
 
 

 

Frequency identification of nonparametric Hammerstein systems 
with backlash nonlinearity 

A. Brouri, F. Giri*, Y. Rochdi, F.Z. Chaoui 
 

Abstract— We are considering the problem of identifying 
continuous-time Hammerstein systems that contain backlash 
nonlinearities. Both the linear and nonlinear parts are 
nonparametric and of unknown structure. In particular, the 
backlash nonlinearity borders are of arbitrary-shape and so 
may be nonsmooth and noninvertible. A two-stage frequency 
identification method is developed to get a set of points of the 
nonlinearity borders and estimates of the linear subsystem 
frequency gain at a number of frequencies. The method 
involves easily generated excitation signals and simple Fourier 
series decomposition based algorithms. All estimators are 
shown to be consistent. 

I. INTRODUCTION 

he problem of identifying Hammerstein continuous-
time systems is addressed in presence of memory input 

nonlinearities of backlash type (Fig 1). The memory nature 
of  implies that the backlash output, at a given time t, is 

not uniquely determined by the input at the same time 

(Figs 2 and 3), furthermore, the internal signal is non 
measureable. In view of these difficulties, it is not surprising 
that few solutions are available that deal with Hammerstein 
system identification in presence of memory elements. 
Furthermore, most existing solutions focused on backlash 
bordered by straight lines, [1-3]. General nonparametric 
backlash elements, flanked by arbitrary-shape borders, have 
recently been considered in the discrete-time, together with 
parametric linear subsystems [4]. There, the identification 
problem was dealt with in two stages using periodic impulse 
inputs and least squares estimators. In each stage, a 
simultaneous estimation is performed of the linear 
subsystem parameters and a set of points of one border of 
the nonlinearity. In the present paper, the focus is made on 
the case where both the backlash nonlinearity and the linear 
subsystem are nonparametric. Unlike [4], the identification 
problem is dealt with in the continuous-time context, using a 
frequency approach involving periodic piecewise constant 
signal and Fourier series expansions. Here, the identification 
of the backlash nonlinearity is totally decoupled from the 
identification of the linear subsystem; each part being 
identified in a separate stage. The involved piecewise 
constant signals are quite simpler to generate than those 
used in [4]. Finally, the presently considered class of 
backlash nonlinearities is as general as in [4]. Accordingly, 
the nonparametric nonlinearity borders are allowed to be 

nonsmooth and noninvertible. Moreover, the borders may 
cross each other making possible to apply the proposed 
identification method to Hammerstein systems with 
memoryless (static) nonlinearities. In effect, a memoryless 
nonlinear operator can be seen as a backlash operator with 
superposed borders. 
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The paper is organized as follows: The identification 
problem is formally described in Section 2. The nonlinearity 
borders identification is dealt with in Section 3 and the 
linear subsystem identification is coped with in Section 4. 

 

 
Fig. 1. Hammerstein System Model 

II. IDENTIFICATION PROBLEM STATEMENT 

We are interested in systems that can be described by the 
Hammerstein model (Fig. 1): 
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where  represents the linear subsystem transfer 

function,  the nonlinear operator and 
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[.]F   a measurement 

noise. As the signals ( , ,u w  ) are not accessible to 

measurements, system identification must only relay on the 
external signals v  and . The signal y   is supposed to be a 

zero-mean ergodic white noise. The transfer function  

has no known structure but it is asymptotically stable and 
with nonzero static gain (i.e. ). System stability is 

coherent with open-loop system identification. The fact that 
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0)0( G  implies that, without reducing generality, one can 

assume 1)0( G . Indeed, if the couple  GF ,  is 

representative of the system, then so is any triplet of the 
form  ks /)GkF[.], ( , whatever . Finally, note that the 

nonzero static-gain requirement is satisfied by most real 
lifesystems. It is only not satisfied by derivative systems. 
When these are involved the proposed identification method 
can still be applied using ad-hoc adaptations.  
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The nonlinear element  is a backlash operator 

characterized by its ascendant and descendant lateral 
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borders,  and  (Fig.2). These borders 

assume no particular structure unlike in [1-3]. The backlash 
element operates as follows: suppose the nonlinearity 
working point, i.e. , is moving along one border 

(either  or ) and, at some instant , the input  

changes its variation sense i.e. . 

Then, the working point starts leaving the current border, 
moving horizontally towards the opposite border. If the 
input rate  keeps the same sign, as , for a long 

time then, the working point will actually gets to the 
opposite border. Accordingly, if the input signal  spans 

monotonically in both senses a sufficiently wide working 
interval  then, the working point will span the 

backlash characteristic between the vertical lines 
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, passing from one border to the other along two 

connecting horizontal paths, describing thus a closed 
backlash cycle. The system description is completed by the 
following remark. 

