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Abstract— In this paper we present a novel approach that
allows global modelling of the power control dynamics of a
wind turbine based on measured data. The approach is based
on the assumption that all the nonlinearities over the operating
range arise from a static aerodynamic mapping, which is
interconnected with linear, time-invariant dynamics. This so-
called Hammerstein structure is exploited to simplify the model
identification procedure. The global model is suited to control
design methods such as model predictive control or can be used
to extract local linear models. The approach is demonstrated
on a benchmark example, the 5 MW NREL/Upwind reference
turbine and is shown to work well. Tools from convex opti-
misation and the recently introduced nuclear norm techniques
prove to be instrumental to the successful implementation of
the algorithms.

I. INTRODUCTION

Current controllers for power regulation in wind tur-

bine applications are all based on PID feedback or related

methods. It is common practice to design such controllers

based on linear models [1], [2]. To deal with the time-

varying dynamics of the system, gain scheduling is often

employed on the controller gains by which the controller is

tuned in several discrete operating points and the gains are

interpolated during operation. In this paper we introduce a

procedure to identify a globally valid model of the dynamics

of a wind turbine involved in power production [3]. Such a

model can be used to extract local-linear models in several

operating points, but also to design a controller that deals

intrinsically with the time-varying dynamics. Furthermore,

such a model has value in fault detection applications and

it results in an estimate of the true torque curve of a wind

turbine.

In the wind energy community, linear models are usually

obtained from aeroelastic models or, more recently, derived

from measurement data [4], [5], with the advantage of not

having to rely on the theoretical approximations made in

first-principles models. In recent years, advances have been

made in identification of linear parameter-varying models

of wind turbines [6]. Such methods, however, are still

severely hampered by computational complexity issues. For

this reason, we introduce a method to identify a global

model of a wind turbine that can easily cope with large

amounts of sampled data. Whereas pure LTI identification

of wind turbines from operational data is made difficult by a

constant need to maintain a steady operating point, this is no

longer necessary for the proposed method, which is another
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advantage.

The proposed identification method basically involves a two-

step procedure. In a first step, a theoretical prediction of the

aerodynamic characteristics (such as the torque coefficient)

is used to choose a suitable set of radial basis functions that

can be used to describe it. In a second step, standard LTI

system identification is performed to retrieve the linear, time-

invariant portion of the dynamics and the coefficients of the

basis functions.

First, the problem definition is introduced in section II. Then,

in sections III and IV the method is described in more

detail. In section V the method is applied to a simulation

example. The paper ends with a number of conclusions and

suggestions for future work.

II. PROBLEM STATEMENT

The power production control loop of a wind turbine is

commonly designed around the dynamics governed by the

pitch angle β, rotor speed Ω and generator torque Tg . This

is shown schematically in Fig. 1. The rotor speed can be

controlled by adjusting the demanded generator torque and

by adjusting the pitch angles of the blades.
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Fig. 1. Schematic showing a typical model of a wind turbine between
pitch angle β, generator torque Tg and rotor speed Ω.
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Fig. 2. Typical shape of the torque coefficient CQ(λ, β).
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Referring to Fig. 1, the aerodynamic torque Ta on a wind

turbine under steady operating conditions can be described

in terms of the torque coefficient CQ(λ, β) which appears in

Eq. (1).

Ta = f(λ, β, V 2) =
1

2
ρπR3CQ(λ, β)V

2, (1)

where Ta is the aerodynamic torque, λ is the tip speed ratio,

β is the pitch angle, ρ is the air density, V is the wind

speed, R is the rotor radius and CQ(λ, β) is a smooth surface

(Fig. 2) depending on the pitch angle β and the tip-speed

ratio λ = (ΩR)/V . The aerodynamic torque further depends

on the wind speed V , the rotor radius R and the air density

ρ. It is clear that the dynamics of the wind turbine subject

to the aerodynamic torque in Eq. (1) are non-linear.

We wish to identify a non-linear dynamic model of this

system on the basis of input and output measurements

obtained from the system operating in closed-loop, based

on a set of measurements {uk, yk}
N
k=1. The system to be

identified is assumed to admit an innovation state-space

representation given by:
xk+1 = Axk +B1f(wk) +B2uk +Kek, (2a)

yk = Cxk + ek. (2b)

The vectors xk ∈ R
n, uk ∈ R

m, yk ∈ R
l and ek ∈ R

l are

the state sequence, input, output and innovation, respectively.

The matrices A, B1, B2 and C are of compatible dimensions.

