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Abstract— This paper presents an identification technique to
consistently identify multi-dimensional systems with additive
output colored noise in transfer function representation. The
method is an extension of a one-dimensional refined instru-
mental variable method to multi-dimensional systems. It can
be used to identify models for multi-dimensional systems with
Box-Jenkins structure; the method may give estimates with
minimum bias and variance. In this paper we consider a
general multi-dimensional system, which may be separable
or non-separable, causal, semi-causal (spatially interconnected
systems) or non-causal. Furthermore the algorithm can handle
boundary conditions. The effectiveness of the method is shown
with application to simulation examples.

I. INTRODUCTION

The field of distributed interconnected systems has at-

tracted the attention of many researchers for several decades.

Such systems can be seen as a subclass of multidimensional

systems and consist of similar subsystems interacting with

their closest neighbours. Examples of such systems include

vehicle platoons, satellites and unmanned aerial vehicles

flying in formations, automated highway systems, spatially

distributed flexible structures and fluid flow among others,

as well as systems whose dynamics are governed by partial

differential equations. A highly active research area, the

control of such systems inevitably demands accurate models.

An apparent choice is to use physical models, but such

an approach would compromise the accuracy due to the

presence of unmodelled dynamics.

Fewer results are available in the field of system identifica-

tion of two-dimensional (2-D) or multi-dimensional (m-D)

systems. Identification of transfer function models of 2-D

causal systems is presented in [1]; the method is based on

the 2-D Hankel theory. Methods to identify 2-D and m-

D non-causal rational transfer functions are given in [2],

[3] but are less practical due to their dependence on the

impulse response of the system. Identification of 2-D state-

space models for separable-in-denominator systems based on

the impulse response of the system is discussed in [4], while

identification from input-output data is presented in [5]. The

latter has the advantage that it gives a state-space model in

balanced form.

A state-space based identification method for spatially dis-

tributed interconnected systems is proposed in [6], which can

be seen as decentralized subspace identification of spatially

interconnected systems. In this method each subsystem is

identified as multiple-input single-output (MISO) system. A
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similar method for spatially distributed systems was also

proposed in [7] .

A method based on least squares estimation is proposed in

[8] to identify transfer function models for m-D systems. It

has been extended in [9] where measurement noise is also

considered.

The work proposed here is an extension of [9] to systems

with Box-Jenkins model structure. We apply the Refined

Instrumental Variable method [10], [11] to identify m-D

systems with noise model having non-common polynomials

with the process model. Unlike the simple IV method which

is sub-optimal, this identification scheme can yield estimates

with minimum bias and variance. Furthermore, the method

can be applied to both separable and non-separable systems.

It is also equally applicable to causal, semi-causal (spatially

interconnected) and non-causal systems with the additional

benefit that it can handle arbitrary boundary conditions.

The paper is organized as follows. Section II describes

preliminaries to the problem under study. Section III presents

the main idea of the paper: the application of the Refined IV

algorithm to identify Box-Jenkins models for linear invari-

ant spatially interconnected systems. Section IV discusses

examples, which include applications of the approach to the

identification of semi-causal systems. Conclusions are drawn

in section V.

II. PRELIMINARIES

For simplicity of notation we consider 2-D systems in this

paper. The results are equally valid for m-D systems.

Let u(n1,n2) be a two-dimensional discrete input signal

applied to a linear invariant spatially interconnected 2-D

discrete single-input single-output (SISO) system G(q1,q2).
Then its output y(n1,n2) is given as

y(n1,n2) = G(q1,q2)u(n1,n2)+ v1(n1,n2) (1)

where q1, q2 are the forward shift operators, n1, n2 are the

independent variables, and

G(q1,q2) =
B(q1,q2)

A(q1,q2)
(2)

where

B(q1,q2) = ∑
(i1,i2)∈Mu

bi1,i2q
−i1
1 q

−i2
2

A(q1,q2) = 1+ ∑
(i1,i2)∈M

y
0

ai1,i2q
−i1
1 q

−i2
2

(3)

and v(n1,n2) is a noise term. If equation (1) defines a sys-

tem having AutoRegressive with eXogeneous input (ARX)
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y(n1,n2)
+

