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Abstract— We propose a novel stochastic agent-based model
of occupancy dynamics in a building with an arbitrary number
of zones and occupants. Simulation of the model yields time-
series of the location of each agent (occupant) over time, from
which a time-series of occupancy (number of people in each
zone) can be determined. The model is meant to provide realistic
simulation of occupancy dynamics in non-emergency situations,
which can be used for extraction of reduced order models
of occupancy dynamics for estimation and control purposes.
Comparison of the model’s prediction of mean occupancy, and
distributions of random variables such as first arrival time,
are provided against those estimated from measurements in a
commercial building.

I. INTRODUCTION

There is an increasing demand on developing methods to

design and operate smart buildings that have high energy

efficiency, high level of thermal comfort and higher safety

and security features. Modeling occupancy dynamics in

buildings is going to be important in achieving this vision.

A model of occupancy dynamics is a mathematical tool

to predict occupancy (number of people) in a building (or

zone) as a function of time given some initial condition.

Such predictions can serve as inputs to various types of

building energy simulation tools and models in the commis-

sioning and recommissioning phase. For instance, heating

and cooling loads experienced by the building HVAC (heat-

ing, ventilation and air-conditioning) system strongly depend

on time variation of building occupancy. HVAC equipment

schedules can be optimized based on the relevant statistics,

such as means, variances, and max values of occupancy-

driven energy loads computed from the model’s predictions.

Another use of such models is real-time estimation/prediction

of zone-level occupancy in a building from limited number

of sensors. Real-time occupancy estimates are useful in

providing information to first responders and in performing

controlled egress in the event of an emergency [1]. Certain

control techniques designed to reduce HVAC energy use,

such as demand controlled ventilation, also need real-time

occupancy estimation/prediction capability. There are several

types of sensors that can provide information on occupancy

indirectly, such as CO2 sensors, video cameras, and PIR

motion detectors. However, sensor measurements alone may

not be enough for accurate estimation since they suffer from

large measurement error [2], [3]. Filtering techniques can be

used to compensate for measurement error by fusing noisy

C. Liao and P. Barooah are with the Dept. of Mechanical and Aerospace
Engineering, Univ. of Florida, Gainesville, FL; {cdliao,pbarooah}@ufl.edu.
This work has been supported by the National Science Foundation by Grants
CNS-0931885 and ECCS-0955023.

sensor measurement with prediction from a model [3], [4].

This requires a model of occupancy dynamics.

Constructing a mathematical model of occupancy dynam-

ics of a building is a challenging problem because of the

high uncertainty of people movement that governs occupancy

evolution. On the lower end of the spectrum of complexity

– as well as predictive capability – are models with low

temporal and spatial resolution that only seek to predict the

whole-building (or a single zone) occupancy at an hourly

rate (see [5], [6], [7], [8], [9]). On the high-resolution

end of the spectrum of modeling possibilities lie the so-

called agent-based models. An agent-based model consists

of agents (encoded in software) in which each agent is

endowed with a set of behaviors that are designed to mimic

behavior of humans under situations that the model is meant

to study. Computer simulation with an agent-based model

can be used to generate time-traces of each occupant’s

location, which can then be aggregated to yield time traces

of occupancy of each zone or of the entire building. An

extensive literature exists on agent-based models for a diverse

set of applications during the last 40 years; see the review

article [10] and reference therein. However, almost all the

work on agent-based modeling of occupants in buildings

have been designed to study emergency situations such as

fire and explosions [11], [12], [13]. The number of works that

seek to model building occupancy dynamics during normal,

day-to-day operations using agent-based models is limited

with the exception of a few studies such as [14], [15].

The most relevant one among these is the work by Page

et al. [14]. They model the dynamics of a single person in

a single-occupancy room by a time-inhomogeneous Markov

chain with two states (in/out or occupied/unoccupied). The

model requires as input the sequence of 2 × 2 transition

probability matrices P(k), k = 1, . . . , K , where K is the

number of time periods for which the simulation is to be

conducted. Extending the model to multiple zones is much

more challenging. For a building with n zones, an occupant

can be in any one of n + 1 states (the n + 1-th state

corresponding to outside the building), so each transition

probability matrix P(k) becomes an (n+1)×(n+1) matrix,

which is not-trivial to determine from sensor measurements.

The paper by Erikson et al. [15] introduces an agent-based

model of occupants in 4 zones. The model is constructed

from measurements of people’s trajectories obtained from

cameras. This method of constructing models is not feasible

for a large building with a large number of occupants.

