
to allow for both synchronous and asynchronous transitions
once we take the Cartesian composition of two such systems,
we also explicitly need to use “empty” transitions, which are
defined by the symbol ε. The interpretation is that for our
finite state machine, we insist on ε ∈ E, with the result that
ε ∈ Γ(x) as well as f(x, ε) = x, ∀x ∈ X . Moreover, we
associate ω ∈ O with the outputs from “empty” events, i.e.,
o(x, ε) = ω, ∀x ∈ X .

In particular, for the barre automaton that we will use
to generate ballet-like motions, Xbarre, Ebarre, fbarre, and
Γbarre are defined in Fig. 2. (Note that, for clarity, we

neglected to draw the self-loops that are needed at each state
to capture the effect of ε.) Moreover, the rest position is
given by state 2, and as we always aim at returning to that
pose, we let x0 = 2 and Xm = {2}. The resulting marked
language, i.e., the set of event strings that start at x0 and end
in Xm, produce feasible barre routines. Some strings might
be somewhat unusual, but they will certainly be recognizable
as classical ballet.

In this paper, we will use the output map as a means
of preventing physically infeasible motions from happening
when composing two barre automata in order to emulate
full-fledged two-legged dance routines rather than one-legged
warm-up exercises with our system. For this, we consider the
continuous set X which spans the entire physical space of
configurations that the leg may take, defined in terms of the
three angles in Fig. 1. From the figure and general kinematic
constraints of humanoid geometry, we see that the range of
X is limited, e.g.,

X =

{
(θ1, θ2, θ3) | θ1, θ2 ∈ [0, π], θ3 ∈ [

3π

2
, π]

}
. (2)

We can now think of transitions between the discrete
states of the automaton as tracing paths through X 2. And,
as our formulation associates every event with a unique
state, we can associate the output map with the path that
the corresponding pose transition sweeps in X . Hence, for
e ∈ Ebarre, x ∈ Xbarre, we let

obarre(x, e) ∈ 2X = Obarre, (3)

and we denote by Gbarre the particular finite state machine
used to encode the barre exercises in classic ballet.

In order to demonstrate how a sample path through the
system works, consider, for example, a développé; this
movement is found both in barre exercises and more complex
ballet movement phrases. A développé is the action when the
working leg’s foot is moved to the ankle, then the knee, then
extends from the body so that the leg is parallel to the floor.
However, lifting the foot to the ankle or knee (without, for
example, any extension to follow) are allowable movements
called coupé and possé, respectively. Thus, to keep our
transitions (and trajectories) uniquely defined, we model this
as three separate events for the working leg: coupo, posso,
deveo. Next, the dancer performs a closing movement where
the foot remains extended from the body and the leg is
lowered till the foot is returned to the starting stance. This
is modeled as the event batti – the transition from pose 8
directly to pose 2 with a label that corresponds to the in-
trajectory of a battement (a simpler movement that looks like
a high straight-legged kick). The events coupi, possi, and
devei are also defined, that is, the reverse pose transitions are
allowed and used for more complex movements. Of course,
for the stationary standing leg, the movement is simply a
repeated ε event; the next section will illustrate event strings
for two legs.

2A relaxed version of this may take into account that the angles corre-
sponding to the states in the automaton are, in practice, approximate. They
may even vary slightly dancer to dancer and, for a given dancer, execution
to execution. In this case we may think of these paths as “tubes.”
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III. A COMPOSITIONAL SYSTEM

Given two finite state machines of the form of Eq. 1,
we want to be able to take the Cartesian composition of
these two state machines while transitions that are deemed
impossible or incorrect are removed from the composed
system. The reason for this is that we want to be able to
go from a one-legged barre automaton to a system involving
two legs without violating the laws of physics or the rules
of ballet. For this, we need to introduce the following
compositional operations.

Given two finite automata

Gi = (Xi, Ei, Oi, fi,Γi, oi, xi,0, Xi,m, εi, ωi), i = 1, 2,

we let the Cartesian composition of these two systems be
given by

G = G1 × G2 = (X,E,O, f,Γ, o, x0, Xm, ε, ω),

where

X = X1 ×X2

E = E1 × E2

O = O1 ×O2

f((x1, x2), (e1, e2)) = (f1(x1, e1), f2(x2, e2))
Γ((x1, x2)) = Γ1(x1)× Γ2(x2)
o((x1, x2), (e1, e2)) = (o1(x1, e1), o2(x2, e2))
x0 = (x1,0, x2,0)
Xm = X1,m ×X2,m

ε = (ε1, ε2)
ω = (ω1, ω2).