G(q1,q2)

H(q1,q2)

e(n1,n2)

u(n1,n2)

Fig. 1. Two-dimensional data-generating system

structure i.e if v1(n1,n2) =
1

A(q1,q2)
, then it can be written in

difference equation form as

y(n1,n2) =− ∑
(i1,i2)∈M

y
0

ai1,i2 y(n1 − i1,n2 − i2)

+ ∑
(i1,i2)∈Mu

bi1,i2u(n1 − i1,n2 − i2)+ e(n1,n2)
(4)

where e(n1,n2) is 2-D zero-mean white-noise with normal

distribution, My and Mu denote the support regions (mask)

for output and input terms, respectively, where M
y
0 stands for

My\(0,0). The support region is defined as a subset of the

two-dimensional space where the indices of the coefficients

of output and input terms in the difference equation lie. For

further details see [8].

A. Identification of two-dimensional systems with noisy data

A least squares approach was presented in [8] for the

identification of systems as in (4). The method is based on a

least squares estimate and does not give consistent estimates

if there is additive colored output noise in the data. Now

consider a data-generating SISO 2-D system with output

noise as in Fig. 1. Its output is given as

y(n1,n2) = G(q1,q2)u(n1,n2) + H(q1,q2)e(n1,n2)

where H(q1,q2) is a 2-D linear filter.

Thus we have

A(q1,q2)y(n1,n2) = B(q1,q2)u(n1,n2)

+A(q1,q2)H(q1,q2)e(n1,n2) (5)

With v(n1,n2) = A(q1,q2)H(q1,q2)e(n1,n2), equation (5)

can be written in difference equation form as

y(n1,n2) =− ∑
(i1,i2)∈M

y
0

ai1,i2 y(n1 − i1,n2 − i2)

+ ∑
(i1,i2)∈Mu

bi1,i2u(n1 − i1,n2 − i2)+ v(n1,n2)
(6)

where u(n1,n2), y(n1,n2) and v(n1,n2) denote the input,

output and colored noise signal, respectively, and (6) can be

written in linear regression form as

y(n1,n2) = ϕ⊤(n1,n2)θ0 + v(n1,n2). (7)

The following notation is used for the filtered data,

ϕ f (n1,n2) = L(q1,q2)ϕ(n1,n2) (8)

where L(q1,q2) is a 2-D stable filter.

The predicted model output ŷ(n1,n2) and prediction error

ε(n1,n2) are given as

ŷ(n1,n2) = ϕ⊤(n1,n2)θ (9)

and

ε(n1,n2,θ ) = y(n1,n2)− ŷ(n1,n2) = y(n1,n2)−ϕ⊤(n1,n2)θ
(10)

Let Z ∈ RN1×N2 represent the input-output data set for

the system, then the problem is to identify the model by

minimizing the quadratic objective function

V (Z,θ ) =
1

2N1N2

N2

∑
n2=1

N1

∑
n1=1

ε2(n1,n2,θ ) (11)

In order to obtain consistent parameter estimates, the

instrumental variable (IV) technique can be used [12]. The

IV parameter estimates for 2-D systems are given by [9]

θ IV =
[

1
N1N2

∑
N2
n2=1 ∑

N1
n1=1 ζ (n1,n2)ϕ

⊤(n1,n2)
]−1

[

1
N1N2

∑
N2
n2=1 ∑

N1
n1=1 ζ (n1,n2)y(n1,n2)

]
(12)

where ζ (n1,n2) is the instrumental variable vector, which

must be correlated with the regressors ϕ(n1,n2) but uncor-

related with the noise v(n1,n2) in order to have a consistent

estimate. The instrumental variable ζ (n1,n2) here is assumed

to satisfy the following two conditions:

N2

∑
n2=1

N1

∑
n1=1

ζ (n1,n2)ϕ
⊤(n1,n2) non-singular (13)

and

N2

∑
n2=1

N1

∑
n1=1

ζ (n1,n2)v(n1,n2) = 0 (14)

III. REFINED INSTRUMENTAL VARIABLE FOR

IDENTIFICATION OF BOX-JENKINS MODELS

The IV method referred to in the previous section gives

consistent estimates when applied to a multidimensional

system [9]. However this method is sub-optimal and it

is required to run the algorithm several times (Monte

Carlo simulations) in order to get a reasonable estimate.