In this paper we propose a stochastic agent-based model

that is easily scalable to arbitrary number of zones and

arbitrary number of individuals, or agents. The proposed
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model, named Multiple Modules (MuMo) model, decides

the location of an agent over time through a set of rules

specified by a number of modules. The modules are designed

to maintain a Markov-like property of the agent dynamics

so that the location of an agent at a given time depends on

its location in the previous time. The MuMo model is thus

inspired by that in [14]; the latter is denoted by “Page model”

in the sequel. The model is constructed from information

obtained from survey of the building occupants. For greater

accuracy, the model need to be calibrated for each building,

which requires a limited amount of sensor data. Note that

for applications such as real-time estimation, an agent based

model such as the MuMo model is not appropriate. However,

reduced order models that are more appropriate for real-time

applications can be extracted from Monte Carlo simulations

of the MuMo model; which is described in [16].

We address three distinct scenarios: single-occupant

single-zone, multi-occupant single-zone and multi-occupant

multi-zone. The verification of single-occupant single-

zone scenarios has been previously reported in [4], where the

measured data were provided by author in [14]. Therefore,

in this paper we only report performance evaluation of the

model in the multi-occupant single-zone and multi-occupant

multi-zone scenarios. Verification data for these scenarios

were collected in a building in the University of Florida

campus by using a number of video cameras for a few

months. The model’s prediction of mean occupancy as a

function of time is compared with that determined from

measured data. We also compare the model’s prediction of

the distribution of key random variables such as first arrival

time and last departure time of occupants in a zone with those

estimated from measurements. The model predicts the mean

occupancy quite well. The predictions of the distributions are

mixed in the sense that a few variables are predicted well,

but not all.

The rest of the paper is organized as follows. Section II

describes the proposed agent-based model. Section III de-

scribes the calibration procedure and the verification of the

model based on comparison with sensor measurements. The

paper concludes with a discussion in Section IV.

II. AGENT-BASED MODEL OF BUILDING OCCUPANTS

Consider a building with n zones that is occupied by m
individuals, called agents. Time is measured with a discrete

time index k = 1, . . . , K , where K is maximum time index,

with a sample period of T (measured in minutes). The agents

are indexed as i = 1, . . . , m. An n-zone building has n + 1
nodes that are indexed as j = 1, . . . , n, n + 1 (n + 1-th

node refers to the outside of the building). The state zi(k) ∈
{1, . . . , n + 1} of agent i at time index k refers to the node

that the agent occupies during time interval [(k − 1)T kT ].
The occupancy xj(k) of node j at time k is defined as the

number of entries of the set {i|zi(k) = j} and the occupancy

of a n-zones building at time k is x(k) :=
∑n

j=1 xj(k).
The proposed agent-based model, named Multiple Mod-

ules (MuMo) Model, consists of a number of modules that

together determine the state of an agent at every time index.

The state of an agent is initialized by the first module, and

each module after the first modifies the state determined by

the previous module. The output of the ℓth module is denoted

by z
(ℓ)
i (k), and the output of the last module is zi(k).

A. Description of the MuMo model

The model consists of the following modules that govern

the behavior of each agent:

0) Preliminary state generator module: An

agent-specific nominal presence probability

profile {Pi(k), k = 1, . . . , K} is specified as

input to this module for every agent i, where

Pi(k) = [Pi,1(k), . . . , Pi,n+1(k)]T and Pi,j(k) is

an approximation of Pr(zi(k) = j), the probability

that agent i occupies node j at time k (Pr(·)
denotes probability). During simulation, z

(0)
i (k),

i.e., the initial guess for the i-th agent’s state at

time k, is generated using a pseudo-random number

generator so that its pmf (probability mass function)

matches the nominal presence probability profile, i.e.,

Pr(z
(0)
i (k) = j) = Pi,j(k).

1) Damping and acceleration modules: Each agent has

an associated primary zone that corresponds to the

zone in the building where the agent spends most

of time. People in primary zone (or outside building)

tend to stay there for relatively long periods, while

people in hallways or restrooms tend to leave quickly.

A damping and an acceleration module are used to

mimic this behavior by utilizing transition probability

parameters pd and pa. The implementation of the

damping module is as follows: if z
(0)
i (k) 6= zi(k − 1)

and zi(k − 1) is either a primary zone or the outside

node, then z
(1)
i (k)← zi(k−1) with probability 1−pd.

In acceleration module, if z
(0)
i (k) = zi(k−1) is either

restroom or hallway, then z
(0)
i (k) is recomputed with

probability pa by running preliminary state generator

module again, and the output is assigned to z
(1)
i (k).