Mvv 

 

 
Fig. 2. Nonparametric backlash 

 
Remark 1.  
a) In case the working  interval is not sufficiently 

large, the resulting steady-state internal signal  will be 

constant i.e. the backlash working point will move along a 
horizontal segment. Then, the system output  becomes 

constant (up to noise) after a short transient period. This 
observation can be based upon in practice to discard non-
suitable choices of [ . 
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b) The backlash bordering functions  or  are 

only supposed to be well defined and bounded within the 
considered working interval. Except for this assumption,  

 or  are arbitrary shape. In particular, they are 

allowed to be noninvertible and discontinuous, making 
possible to account for rely-type nonlinearities. Moreover, 
the borders are also allowed to cross each other (Fig. 3) 
making possible to account for memoryless (static) 
nonlinearities. Actually, memoryless nonlinearities can be 
seen as memory nonlinearities with superposed (ascendant 
and descendant) borders. This is a quite feature of the 
present study because any identification method that is 

supposed to work well for (Hammerstein systems with) 
backlash nonlinearities must be able to work equally well in 
the simpler case of memoryless (static) nonlinearities (‘he 
who can do more must be able to do less’).  
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c) It is worthy to emphasize that backlash nonlinearities with 
non-straight bordering lines are representative of many real-
life control actuators e.g. industrial control valves. They 
may also arise as a consequence of combinations of simpler 
operators (Fig. 4). 
 

 
Fig 3. General shape backlash 

 
Fig. 4. a) series combination of a static nonlinearity and a backlash 
operator with straight-line borders. b: equivalent backlash operator 
with non-straight bordering lines.  

 
d) Compared to [4], the present study deals with continuous-

time fully nonparametric Hammerstein systems, while 
discontinuous parametric linear subsystems were 
considered in the above reference. Another major 
difference between the present study and [4] is that the 
considered identification methods are quite different. In 
[4] all parameters of the linear subsystems as well as (a set 
of points of one border of) the nonlinearity are identified 
simultaneously, using impulse sequences and least squares 
estimators; the other border is determined in a second step. 
In the present method, the linear and nonlinear parts are 
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identified sequentially, in two distinguished steps, using 
piecewise constant signals and Fourier series 
decomposition. 

u

III. BACKLASH NONLINEARITY IDENTIFICATION 

In this section, we seek the estimation of a set of points on 
each border of the backlash nonlinearity. The number n  of 
points is arbitrary but their abscissas must belong to the 
working interval . Let ][ Mm vv Mnm VVvV v 21
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be the selected abscissas. To determine the points 
, one has first to make sure that the current 

working point, say  is on the ascendant border. 

Then, letting  , for some V , 

ensures that the backlash working point 
 is still on the ascendant border i.e. 

. As the linear subsystem is asymptotically 

stable with unit static gain, it follows that the steady-state 
undisturbed output  is constant i.e.  with 

(using the fact that 
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Finally, notice that the steady state undisturbed output  

can simply be estimated using the fact that 
iW

)(t)()( twty   and )(t  is zero-mean. Specifically,  

can be recovered by averaging  on a sufficiently large 

interval. Hence, a number of points of the ascendant border 
(as well as points of one horizontal segment relating both 
borders) can thus be accurately estimated by repeating the 
above experiment successively for . A symmetrical 

procedure could similarly be described to determine a 
number of points on the descendant border. These ideas are 
formalized in the three-stage identification procedure of 
Table 1, where  is theoretically any positive real number. 

Practically, it is convenient to let  be comparable to the 

system rise time i.e. the time that is necessary for a system 
step response to reach  of its final value. Then, as the 
system is asymptotically stable, its step undisturbed 
response settles down (i.e. gets very close to final value) 
after a transient period of nearly .  
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Also, in Table 1,  and  designate, respectively, the 

ascendant and descendant paths defined as follows (see Fig. 
5): 

aP dP

 aP  is constituted of: (i) the horizontal segment relating 

point  of coordinates ))(,  to point  on the 

ascendant border; (ii) the portion of this border between 
point  and point  of coordinates ))(,( Ma vf . 

( mdm vfv

Mv

 dP  is constituted of: (i) the horizontal segment relating 

point  to point  on  the descendant border; (ii) the 
portion of this border between point  and point . 