K is a Kalman gain. The innovation sequence ek is an

ergodic zero-mean white noise sequence with covariance

matrix E{eje
T
k } = Wδjk, with W ≻ 0. The vector wk ∈ R

3

represents the inputs affecting the aerodynamic torque Ta

through a memoryless non-linear mapping f(·) : R3 → R

(in this case λ, β and V ). We note that the nonlinearity

is only determined up to a nonzero scalar multiplication

without affecting the input/output behaviour of the system,

that is, we may estimate f̂(·) ≈ T−1f(·) instead of

f̂(·) ≈ f(·). Further note that the linear and nonlinear inputs

to the LTI system have been separated. A causal model is

enforced by disallowing a direct feedthrough component.

The non-linear mapping f(λ, β, V 2) defined in Eq. (1)

will be parametrised in terms of basis functions ϕi(λ, β) :
R× R→ R, defined by

f(λ, β, V 2) =

nb∑

i=1

αiϕi(λ, β)V
2,

where nb denotes the number of basis functions and αi ∈ R

are scalar parameters. These parameters will be estimated,

while the basis functions are chosen a priori. In fact, the

parametrisation of the non-linearity in terms of basis func-

tions can be viewed as an over-parametrisation of the input,

that is, a higher dimensional input w ∈ R
nb can be defined

according to

w =








ϕ1(λ, β)
ϕ2(λ, β)

...

ϕnb
(λ, β)







V 2. (3)

Then, a new input matrix can be defined as

B1 ≡ B1

[
α1 α2 · · · αnb

]
≡ B1α

T . (4)

The over-parametrised input signals arising from the non-

linearity will serve as the linear inputs for the identification

method.

III. MODELLING THE STATIC TORQUE

COEFFICIENT

In this section, we start by considering the static model

of the torque coefficient in Eq. (1). Once we succeed in

approximating this nonlinear static mapping in terms of a

set of 2-dimensional basis functions, we will proceed to the

dynamic behaviour of the turbine.

A. Selection of basis functions

In general, the choice of suitable basis functions to model

a nonlinear function is not at all trivial. A commonly used

function is the Gaussian radial basis function:

ϕi(x) = e−‖Σ
1

2 (x−ci)‖
2

2 , (5)

where x (here, a 2-vector) is the coordinate where the

function is evaluated and ci is the i-th radial basis centre.

The diagonal matrix Σ is used to control the shape of the

basis functions in the different coordinate directions. The

parameters to be designed a priori are the number of basis

functions nb, their centres ci and the shape parameter Σ.

Usually, an aeroelastic model of a wind turbine is avail-

able. Using such a model or a blade element momentum

approach, one can usually obtain the theoretical surface

CQ(λ, β). A typical CQ-surface is shown in Fig. 2. This

theoretically obtained surface will now be used to determine

a candidate set of basis functions to allow the modelling of

the true surface.

To determine the ranges of the inputs β and λ, data was

acquired through simulations for typical operating conditions

under varying wind speeds. In Fig. 3, a typical example of

such a trajectory of β and λ is shown. The area spanned by

the ranges of β and λ is then gridded using a uniform grid

as also shown in Fig. 3. It is crucial that we end up with

a limited number of basis functions to limit computational

complexity and numerical ill-conditioning. A large number

of N = 1000 random points within operating area was

generated. Using the uniformly spaced set of basis functions

a least-squares fit of the surface was obtained by solving the

following least-squares problem:

α = argmin
α

N∑

k=1

‖CQ(λk, βk)− αϕ(λk, βk)‖
2
2 , (6)

where N is the number of points available for fitting and

CQ(λk, βk) is the theoretical torque coefficient evaluated at

(λk, βk). Each vector ϕ(λk, βk) contains the basis functions

evaluated at the centres 1 through nb. At this point, the shape

parameter Σ and the spacing of the basis functions are tuned

to achieve a good accuracy of fit. That is, while the number

of RBFs is kept fixed, the elements of Σ are adjusted until
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the accuracy is highest. Note that this could also be solved

as a nonlinear least-squares problem, as done in e.g. [7].

To achieve a compact basis, only basis functions close to

the operational data were generated. An alternative way to

reduce the size of the basis is to add the ℓ1 norm of the

coefficients, κ‖α‖1, to the criterion in Eq. (6), see e.g. [8,

Ch. 3]. Depending on the magnitude of κ, this will force

some of the coefficients to zero, allowing the corresponding

basis functions to be discarded. A reduced basis results in

better conditioning and less sensitivity to variations in the

data. Applying the procedure outlined here to torque curve

data of the 5 MW NREL reference turbine resulted in the

following parameters:

nb = 21, Σ = diag(0.128, 0.016).