If both the modules are not applicable, z
(1)
i (k) ←

z
(0)
i (k). The primary zones of the agents as well as

the parameters pd and pa are specified as inputs to the

model.

2) Scheduled activity module: This module takes care

of hard constraints on the individuals’ locations that

may arise from scheduled activities, e.g., the meetings,

classes, etc. Specifically, if an agent i has to attend

an activity located in node j during a particular time

interval, z
(2)
i (k) = j. Otherwise, z

(2)
i (k) ← z

(1)
i (k).

Those scheduled activities are inputs to the model.

3) Access module: Each agent has an access profile asso-

ciated with it that specifies which zones the agent has

access to. If z
(2)
i (k) = j where j is a node that agent i

does not have access to, then z
(3)
i (k) ← zi(k − 1).

Otherwise, z
(3)
i (k) ← z

(2)
i (k). This module is also

invoked for zones that have a maximum occupancy

limit, such as classrooms and restrooms, with the same

fashion. The occupancy of those zones are constantly
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tracked during simulation. The access profiles have to

be specified as inputs.

The state of agent i at time k in the MuMo model is the

output of the last module, i.e., zi(k)← z
(3)
i (k).

For the sake of concreteness, we set the initial condition

zi(0) = n + 1 for every i. The model determines the states

starting from time k = 1. Note that although the state zi(k)
is generated according to i’s nominal presence probability

profile, it does depend on its previous state zi(k − 1) due

to the effect of the damping and acceleration modules.

The damping module is a key element of the model. For

instance, during regular working hours except early morning

or evening, if a person is in his office at a particular time,

he is likely to remain there with high probability in the next

time instant. An appropriate stochastic model to capture this

behavior is a Markov chain. Although we did not specify

a Markov chain model due to the difficulty in identifying

the parameters of such a model (see Section I), the damping

module endows the agents with a Markov-like property. In

this regard, the proposed model is similar in spirit to the

model in [14].

B. MuMo model construction

Constructing a MuMo model with m agents requires

specifying for each agent its nominal presence probability

profiles, scheduled activities, and access profiles. In ad-

dition, damping and acceleration parameters pd and pa,

and maximum occupancy limits of rooms in the building,

if any, need to be specified. Because of the challenge in

tracking each individual over time using sensors, conducting

a survey of the occupants’ behavior by asking them to fill

out a questionnaire is a feasible - albeit less accurate - way

of collecting this information. The most time-consuming

part in constructing the model is specifying the nominal

presence probability profile for each agent. An algorithm

for computing the nominal presence probability profiles and

the parameters from a survey of the buildings’ occupants is

described in [16]. We refrain from giving the details here

due to lack of space.

III. MODEL CALIBRATION AND VERIFICATION

Since the parameters that have to be specified in the model

may be difficult to determine accurately – especially when

the model is constructed from survey data – some of these

parameters may need to be calibrated. Calibration is per-

formed by comparing parameters and distributions of certain

zone-level or building-level random variables predicted by

the model with that estimated from measurements. Model

verification is also conducted similarly: by comparing the

statistics of these variables predicted by the model with that

estimated from measurements. The parameters and variables

mentioned above are the following:

1) Mean occupancy of zone/building: The mean occu-

pancy of zone j at each time index k is defined as

E[xj(k)], where E[.] denotes expectation.

2) First arrival time (in a day): the time when the zone

or building gets occupied for the first time during a

day. More precisely, for each day, if xj(k) ≥ θempty

and xj(ℓ) < θempty for all ℓ < k, where θempty > 0 is

an appropriately chosen parameter, then k is the first

arrival time of zone j in that day.

3) Last departure time (in a day): the last time during a

day at which the zone or building becomes unoccupied.

4) Cumulative occupied duration (in a day): the total

length of time in a day during which the occupancy

in a zone or building is above a threshold θoccp,

not necessarily continuously. More precisely, it is the

number of elements of the set {k | xj(k) ≥ θoccp, 1 ≤
k ≤ 24× 60/T } for each day.

5) Number of occupied/unoccupied transitions (in a

day): the number of transitions between “occupied”

and “unoccupied” status in a day for a zone or

building. Specifically, it is the number of elements

of the set {k | xj(k) ≥ θempty, xj(k + 1) <
θempty}

⋃{k | xj(k) < θempty, xj(k + 1) ≥ θempty},
for 1 ≤ k < 24× 60/T for each day.