To deal with the problem of non-optimality (in terms of

minimum variance), adaptive IV and multi-step approaches

are suggested in [12]. It is a known fact that obtaining an

optimal IV estimator is dependent upon finding the true

noise model H(q1,q2), see for example [10] for the closed

loop case.
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A. Model Considered

In this paper we are interested in identifying models

having Box-Jenkins (BJ) structure for linear invariant spa-

tially interconnected systems. Since it does not constrain the

process and noise models to have common polynomials, the

BJ model structure is a natural choice for many practical

purposes. A BJ model for the 2-D system (5) can be given

in the form

y(n1,n2) =
B(q1,q2,θ )

A(q1,q2,θ )
u(n1,n2)+ v(n1,n1)

v(n1,n2) = H(q1,q2,η)e(n1,n2)

(15)

Where

H(q1,q2,η) =
C(q1,q2)

D(q1,q2)
(16)

is a 2-D filter where

C(q1,q2) = 1+ ∑
(i1,i2)∈Mc

0

ci1,i2q
−i1
1 q

−i2
2

D(q1,q2) = 1+ ∑
(i1,i2)∈Md

0

di1,i2q
−i1
1 q

−i2
2 (17)

with C(q1,q2) and D(q1,q2) being stable polynomials where

Mc
0 and Md

0 stand for Mc\(0,0) and Md\(0,0) respectively.

Mc and Md here correspond to the support region for

numerator and denominator of the 2-D filter respectively. The

associated parameters of H(q1,q2) i.e. ci1,i2 ,∀i1, i2 ∈ Mc
0 and

di1,i2 ,∀i1, i2 ∈ Md
0 are stacked columnwise in the parameter

vector η ∈ R
nη .

Also let H = {Hη | η ∈R
nη } denote the collection of all

noise models in the following form

Hη : (H(q1,q2,η)) (18)

A(q1,q2) and B(q1,q2) are polynomials in q1 and in q2 as in

(3), whose coefficients ai1,i2 ,∀i1, i2 ∈ M
y
0 and bi1,i2 ,∀i1, i2 ∈

Mu are stacked columnwise to form the parameter vector θ
of the process model. Now let the process model be Gθ , and

G = {Gθ |θ ∈ R
nθ } be the collection of all process models.

The parameters corresponding to a given process and noise

model (Gθ ,Hη ) are represented as

ρ = [θ T ηT ]T (19)

Based on the model structure in (15) if Mρ denote the model

set, parametrized independently with process (Gθ ) and noise

(Hη ) model, can be represented as

Mρ = {(Gθ ,Hη ) | col(θ ,η) = ρ ∈ R
nθ+nη} (20)

This set corresponds to the set of candidate models in which

we seek our model corresponding to the data generating

system in (5). The model structure in (15) is nonlinear in

parameters and as a consequence the simple IV estimation

can not be applied directly. y(n1,n2) can be written in the

linear regression form as:

y(n1,n2) = ϕ⊤(n1,n2)θ + ν̃(n1,n2) (21)

where

ν̃(n1,n2) = A(q1,q2)ν(n1,n2) (22)

The prediction error of (21) w.r.t (15) is given by

ε(n1,n2) =
D(q1,q2)

C(q1,q2)
[y(n1,n2)−

B(q1,q2)

A(q1,q2)
u(n1,n2)] (23)

Since the error is nonlinear in the parameters of unknown

polynomials, an alternative expression is,

ε(n1,n2) =
D(q1,q2)

C(q1,q2)A(q1,q2)

[A(q1,q2)y(n1,n2)−B(q1,q2)u(n1,n2)]

or

ε(n1,n2) = A(q1,q2)y f (n1,n2)−B(q1,q2)u f (n1,n2) (24)

where y f (n1,n2) = Q(q1,q2)y(n1,n2) and u f (n1,n2) =
Q(q1,q2)u(n1,n2) with

Q(q1,q2) =
D(q1,q2)

C(q1,q2)A(q1,q2)
(25)

Therefore, (21) is equivalent to

y f (n1,n2) = ϕ⊤
f (n1,n2)θ + ν̃ f (n1,n2) (26)

where ϕ f (n1,n2) is the filtered regressor constructed from

y f (n1,n2) and u f (n1,n2).