On average, a variance-accounted-for[9] (VAF) of 97% was

obtained. Here, the VAF1 is defined as 100% minus the rel-

ative mean-square error, which corresponds to the coefficient

of determination (R2) in the literature on statistics. A more

accurate fit could be obtained with a more dense basis, but

this compact basis was favoured in view of computational

complexity issues. The result is a compact basis, as shown

in Fig. 3. Figure 4 shows the distribution of unit radial

basis functions. Validation on an independent set of randomly

generated points on the curve confirms that the surface can

be modelled accurately using this set of basis functions.
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Fig. 3. Radial basis function centers. The dashed line indicates the convex
hull of the operating points.
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Fig. 4. The distribution of radial basis functions.

1VAF = max
{

0,
(

1−
var(yk−ŷk)

var(yk)

)

× 100%
}

, where ŷ is the predic-

tion.

IV. NONLINEAR SYSTEM IDENTIFICATION

It is assumed that a set of input and output data

{uk, wk, yk}
N
k=1 has been obtained through measurements.

In this case the rotor speed Ω is considered as output:

yk = Ωk.

The inputs to the true system are λ, β, V and Tg . However,

based on the expansion of the nonlinearity in the previous

section, the inputs for identification are defined by the

elements of wk = ϕ(λk, βk)V
2
k (Eq. 3) and Tg,k, so that

ũk =

[
ϕ(λk, βk)V

2
k

Tg,k

]

,

can be defined as the input for the system identification

procedure, where the coefficients α have been absorbed

into the system to be identified. This results in an input

vector ũk ∈ R
nb+1. In fact, the procedure in the previous

section allows one to now consider a MIMO identification

problem of a linear, time-invariant system. Here, we use

the closed-loop MOESP subspace identification method [10],

[11] to estimate the state-space system matrices. In fact, any

LTI identification method suitable for MIMO closed-loop

identification could be applied here. We favour the subspace

identification method here for its numerical robustness and

efficiency. Note that considering a closed-loop procedure

is necessary, since the rotor-speed signal that determines

the tip-speed ratio is also an output of the system. The

system identification procedure will not be described here

in more detail but we mention here that it results in a set

of state-space matrices (A,B1, B, C,K) defining the system

as described above in Eqs. (2,4). The model class that can

be identified using the CL-MOESP method encompasses all

innovation state-space models. “Model selection” is effected

by selecting a system order based on the order information

that is typically conveyed by the class of subspace methods

(in the singular value decomposition step) and the choice is

verified on the basis of obtained VAF values.

A. Recovering the nonlinearity

After identification, an estimate of the matrix B1 (Eq. (4))

is available. Let W denote a matrix in which all available

inputs wk (Eq. (3)) as function of time index k are stacked

next to each other. Then the following product has rank 1

according to the definition in (Eqs. (3-4)):

rank
(
B1W

)
= 1. (7)

An SVD can be performed on this product:

B1W =
[
U U⊥

]
[
Σ 0
0 0

] [
VT

VT
⊥

]

. (8)

The actual B1 matrix relating to the nonlinear input can then

be retrieved as B1 ≈ UΣ, whereas the coefficients of the non-

linearity are found to be α = VTW
+

, where W
+

denotes

the pseudoinverse of W .
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1) Retrieving the physical signal Ta: It was already

mentioned that the nonlinear function can only be estimated

upto an unknown scaling, since such a scaling cancels in

the input-output behaviour of the system. However, one can

make use of some knowledge about the system to retrieve

this scaling approximately. Based on a power balance during

steady operation (constant speed), the following relation must

hold:

Ta

Tg

=
G

η
,

where G is the gearbox ratio and η is the gearbox efficiency.

Since in this steady condition the rotor speed does not

change, this ratio determines the relative static gains of the

inputs Ta and Tg to the linear part of the system. Thus,

knowing the ratio, the system and nonlinearity can both be

scaled such the magnitude of input Tg corresponds to the

actual physical rotor torque. The accuracy is limited by how

well the static gain of the true system has been estimated

and the accuracy of the gearbox efficiency. A key result is

that we can effectively estimate the torque curve of a turbine

from measurement data.