Monte-Carlo simulations of the model are conducted, and

the resulting multiple time-series (each one-week long) are

used to estimate the pmfs of these random variables. Those

pmfs are also estimated from the repeated segments of one-

week-long processed sensor data (measurements). Compari-

son between the two provides an idea of how well the agent-

based model can predict such zone-level or building-level

phenomenon.

To quantitatively compare the time series of mean oc-

cupancy of between the model predictions and measure-

ments, we simply use normalized root mean square deviation

(NRMSD). Let x(k) and y(k), k = 1, . . . , K be two time

sequences, the NRMSD between x and y is defined as

NRMSD(x, y) =
‖x− y‖/

√
K

max z −min z
, (1)

where x = [x(1), . . . , x(K)]T , y = [y(1), . . . , y(K)]T ,

z = [xT , yT ]T and ‖ · ‖ is Euclidean norm. To compare

the predicted distributions of those variables by the model

with that estimated from measurements, we use the Kullback-

Leibler (K-L) divergence. The K-L divergence is frequently

used to compute distances between two densities p and q,

and is defined as [17]

d(p‖q) =
∑

i

pi log(
pi

qi

). (2)

Note that the K-L divergence is only a pseudo-metric since

d(p‖q) 6= d(q‖p) in general. For a random variable X , pMumo
X

and pmeas
X denote the pmfs of X predicted by the Mumo

model and that estimated from measurements.

A. Model calibration procedure

Calibrating the parameters of the MuMo model becomes

necessary when the information used in model construction

may not be accurate. We choose a fraction of the measured

occupancy data for calibration and call it the training data.

The rest of the data, called verification data, are not used for

calibration. The statistics of the random variables described
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Fig. 1. Floor plan of the 3rd floor of MAE-B building in the University of
Florida campus used in verification of the MuMo model for the MOMZ
(multi-occupant multi-zone) scenario. Zone 15 is the room that is used
for verification of the model in the MOSZ (multi-occupant single-zone)
scenario. The triangle and stars indicates the cameras using in MOSZ and
MOMZ scenario respectively.

in the beginning of Section III are first estimated by using

only the calibration data. Calibration is then performed

by changing the agent based model – from the baseline

constructed from the survey – so that the difference between

the model predictions and measurements, as measured by

the values of NRMSD and K-L divergence, is small. To

keep the calibration process tractable, we modify only a

few parameters, such as the arrival and departure times of

the “early bird” and the “night owl”, and the transition

probability parameters pd and pa. The calibration process

is described in [16].

B. Model verification

We consider two scenarios: one in which the building

consists of a single zone and the other with multiple zones.

1) Model verification: the MOSZ (multi-occupant single-

zone) scenario: The MOSZ scenario studied in this paper

corresponds to a room in a building in the University of

Florida campus, shown as zone 15 in Figure 1. The room

housed 5 graduate students who worked there regularly and 3

undergraduate research assistants who used it intermittently.

Apart from these, the model also contains 7 additional agents

(visitors), who were used to simulate students who would

occasionally visit the room to meet with a few of the

graduate students (teaching assistants). The MuMo model

was constructed by conducting a survey of the occupants to

determine the subset of the parameters that are relevant to the

MOSZ scenario. We collected occupancy data for this room

by using a wireless video camera to monitor the entrance

to the room. Data was collected for a period of about four

months (during January - April 2010). A motion detection

algorithm was used to save only those frames when motion

was detected. Manual counting of the number of people was

performed to ensure that measurements obtained were of

high accuracy. Due to technical problems of video capturing,

only 70 days’ data could be collected from a total 16 weeks

of video feed.

One thousand Monte-Carlo simulations (each of one week

duration) are conducted with the proposed model. The statis-

tics of variables other than the mean occupancy, which are

described in the beginning of Section III, are estimated from

data (measurements and simulation time traces). Here we

provide comparison of statistics of variables between the two

only for weekdays. The thresholds used in computing first

24 48 72 96 120 144 168
0

2

4

6

O
c
c
u
p
a
n
c
y

Time (hour)

Fig. 2. Mean occupancy estimate in a MOSZ scenario (for zone 15 in
Figure 1) from three sources: measurements (dashed red), MuMo model
prediction (dotted blue), and survey (black).
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Fig. 3. Verification of the MuMo model in the MOSZ scenario: comparison
between the predictions (dotted blue) and measurements (dashed red). The
distributions are estimated from 1000 Monte-Carlo simulations of the model
and from about 12 weeks of measurements. Comparison is for weekdays
only, with binsize=1/2 hour.

arrival times etc. are: θempty = θoccp = 0.5. Two weeks

of measurements are used as training data to calibrate the

model, while the remaining data are used for verification.