ν̃ f (n1,n2) = A(q1,q2,θ )ν f (n1,n2) = e(n1,n2) (27)

This means that if the optimal filter (25) is known a priori,

it is possible to filter the data such that a simple LS algo-

rithm applied to the data pre-filtered with (25) leads to the

statistically optimal estimate. But as is the case in practice,

filter coefficients are not known a priori. One solution lies

in the so called iterative IV methods. The idea of using such

algorithms can be traced back at least to [13]. A refined

version of that approach has been used for closed-loop

identification in [10] and recently for open-loop identification

of linear parameter-varying temporal systems for Box-Jenkin

models in [11] referred to as Refined Instrumental Variable

(RIV) method.

In the same spirit, our approach here is to use iterative

RIV method for identifying BJ models for multidimensional

systems.

B. The Iterative RIV Algorithm

Step 1 ARX model estimation

Select the input and output masks for the model of the system

as

Mu = {(i1, i2) | 0 ≤ i1 ≤ ku1
, −ku2

≤ i2 ≤ ku2
}

My = {(i1, i2) | 0 ≤ i1 ≤ ky1
, −ky2

≤ i2 ≤ ky2
}.

Compute an initial ARX estimate using the LS approach.

This gives B̂(0)(q1,q2) and Â(0)(q1,q2). Set D̂(0)(q1,q2) =
1,Ĉ(0)(q1,q2) = 1 and i = 0
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Step 2 Generate data

Compute an estimate of the noise free output x̂(n1,n2) by

simulating the auxiliary model

x̂(n1,n2) =
B̂(i)(q1,q2)

Â(i)(q1,q2)
u(n1,n2)

based on the estimated parameters θ̂ (i) of the previous

iteration.

Step 3 Estimated filter

Compute

Q̂(q1,q2) =
D̂(i)(q1,q2)

Ĉ(i)(q1,q2)Â(i)(q1,q2)

and obtain u f (n1,n2),y f (n1,n2) and x̂ f (n1,n2) by filtering

u(n1,n2),y(n1,n2) and x̂(n1,n2) respectively with the ob-

tained filter.

Step 4 Estimated regressor

Form the filtered estimated regressor as

ϕ̂ f (n1,n2) = [−ŷ f (n1,n2 + ky2
), . . . ,

− ŷ f (n1,n2 − ky2
), . . . . . . . . . ,

− ŷ f (n1 − ky1
,n2 + ky2

), . . . ,−ŷ f (n1 − ky1
,n2 − ky2

),

û f (n1,n2 + ku2
), . . . , û f (n1,n2 − ku2

),

. . . . . . . . . , û f (n1−ku1
,n2+ku2

), . . . , û f (n1−ku1
,n2−ku2

)]⊤

with the filtered instrument

ζ̂ f (n1,n2) = [−x̂ f (n1,n2 + ky2
), . . . ,

− x̂ f (n1,n2 − ky2
), . . . . . . . . . ,

− x̂ f (n1 − ky1
,n2 + ky2

), . . . ,−x̂ f (n1 − ky1
,n2 − ky2

),

û f (n1,n2 + ku2
), . . . , û f (n1,n2 − ku2

),

. . . . . . . . . , û f (n1−ku1
,n2+ku2

), . . . , û f (n1−ku1
,n2−ku2

)]⊤

Step 5 Compute the IV estimate

Compute the IV estimate as

θ̂ i+1(N) = [
1

N1N2

N2

∑
n2=1

N1

∑
n1=1

ζ̂ f (n1,n2)ϕ̂
⊤
f (n1,n2)]

−1

[
1

N1N2

N2

∑
n2=1

N1

∑
k1=1

ζ̂ f (n1,n2)y f (n1,n2)] (28)

where θ̂ i+1is the IV esimate of the process model parameter

vector at iteration i+ 1 based on prefiltered data.