2) Improving the rank condition: In general there is no

guarantee that the low-rank condition Eq. (7) is satisfied in

practice with a finite amount of data. Noise and model mis-

match also contribute to this effect. In subspace identification

methods, the system matrices and the initial state x0 are

obtained from a least-squares problem. Here, the example

of MOESP subspace identification is used, but in fact the

procedure applies to most subspace methods. In order to

enforce a low rank of the identified matrix B, the follow

regularised least-squares regression is performed:

arg min
B,B2,K,x0

∥
∥
∥
∥
∥
∥
∥
∥

Y − S







vec(B1)
vec(B2)
vec(K)

x0







∥
∥
∥
∥
∥
∥
∥
∥

2

2
︸ ︷︷ ︸

+λ‖B1‖∗. (9)

The underbraced term represents the standard least-squares

problem that is solved in MOESP subspace identification (for

details consult [10]), where Y and S depend on the measured

data. The additional term represents the nuclear norm [12]

of B1. The nuclear norm is defined as:

‖B1‖∗ ≡

nσ∑

i=1

σi(B1),

and can therefore be used as a heuristic for the rank [12]

of B1. Eq. (9) is a convex problem and can be solved

using a tailored solver within the CVX framework [13].

Recently, we have been able to improve the result further

by explicitly parameterizing the low-rank matrix product

and performing a separable least-squares regression on B1,

using the nuclear norm solution as initial condition for the

nonlinear optimisation. The main advantage is that, since the

obtained solution B1 is already of low rank, the truncated

SVD in Eq. (8) does not result in further loss of information.

V. IDENTIFYING THE POWER CONTROL LOOP

OF THE 5 MW NREL REFERENCE TURBINE

A. Identification design

To be able to identify an accurate model from input-output

data under turbulent wind conditions, the problem of iden-

tification design is important [14], [9]. The excitation signal

should be such that it excites all the relevant modes of the

system while observing the system’s limitations, yet it should

provide sufficient excitation to result in a satisfactory signal-

to-noise ratio. Common identification signals are white noise

signals, broadband multisine signals and pseudo-random

binary sequences. The latter type has the advantage of

being strictly limited in amplitude, while delivering maximal

signal energy to the system within the amplitude constraints.

Furthermore, its low-frequency content can be emphasised

without violating amplitude constraints by simply modifying

its sample rate.

In the current example, excitations have been superimposed

on the torque and pitch references. For the torque and pitch

references, a binary signal of amplitude 1200 Nm with a

sampling time of 0.1 s and a binary signal of amplitude 0.5 ◦

with a sampling time of 0.5 s were used, respectively. At this

stage, a uniform time-varying wind field was used with a hub

wind speed that varied between 5 and 23 m/s, see Fig. V-A.

The wind speed consists of a step change every 60 seconds

and a stochastic component. The stochastic component is

represented by a zero-mean white noise with σ = 2.5 low-

pass filtered at 0.05 Hz. Next steps will include a full 3D

turbulent wind field.
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Fig. 5. Time history of the hub wind speed.

B. Practical aspects

The procedure outlined in previous sections suggests that

a data set encapsulating the entire operating range of the

turbine should be available. In practice, this is not achievable

in a single experiment due to unpredictable temporal varia-

tions in wind conditions. Therefore it is emphasized that the

subspace identification framework used here can deal with

multiple batches of measurement data in a straightforward

way. Data sets can easily be concatenated, and the only

technical implication is that for each data set a distinct

corresponding initial condition must be identified.

C. Results

To test the performance of the devised method, a model of

the 5 MW NREL/UPWIND reference turbine implemented in

the aeroelastic environment of Bladed R© [15] was used.

Based on the wind speed trajectory and a sampling

frequency of 20 Hz, 12400 samples (≈ 10 min) of data
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were obtained. As a first step in the subspace identification

approach, order detection was performed. Based on this order

information and trying several model orders, the identifica-

tion was carried out for an order of n = 8.

The resulting prediction of the output is shown in Fig. 6.

As a quality measure, the variance-accounted-for [9] (VAF)

was again used, which gives a measure of how well the

variability of the output signal is predicted by the model.

A VAF of around 99% was obtained. Ideally, one would

simulate the identified system with a fresh dataset to verify

that the model has not been fitted to the noise realisation of

the training data. However, since the system is marginally

stable (an integrator is present which corresponds to the

rigid-body mode of the drivetrain), any small deviations will

accumulate and the simulations slowly diverge. Nevertheless,

the signals did show the same dynamic behaviour when this

was attempted. A solution is to use the obtained model as

an observer for the true system.

Ω
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ra
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Fig. 6. The predicted output (blue) based on the identification data.

Figure 7 shows the estimated nonlinear function. Com-

paring this figure with the theoretical curve in Fig. 2 a

reasonable correspondence is observed. It is emphasised that

the actual local behaviour of the system is characterised by

the gradient of the torque curve, so the gradient in this case is

more crucial to the model accuracy than the absolute value,

which merely results in a static offset of the local equilibrium

(operating point).
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Fig. 7. The estimated torque coefficient ĈQ(λ, β).