Calibration of the model led to a change of the transition

probability parameter pd to 0.8 except for visitors. The

nominal presence probability profiles of one early bird and

one night owl were also adjusted during calibration. These

two agents were identified from the survey of the occupants

of the room.

Mean occupancy at each time was computed by averaging

over all the measurements available for that time. Figure 2

compares the mean occupancy predicted by the proposed

model with that computed from measurements, and that

computed from survey. The mean occupancy estimated from

survey is simply the sum of the probability of each agent

being “inside”, where these probabilities are determined from

the nominal presence probability profiles. The prediction

errors for mean occupancy are NRMSD(xMuMo, xmeas) =
0.0877, while NRMSD(xsurvey , xmeas) = 0.1202, where

xMuMo , xmeas and xsurvey are the mean occupancy of the

zone over one week computed from the model’s prediction,

measurements and survey. From the figure, the error in mean

occupancy predication, expressed as a fraction of the mean

occupancy, is largest during the weekends. We believe the

reason is that since the occupants have a greater variability

in using the building during the weekends, they are not able

to provide accurate description of their own behavior in the

survey.

Figure 3(a) and (b) show the pmfs of the first arrival
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d(pmeas
X

‖pMuMo
X

) MOSZ MOMZ

First arrival time 0.2388 0.5667

Last departure time 0.1900 0.7496

Cumulative occupied duration 0.3261 0.8814

Number of occupied/unoccupied transitions 0.0810 0.0248

TABLE I

K-L DIVERGENCE BETWEEN pMUMO

X
AND pMEAS

X
IN THE MOSZ AND

MOMZ SCENARIO.

times and last departure times of a day as predicted by the

MuMo model as well as that estimated from measurements,

respectively. We see from Figure 3(a) that the shape of the

distribution is predicted correctly, but there are a few late

first arrivals around noon that the model does not capture.

Similarly, Figure 3(b) shows that the overall trend of last

departure time is predicted correctly by the model, though

it does not capture all the peaks in the pmf. There is

a small peak in the measured pmf at around 5 pm that

correspond to occupants leaving the room in the evening

that the model does not predict. This may be due to the night

owl occasionally leaving earlier than usual. The distributions

of cumulative occupied duration are shown in Figure 3(c).

The mismatch is larger in case of the cumulative occupied

duration: there are several peaks in the measured pmf that the

model does not predict. The overall trend of the distribution

is predicted correctly. Figure 3(d) shows the distribution of

the number of occupied/unoccupied transitions in a day. The

MuMo model predicts the distribution quite well, especially

the probabilities of the number of transitions greater than 5.

The K-L divergences between the models’ predictions and

the measured data are shown in Table I, which confirms that

the largest difference between the model and measured data

is cumulative occupied duration.

We believe part of the reason for the mismatch between

model’s prediction and that estimated from measurements, as

well as that for the non-smoothness in the measured pmfs, is

the limited amount of verification data. Specifically, there are

only 50 samples of the variable cumulative occupied duration

that the measured distributions are estimated from, since

measurements from each weekday leads to only one sample.

In contrast, the pmfs from the model are estimated from

5000 samples. Therefore, the estimates from the measured

data may have larger error.

2) Model verification: the MOMZ (multi-occupant multi-

zone) scenario: The MOMZ scenario studied here corre-

sponds to the third floor of the MAE-B building in the Uni-

versity of Florida campus (see Figure 1). For the remainder

of this paper, we’ll refer to the 3rd floor of the MAE-B

building as the “building”. About 51 people (faculty, staff,

graduate and undergraduate research assistants and visitors)

used the building at the time of survey. Measurements were

collected by two video cameras targeting on each of the two

entrances of the building and processed by motion detection

algorithm and manual counting. Net flow rate of occupants

into the building was obtained by adding the net flow rate

across each of these camera’s field of view. Measurements

presented in this study were collected during a period of

about 7 weeks during May - July, 2010.