 

 
Fig. 5. Limit cycle described by the backlash working point , 

when the signal (4a-b) is applied. The circles represent the 

positions occupied by  during the time-interval 
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and the crosses those occupied during  r nnNT )12(  . The 

figure also shows the ascendant path   and descendant path . aP dP

  

Table 1. Nonparametric Backlash Border 
Identification (NBBI) 

1. Initialization experiment 
Apply the following step signal:  
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where  is an arbitrary small real such that   

  
0T 00 T

2. Data acquisition 
Choose an integer . 1N
Apply the piecewise signal represented by Fig. 6a, 
analytically defined as follows, for all  rr NTiNTit )1(  , 

32,,0  ni  : 
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and 
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                    and inin VV     for )11(  ni     (4b) 

Record the resulting output , . )(ty  rNTnt )12(0 

3. Border points estimation 
Compute the (undisturbed output) mean value on each  
interval  rr NTiNTi )1(  , : 32,,0  ni 
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Then, the set of couples  )(ˆ, 11 NWV ii  , 1,,0  ni  , are 

estimates of  points all belonging to the ascendant path  

and the couples 
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Fig.6. Above: Input signal (4a) applied in Stage 2 of the NBBI 

procedure with . Below: Shape of the resulting 

disturbed output signal obtained with 
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Before analyzing the NBBI procedure (Table 1), let us first 
comment on the involved experiments. The initialization 
experiment (Part 1), is just resorted to make sure that, 
afterward, the backlash working point  occupies 

position  whose coordinates are . Then, the 

input signal (4a) will enforce the working point to describe 
(a number of points of) the complete backlash cycle  
. More specifically, the working point 
moves on the ascendant path  for  occupying 

there  positions (represented by circles in Fig. 5). For 
, the working point moves on the 

descendant path   occupying there  positions 

(indicated by crosses in Fig. 5); Note that the particular 
points corresponding to  and belong to 

both paths and  . Note also that the last position, 

achieved on the time interval 
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with . That is, the number of different positions 

occupied by the working point is in fact 
2) V(tv

22 n

rTN
. Finally, 

note that each input value is kept on during  seconds to 

make sure that the output signal settles down within each 
interval of the form  (Fig. 6b).  rr NTi(NTi )1
  

Proposition 1. The points of coordinates  )(ˆ, 11 NWV ii 



, 

, obtained in the NBBI procedure, with the data 
collected on the time interval , converge (in 

probability) to the ascendant path  as . Similarly, 

the points 
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Proof. It has already been noticed that, after the 

initialization experiment (step 1 of the NBBI procedure), the 
backlash working point  occupies position  with 

coordinates . Then, it follows from (4a) that, 

for 
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 rnNTt 0 , the working point  moves on the 

ascendant path   occupying there  positions belonging 

to the set 
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That is, the working point stays  seconds in each 

occupied position. As  and  is 

asymptotically stable, it follows from (6a-b) that: 
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using the fact that 1)0( G . On the other hand, one has 
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using the fact that the white noise   in (1) is ergodic and 

zero-mean. Combining (7a-b) one gets: 
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which, together with (5) implies that: 
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Combining (6a-b) and (8) it follows that, for 10  ni  : 
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which proves the first part of Proposition 1. The second part 
is similarly established ◼ 

 

IV. LINEAR SUBSYSTEM IDENTIFICATION 

In this section, an identification method is proposed to get 
estimates of the linear subsystem complex gain )( jkG  at 

the frequencies k )2,1,0( k , whatever 0 . From 

the NBBI procedure (Table 1), one gets estimates of a set of 
22 n

a

def
PC 

 different points of the backlash limit cycle 

. Furthermore, the larger the parameter  is, 

the better the estimation accuracy. For simplicity, we 
presently suppose that the estimated points have been 
exactly determined and, for clarity, the determined points 
are denoted: 

dP N
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To get profit from this result, the system is excited by a 
periodic input signal , with period )(tv  /2T , that only 

takes the values : iV

 
            (10)  221;)(  niVtv i  



Furthermore, the above values come in the same order as in 
(4a), i.e. , and each one is kept on 

during  seconds. Doing so, it is clear from Fig. 5 

that, if the backlash working point  occupies initially 

position  then,  will stay all time on the limit 

cycle  occupying there only the positions 

, , defined in (9). Then, the backlash 

output  turns out to be perfectly known. Specifically, 

 is in turn periodic, with period T , and 
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Furthermore, the above values of  come in the order 

. Since  is periodic and 

known, it can be developed in Fourier series: 
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where . As  is asymptotically stable and 