Step 6 Noise model estimate

Estimate the noise signal as

ν̂(n1,n2) = y(n1,n2)− x̂(n1,n2) (29)

Based on this, the noise model parameter vector η̂ i+1 is esti-

mated using the ARMA estimation algoritm of the MATLAB

identification toolbox ( if we take H(q1,q2) = 1 at this step

and avoid the noise model estimation, the method is referred

to as simplified RIV (SRIV)).

3−3 −2 −1 0 1 2

Fig. 2. Part of the rod; green shows sensor and red shows linear actuator
signals from each segment

TABLE II

ESTIMATOR BIAS AND VARIANCE NORM AT DIFFERENT SNR

Method 15dB 10dB 5dB

LS
Bias Norm 0.0623 0.1274 0.1694

Variance Norm 3.4×10−6 5.4×10−6 9.3×10−6

SRIV
Bias Norm 0.0002 0.0010 0.0026

Variance Norm 3.9×10−5 1.1×10−4 3.7×10−4

RIV
Bias Norm 2.8×10−5 5.0×10−5 0.00012

Variance Norm 5.7×10−8 2.1×10−7 3.4×10−7

Step 7 Stopping criterion

If convergence has occured or the maximum number of

iterations reached then stop, else set i= i+1 and go to Step 2.

Remarks: The above algorithm gives optimal estimates if

the noise filter is known and if the algorithm converges.

As the filter is unknown in practice, optimality can not be

guaranteed. However, our experience show that the algorithm

conveges most of the time.

IV. ILLUSTRATIVE EXAMPLES

In this section the performance of the approach is illus-

trated by two simulation examples.

A. Example 1: Heat transfer through a rod

As a practical application of the approach discussed in

the previous section, a distributed system is considered: a

heat conduction in a rod of length one meter as in [14]. It

is an example of a 2-D semi-causal system. Fig. 2 shows

a schematic diagram of a rod with an array of temperature

sensors and linear actuators. The system is described by the

equation

∂y(t,x)

∂ t
= κ

∂ 2y(t,x)

∂x2
+ u(t,x) (30)

where y(t,x) denotes temperature (°C), t and x denote time

(seconds s) and spatial (meter m) co-ordinates, respectively,

κ is a constant (m2s−1) and u is the linear heat source.

Equation (30) is discretized using the central difference

method to approximate partial derivatives as

(

∂y(t,x)

∂ t

)

n1,n2

=
y(n1 + 1,n2)− y(n1,n2)

T
(31)
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TABLE I

MEAN AND STANDARD DEVIATION OF THE ESTIMATED PARAMETERS AT SNR = 5DB

a1,1 a1,0 a1,−1 b1,0 d1 d2 d3

Method True Value -0.1 -0.8 -0.1 1 -2.42 2.1 -0.663

LS(MCS)
mean -0.0255 -0.9327 -0.0255 1.0002 x x x
std 0.0015 0.0014 0.0014 0.0030 x x x

SRIV(MCS)
mean -0.0997 -0.8008 -0.0995 0.9976 x x x
std 0.0037 0.0063 0.0035 0.0192 x x x

RIV(MCS)
mean -0.0999 -0.8000 -0.1000 1.0000 -2.4206 2.1013 -0.6637
std 0.0004 0.0004 0.0004 0.0004 0.0084 0.0166 0.0089

(

∂ 2y(t,x)

∂x2

)

n1,n2

=
y(n1,n2 − 1)− 2y(n1,n2)+ y(n1,n2 + 1)

h2

(32)

where T is the sampling time, h is the spatial sampling

distance between two nodes along the rod and n1 and n2 are

the time and spatial indices respectively. Then at instance

(n1,n2) equation (30) can be approximated as

y(n1 + 1,n2) =
T

h2
y(n1,n2 − 1)+ (1− 2

T

h2
)y(n1,n2)

+
T

h2
y(n1,n2 + 1)+Tu(n1,n2)

(33)

Here we are assuming that κ = 1 and let ûn1,n2
= Tun1,n2

.