D. Validation

As a means of validating the obtained nonlinear Ham-

merstein model of the wind turbine, we have already shown

the simulated outputs on the training dataset in Fig. 6. A

second way of validating the model is by linearising the

nonlinear model in several operating points and comparing

the local linear models to those obtained from the lineari-

sation feature in Bladed. Based on the nonlinear model

description (Eq. 2), we can linearise around some steady-

state (x,w, u) = (x, λ, β, V , T g) as follows:

xk+1 ≈ [Ax+Bf(u)] +A(xk − x)

+B1
∂f

∂w

∣
∣
∣
∣
w=w

(wk − w) +B2(uk − u) +Kek.

If we redefine xk ← xk−x, wk ← wk−w and uk ← uk−u,

we obtain the local linear model as:

xk+1 = Axk +B1
∂f

∂w

∣
∣
∣
∣
w=w

wk +B2uk +Kek

yk = Cxk + ek.

To be able to evaluate the partial derivatives of the non-

linear function, we need to calculate the partial derivatives

of the radial basis functions (Eq. 5). To this end, we have

the following result:

∂f(w)

∂wj

=

nb∑

i=1

αi

∂ϕi(w)

∂wj

, where

∂ϕi(w)

∂wj

= −2e−‖Σ
1

2 (w−ci)‖
2

2 |Σj,j(wj − ci,j)| ×

× sgn (Σj,j(wj − ci,j)) .

Note that based on the model structure in Fig. 1 there is in

fact a feedback loop from the rotor speed to the nonlinearity

via λ. This implies that for the the actual local linear model

to be precise we should take this into account by calculating

the closed-loop. In practice, however, no effect is observed

when this step is skipped, due to the low-pass nature of this

feedback path. It is also clear from the linearisation that the

local dynamics are governed by the gradient of CQ.

In Fig. 8 the LTI model of the demanded torque to ro-

tor speed is shown, which is compared to the analytical

linearised models from Bladed R©. The analytical models

demonstrate that the drive-train dynamics themselves are

almost LTI. Further, a good correspondence is observed

between the identified and analytical models. The small peak

that is not fitted by the identification procedure corresponds

to an interaction between the drivetrain and the tower modes.

In these simulations no attempt was made to excite this

mode and it turned out that it was almost invisible in the

identification data, thus obscuring it in the result. A next

step would possibly be to modify the excitation signals so

as to excite this mode.

In Figs. 9 and 10 the LTI models of the demanded pitch

to rotor speed are compared. The models clearly show an

increasing gain with windspeed. The identified and analytical

models show very similar trends. Again, the small peak

at 1.5 Hz was not observable in the data and hence not

modelled. The zero around 0.3 Hz is believed to be an

artifact of the linearisation. Overall, the above-rated transfer
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Fig. 8. The estimated transfer function from generator torque demand to
rotor speed (black) compared to the analytical models in different operating
points (V = {5, 7, . . . , 25m/s}).

functions match very well, whereas the below-rated ones

underestimate the damping of the main resonance mode and

show some low-frequency mismatch.
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Fig. 9. The transfer functions from pitch angle demand to rotor speed
(analytically obtained with Bladed R©, V = {5, 7, . . . , 25m/s}).
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Fig. 10. The transfer functions from pitch angle demand to rotor speed
(estimated, V = {5, 7, . . . , 25m/s}).

VI. CONCLUSIONS AND FUTURE WORK

This work has demonstrated that if the torque curve

CQ(λ, β) of a wind turbine is properly parametrised, a

Hammerstein model can be fitted to measured data. Thus,

a global model describing the wind turbine can be obtained

from data with a reasonable accuracy. The model can be used

to extract local linear models as well as torque curve data.

The model described in this paper can be extended with

further inputs and outputs. In view of controlling power

production using this model, a first logical choice is to

include the rotor thrust curve CT (λ, β) together with a

nacelle or tower displacement output to achieve load control.

First attempts have already demonstrated that this is indeed

feasible.

Next steps will include the design of a model predictive

control strategy to control the power production of the wind

turbine across the operational envelope using the nonlinear

model. Alternatively, the methodologies sketched here could

be developed into a monitoring tool to track changes in

aerodynamic performance (e.g. the “power curve”) of the

wind turbine. Goals for the near future will be to add a

full 3D turbulent wind field and a nacelle displacement

measurement. It is further hoped that we have the opportunity

to apply the method to operational data from a real wind

turbine to assess its practical feasibility.
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