(4)

Note that this is a synchronous composition in the sense that
events have to happen to both of the two systems in order
for a transition to happen. However, through the introduction
of the empty word, we can produce asynchronous transitions
directly through the use of the events (e1, ε2) or (ε1, e2) in
a straightforward manner.

If we perform this operation on two barre automata as
G = Gbarre1 × Gbarre2 , we obtain a system that no longer
is a one-legged warm-up routine, but rather a two-legged
dance model. Even limited to movements taking place in
the coronal plane, G can demonstrate how simple barre
exercises define the grammar for more varied and larger
ballet movements. For example, pas de chat3 is a jump in
which the dancer picks up each leg in sequence causing him
or her to move side to side. It is modeled for either leg in
this automaton as the event sequence

coupo, posso, possi, plieo, pliei ∈ E?
barre,

where ? denotes the Kleene closure. The corresponding event
string for the composite system would be

(ε1, coupo), (coupo, posso), (posso, possi), ...

...(possi, plieo), (plieo, pliei), (pliei, ε2).

Note that both of these joint event strings belong to the
composite set (Ebarre × Ebarre)

?.

3Literal translation from French: “step of the cat.”

As the barre automaton does not tell us anything about the
forces required for jumping but accepts the correct sequence
of leg positions during the jump, it is entirely possible
that the Cartesian composition contains events that are not
physically possible to execute. The characterization of the
physically feasible joint events is encoded in the output
values associated with the events. We want to prevent any
corresponding, physically infeasible events from occurring in
the composite system, and thus, we introduce the operation
infeas. Let

G = (X,E,O, f,Γ, o, x0, Xm, ε, ω)

be a finite state machine as per Eq. 1 and let Oinfeas ⊂ O
be a subset of the output set that does not contain ω. The
infeas operation will take G and Oinfeas as arguments and
return a new finite state machine,

infeas(G, Oinfeas) = (X,E,O, f, Γ̂, o, x0, Xm, ε, ω),

where we only have changed the definition of Γ i.e., the set
of events that are allowed to happen at a given state. The
new such set is given by

e ∈ Γ̂(x) ⇔ e ∈ Γ(x) and o(x, e) 6∈ Oinfeas. (5)

The set Oballet
infeas, defined for the ballet model, will allow

us to whittle away excess transitions in order to produce
system behaviors consistent with the physical capabilities of
a bipedal geometry. For example, lifting a flat-footed leg
off the ground, in a manner which indicates a jump (or,
equivalently, raising the leg when the other is already in the
air), without a bend in the knees to provide spring for the
jump, is physically impossible. This corresponds to state 2
(foot flat on the ground with a straightened knee), and the
infeasible event is an extension of the leg from the ground to
state 8 (extended away from the body, parallel to the floor).
Similar such simple rules used to govern a leg providing
critical support (a leg in state 1, 2, or 3 when the other is
in any of the others, states 44 and 4-8) such as “no coronal
extension of the supporting leg from states 1 and 2” can
easily be translated into regions of 2X × 2X . Thus, pairs of
regions of continuous space define Oballet

infeas and correspond
to disallowed synchronous leg paths.

Disallowed transitions (or trajectories of intermediate
states) correspond to system specifications that arise from
the body’s reaction to physical constraints, and we use the
infeas operation to avoid these situations. Notice that phys-
ically impossible moves are always impossible, independent
of any desired style constraints, and this is reflected in our
mathematical framework. However, one might be interested
in adding aesthetic considerations to the models as well in
order to make them adhere to particular dance styles. In this
paper, we do this through the use of a supervisory controller
that ensures that the system does not reach aesthetically
unpleasing states. Formally speaking, given a finite state
machine together with the set Xunaesth ⊂ X , with x0 6∈
Xunaesth, we let the operation

aesth(G, Xunaesth)
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be the supervised system G\Saesth, where Saesth is the
maximally permissive, non-blocking supervisor that ensures
that the set Xunaesth is never reached. Note that such
supervisors can be automatically generated, e.g., [5].