The difference equation (33) can be represented in transfer

function form as

G(q1,q2) =
b1,0q−1

1

1+ a1,1q−1
1 q−1

2 + a1,0q−1
1 + a1,−1q−1

1 q2

(34)

where q1 is the temporal forward shift operator, q2 is the

spatial shift operator, and

b1,0 = 1, a1,0 =−1+ 2
T

h2

a1,1 =−
T

h2
, a1,−1 =−

T

h2

Let the rod be divided spatially into 10 segments, i.e

h = 1/10, and let T = 0.001s. Noisy data is generated

from this system by considering a structure as in Fig. 1

with H(q1,q2) =
1

1+d1q−1
1 +d2q−2

1 +d3q−3
1

. The input u(n1,n2)

and e(n1,n2) are taken as 2-D zero-mean normally dis-

tributed white-noise. The data used for identification is of

size 10000× 10. Monte-Carlo simulations of 100 runs are

carried out at different signal-to-noise ratios SNR. Table I

and II show a comparison of the estimated parameters, bias

norm (‖θ0−E[θ̂ ]‖2) and variance norm (‖E[(θ̂ −E[θ̂ ])2]‖2),

where θ0 is the true and θ̂ the estimated parameter vector,

respectively.

B. Example 2: Cantilever beam

In this section we consider the beam model shown in

Fig. 3. The output y(t,x) is a transverse deflection and

the input is a force u(t,x) applied at point x. The beam

u(t,x)

y

L
x

y(t,x)

Fig. 3. Uniform Beam divided into N2 segments; green shows sensor and
red shows actuator signals from each segment

has Young’s modulus E , I is the moment of inertia, ρ
the density and L the length. This model is an example

of a semi-causal system, being causal in time and non-

causal in space. The model is discretized spatially into N2

subsystems with a spatial sampling interval of h = L/N2.

In discrete domain, the transverse deflection of the beam is

represented by y(n1,n2) and the distributed force on the beam

is represented as u(n1,n2), where n1 and n2 are indices for

temporal and spatial dimensions, respectively. The system

has N2 subsystems and each has a sensor and an actuator.

If we take N1 temporal data at each spatial segment, then

we have N1 ×N2 data points for output y(n1,n2) and input

u(n1,n2).

For data generation we simulate a beam model given in

Fig. 3 with the following properties. Length L = 1m, density

ρ = 7800Kg/m3 , Young’s modulus E = 20× 1010N/m2,

maximum thickness tb = 5mm, cross-sectional area

A = 1× 10−4m2, moment of inertia I = 2.08× 10−10m4 and

viscous damping γ = 1kg/ms. The given beam is divided

into nine subsystems with sensors and actuators. The model

is excited with 2-D zero-mean white-noise with normal

distribution, the sampling time is taken as 1 × 10−4 sec.

The input and output data has size 10000 × 9 and is

generated from the data generating system as in Fig. 1 with

H(q1,q2) =
1

1+d1q−1
1 +d2q−2

1

where d1 =−1 and d2 = 0.2.

The model structure selected is as in (15) with input and

output masks given as
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Mu = {(1,0),(2,0)}

My = {(2,−2),(1,−2),(2,−1),(1,−1),(0,0),(2,0),

(1,0),(2,1),(1,1),(2,2),(1,2)}

The parameters of this model are very sensitive to noise

(as some parameters are very small), so it gives reasonable

results above 40 dB SNR. Monte-Carlo simulations of 100

runs are carried out at SNR 40 dB. The least squares method

gives parameters having bias norm 0.01 and variance norm

2.2× 10−6 while the proposed RIV method identifies the

parameters for the above model having bias norm 4.4×10−6

and variance norm 1×10−9. The identified noise filter of the

RIV method has mean values d1 =−1.0155 and d2 = 0.187.

V. CONCLUSIONS

In this paper a method has been presented to identify

transfer function models for m-D systems with consistent

estimates if there is additive colored noise in the output. The

proposed method is an extension of the refined instrumental

variable technique for one-dimensional systems to multi-

dimensional systems. The method can give estimates with

minimum bias and variance. As illustration the method is ap-

plied to two semi-causal (spatially interconnected) systems,

but is equally applicable to causal and non-causal systems,

and can be used for separable as well as non-separable

systems. The method has also the advantage that boundary

conditions can be easily included, as is discussed in [8].
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