Data for model construction was collected by a survey
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Fig. 4. Estimate of mean occupancy (for the building shown in Figure 1)
in a MOMZ scenario from three sources: measurements (dashed red),
MuMo model prediction (dotted blue), and survey (black).

of the occupants of the building. The survey was not as

extensive as that in the MOSZ scenario (see [16] for the

details). Two weeks of measurements were used as training

data for calibration, while the remaining data were used

as verification data. Model calibration led to the following

values of parameters: pd = 0.8, pa = 0.5, α = 0.1. An

early bird and a night-owl were identified from the survey,

whose arrival time and departure time were changed during

calibration. Due to the simplicity of visitors’ behavior, only

pd = 0.5 was used in the model of visitors.
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Fig. 5. Verification of the MuMo model in the MOMZ scenario:
comparison between predictions (dotted blue) and measurements (dashed
red). All variables correspond to total building occupancy. Comparison is
for weekdays only, with binsize=1/2 hour.

Figure 4 compares the mean value of occupancy of the

entire building estimated from three sources: measurements,

prediction by the MuMo model, and the survey. Because of

the limited number of measurements available, the measured

mean occupancy is computed only for a 24-hour period by

averaging over the measurements obtained for 30 weekdays.

Model prediction of mean occupancy is computed by av-

eraging over 5000 samples from Monte-Carlo simulations.

The mean occupancy estimated from survey was computed

in the manner described in Section III-B.1. The predic-

tion errors are NRMSD(xMuMo, xmeas) = 0.0995, while

NRMSD(xsurvey , xmeas) = 0.2118. The NRMSD value of

survey prediction is much larger than that of the model

prediction, which is interesting since the model is generated

from survey data as well. However, the agent-based model

mimics various aspects of people’s behavior, including the

fact that they do not remain inside the building for the whole

duration between arrival and departure. Therefore it is able

to predict the trend of building occupancy better than the

survey. The large over-prediction of mean occupancy by

direct processing of survey information shows that using

schedule information, even after accounting for probabilities

of presence obtained from a survey, may lead to poor

estimation of building occupancy.
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Figures 5(a)-(e) show the pmfs of variables such as first

arrival time (for the whole building) as estimated from 1000

Monte-Carlo simulations of the MuMo model. They also

show the distributions estimated from sensor measurements

(verification data) for the same variables. The thresholds

used are: θempty = θoccp = 3. A larger threshold is used

here compared to the previous scenario since we are dealing

with a building with more than 50 occupants. We see from

Figure 5(a) that the model does predict the location of the

main peak in the pmf of the first arrival time quite well,

though it misses a much smaller peak corresponding to late

first arrivals. The model’s prediction of the last departure

time is poorer than that for the first arrival time, as seen from

Figure 5(b). There is a large probability of the last departure

time being close to 6 pm that the model does not reproduce. It

also over-predicts the probability of very late (past midnight)

last departures. Since the last departure time of a building

is determined by the behavior of a few critical occupants,

the model’s inability to predict these statistics may come

from the inaccuracy of the information obtained from the

survey. A possible cause of the mismatch is that the night-owl

occupants misjudged how often they leave early when they

provided this information in the survey. Figure 5(c) shows the

distributions of the cumulative occupied duration in a day.

As in the multi-occupant single-zone scenario, the prediction

of this variable is poorer than the rest. Figure 5(d) shows the

distribution of the number of transitions between occupied

and unoccupied status, which is predicted by the model quite

accurately.

Overall, while the MuMo model predicts the general trend

of the distributions of these variables, it does not seem to

predict the values of the probabilities accurately. The K-L

divergences between the model’s predictions and measured

data are shown in Table I as well. In the table, we see that

the model’s prediction in the multi-zone case is poorer than

that in the single-zone scenario. A higher error in the multi-

zone scenario is expected since survey-based data introduces

more inaccuracies in an agent-based model as the number of

agents increases. Another reason for the mismatch may be

the limited amount of measured data. In fact, this factor may

be playing an even stronger role in the multi-occupant multi-

zone scenario since the verification data were collected from

measurements of only five weeks. Therefore, a significant

share of the difference may come from the measured data

and not the model.

IV. SUMMARY AND FUTURE WORK

We presented a novel stochastic agent-based model of

occupancy dynamics in a building with an arbitrary number

of zones and occupants. The proposed MuMo model can be

used to simulate the evolution of occupancy over time during

non-emergency situations. In the model verification, it was

found through comparison with measured data that it predicts

certain variables more accurately than others. In general,

mean occupancy, and the marginal distributions of the first

arrival time and number of transitions between occupied

and unoccupied states are predicted well. However, the

distribution of last departure time and cumulative occupied

duration are not predicted well. The inputs that have to be

provided to the model usually have to be collected from

the occupants by conducting a questionnaire-based survey.

For situations involving a large number of agents, gathering

enough information to specify the input to the model may

become a hurdle in using such a model.
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