The definition of Xballet
unaesth in the ballet model is a

straightforward list of two-legged states which are perhaps
considered ugly as judged by the metric of ballet; often, these
are asymmetrical poses or poses which cannot be seen from
the audience’s distant perspective. Finally, with all of these
components in place, the final model Gballet for free-flowing
classic ballet dance is given by

aesth(infeas(Gbarre1 × Gbarre2 , Oballet
infeas), X

ballet
unaesth). (6)

In order to test the effectiveness of our chosen rules (as
these behaviors which we define may be very subjective
and require a human eye to validate), we generate random
allowable sample paths through two systems: 1) the origi-
nal Cartesian composition between two single-leg automata
with no control scheme and 2) a system which adds the
restrictions contained in Oballet

infeas and Xballet
unaesth and enforced

by the operations outlined in this section as in Eq. 6. The
results are animated using a MATLAB script; snapshots of
an illustrative sample case are provided in Fig. 3. These
animations have been evaluated by a trained eye and found
to be a reasonable initial model of ballet technique. Clearly,
even to the untrained eye, significant changes take place
between the distinct cases of systems that we animated.

IV. TOWARDS A METHOD FOR STYLE SPECIFICATION
AND COMPARISON

An emerging philosophy in several disciplines is that
dynamical equations in terms of external parameters such
as joint angles are an inherently poor choice of coordinates
for parameterizing human motion. Although these external
quantities are easy to measure, we present three examples
where they have been demonstrated to break down. (1)
Recent results in neuroscience ([9]) indicate that the motor
cortex (the part of the brain that controls animal movements)
is organized in terms of behavioral actions, not body parts
and joint angles. (2) It is an emerging practice in dance
education to give students corrections in terms of actions, not
body part placement [2]. The philosophy is that, in general,
humans do not have control of individual body parts. As a
result, corrections that identify misplaced body parts result
in weird, undesirable movement patterns that the dancer
essentially invents in attempt to align something which he
or she cannot control directly. (3) Biophysicists studying
the movements of C. Elegans, a microscopic worm that is
one of the most well-studied model organisms in biology,
provided the first quantitative explanation of its movement
patterns by phrasing their analysis in terms of four body
poses. These body poses, and their linear combinations, were
shown to account for 95% of the worm’s behavior [16].
Viewing the worm’s movement in this so-called shape space
([17]) allowed the researchers to, for the first time, accurately
predict the motion of the worm due to external stimuli.
Thus, it is perhaps an internal parameterization, such as body

no control 
Oballet

infeas

Xballet
unaesth

Fig. 3. Two example sequences demonstrate the result of our control
method. The left-hand sequence is an example of a nonphysical (and thus
unaesthetic) series of poses. Namely, the violation is lifting the leg from
the ground from the precarious pose 3 (en relevé) without any preparation.
Conversely, in the right-hand sequence which is the same except for the
action of the legs as they leave the ground: the leg bends so as to provide
effective force in jumping from the ground. This is a proper pas de chat.

position, that will provide a more simple, useful model for
human movement.

The extension of this philosophy into a system with well-
defined inputs and outputs presents interesting questions for
systems theory, and as has been presented in this paper,
systems theory allows a new articulation of the creative pro-
cess involved in choreographing human movement. Namely,
using body position parameterization, we have specified a
grammar for body positions in ballet movements restricted
to the coronal plane. This specification may lead to systems
(humanoid or otherwise) which behave in a way that is
natural for its given context. A deterministic program can
limit the flexibility of a system’s ability to cope and adapt
to its environment. When implemented on a robotic system,
a behavior, as outlined here, provides one or more states
that the system may enter given its current state. By affixing
further outputs to the system’s transitions and assigning
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preferential weighting to available states, an automatic de-
cision making process may select one of the available states
outlined by the behavioral framework.

Encapsulated in this framework is the facility to produce
different styles of movement adjusting only the contents of
our barre automaton and two sets: Oinfeas and Xunaesth.
These sets imply rules that arise from physical and aes-
thetic constraints, respectively. Instantiations which encode
a different style, perhaps with the addition of more poses
(than in this initial presentation) may be compared via a
quantitative metric as they each have simple mathematical
representations. This venue for movement and style analysis
is the second contribution of this model. Such a quantitative
survey of specific dance styles (between different genres and
choreographers) would bolster and perhaps corroborate years
of qualitative dance study which hold that specific movement
patterns evoke very different aesthetic and emotive effects in
dance choreography.

In summary, ballet is a highly ordered behavior of a truly
complex biological system whose attributes have important
analogs in systems theory that warrant quantitative study.
By formulating aesthetic style from a systems theoretic
perspective and, thus, resolving the attributes of human
movement which typify and comprise stylized movement,
we are beginning to define a metric for a previously ab-
stract concept. Furthermore, the structure of the aesthetic
movement explored here provides an interesting challenge
for control theory, namely that of discrete event systems and
their composition.
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