, it follows from (12) that the steady state 

undisturbed output (given that ) is of the 

form: 
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Using standard trigonometric formulas, the right side of (15) 
simplifies to: 
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Squaring both sides of (17a-b) and combining the resulting 
equalities one gets: 
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Equations (18)-(19a-b) show how to obtain the complex 
amplitudes )( jkG  )2,1( k

)

 using the two couples 

 and . As the first is already available by 

(13), it remains to estimate the second. This is performed 
noticing that the right side of (16) is nothing other than the 
Fourier series expansion of the output signal , up to 

noise 
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zero-mean ergodic white noise, the effect of the latter can be 
filtered considering the following trans-period averaging of 
the output: 
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for some (large enough) integer M . Indeed, it is readily 
obtained using (16) and (20): 
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where the last equality holds with probability 1 because   is 

ergodic and zero-mean1. That is, the k ’s and k ’s turns 

out to be (w.p.1) the limits of Fourier series coefficients of  
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2

)(  ,   (22a) )3,2,1( k


T

fk dttkMty
T

M
0

)sin(),(
2

)(         (22b) 

 

 

))1(( Tit

1 By ergodicity, the (common) mathematic mean of the random 
variables  

  (17b) 

  coincides, with probability 1, with the 

arithmetic  mean of any realization of the random variable 
sequence  3,2,1),)1((  iTit )0[ Tt  (for any fixed  ). 
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Then, it follows from (21) that: 
 

kk
M

M  


)(lim  and kk
M

M  


)(lim    (w.p.1)   (23) 

 

The above results are based upon to get estimates  

of the complex amplitudes 

)(ˆ jkGM

)( jkG  , for any 

fixed 

)2,1( k

0 . This is performed using the identification 
procedure of Table 2. 
  

Table 2. Frequency Gain Identification (FGI) 
1. Initialization experiment 

Similar to Table 1 (Step 1). 
 

2. Data acquisition 

 Choose a frequency  , let  /2T  and 
)22/(  nT . 

 Apply the periodic signal, with period T , defined on the 
period )0[ T  as follows: 

iVtv )(   for   iit )1(  ,     (24) 22,1  ni 

 Take a sufficiently long record of the resulting steady 
state output signal. Let this be denoted  )(ty ,  TMt 0  

for some  integer 1M . 
 

3. Data processing 

 From the input sequence )(tv , generate the corresponding 

output backlash signal )(tu , using the expressions (9) to 

(11) and accompanying remarks, and compute its Fourier 
series coefficients ka  and kb  using (13). 

  Generate the filtered output ),( Mty f  using (20) and 

compute its Fourier series coefficients )(Mk  and )(Mk  

using (22a-b). 

  Compute the estimates )(ˆ jkGM  using (18)-(19a-b) 

replacing there k  and k  by )(Mk  and )(Mk , 

respectively, i.e.  
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Proposition 2. The estimates  obtained by the 

FGI procedure (Table 2) are consistent estimates i.e. 

 w.p. 1 as    � 

)(ˆ jkGM

M)()(ˆ  jkGjkGM 

Proof. Comparing (25)-(26a-b) to (18)-(19a-b), it is readily 

seen, using (23), that  converges in probability to )(ˆ jkGM

)( jkG   

Remark 2. 
a) The FGI procedure can be repeated as many times as 

wished considering each time a different value of the 
frequency  . 

b) For a given  , the number of  estimates  )(ˆ jkGM

)3,2,1( k

ka kb (u

 to be determined may be arbitrarily large. 

Practically, it is reasonable to limit the number of estimates 
to those frequencies for which the Fourier series coefficients 
( , ) of  are significant. According to the Parseval’s 

identity one has (e.g. [5]): 

)t

 

   


 



dttu

T

baa T

k

kk
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2

1

222
0 )(

1

24
      (27) 

 
 where the right side of the equality represents the power of 
the signal . It readily follows from (27) that )(tu

0
2

22 


 pk

kk ba
 as p . Then, it is reasonable to 

consider as significant only the coefficient list ( , ; ka kb

pk 1 )  where  is such that: p

 dttu
T

baa T
p

k

kk  





0

2

1

222
0 )(

1
)1(

24
  

for some 10    chosen by the user. 
c) Finally, note that the frequencies, )3,2,1( kk , for 

which the complex amplitudes )( jkG

2 

 are estimated in the 

FGI procedure, are independent on the number and positions 
of the points,  ),( ii UV )21(  ni ,  estimated in the 

NBBI procedure.  In fact,   is only imposed by the user 
through the choice of the period T  of the excitation signal 

 defined by (24). Accordingly, the latter needs not to 

take all values,  

)(tv

iV ( )221 ni , involved in the NBBI 

procedure  � 
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