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Abstract— The paper derives necessary and sufficient condi-
tions for quasiconvexity of piecewise quadratic functions. The
conditions are stated in terms of linear inequalities which can
be verified efficiently. To show the relevance of the result,
the paper considers a class of hybrid MPC problems where
the system model is piecewise affine and the control input is
subject to constraints. Minimizing a quadratic cost results in a
mixed integer quadratic program where the objective function
is piecewise quadratic. Quasiconvexity can be determined using
the result of the paper. The results of the present paper
has potential to increase the applicability of hybrid model
predictive control in high-speed control applications. In high-
speed applications, the only option has been to solve the mixed
integer program explicitly and this quickly becomes intractable
because of growing complexity. However, if the problem can be
shown to be quasiconvex it opens up the possibility to use an
efficient on-line approach. A hybrid MPC example is considered
which is shown to be quasiconvex for a subset of the initial
conditions.

I. INTRODUCTION

The present paper considers a class of piecewise quadratic

continuous functions and derives necessary and sufficient

conditions for quasiconvexity of these functions. The func-

tions are defined on an orthogonal partition of the domain of

definition. The ”pieces” of the piecewise quadratic function

are strictly convex quadratic functions defined on rectangular

polytopes. The analysis can be extended to functions defined

on arbitrary polytopes. However, in the present paper we

only consider the case of rectangular polytopes for clarity of

presentation.

The quasiconvexity conditions are derived by investigating

the change of slope of the function when passing from

one region of the partition to its neighbor. The conditions

are formulated as linear inequalities which state that the

derivative of the function, when restricted to a line orthogonal

to the hyperplane separating the regions, must not decrease

when crossing the separating hyperplane. In other words,

the function is quasiconvex if and only if it is convex in the

direction of the normal of the separating hyperplanes.

To show the relevance of the result, the paper presents a

class of hybrid model predictive control (MPC) [2] problems

where the system model is piecewise affine (PWA) [11]

and where we want to minimize a quadratic cost subject

to constraints on the control input. The resulting mixed-

integer quadratic optimization problem (MIQP) consists in

minimizing a piecewise quadratic continuous function where
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the results of the present paper can be used to verify whether

the problem is quasiconvex or not.

In high-speed applications where the control frequency is

high, the only way to implement the hybrid MPC solution

on-line has been to rely on explicit solutions [12], [4] where

the optimal solution is computed off-line and stored in a

look-up table (typically in a binary search tree). However,

to represent the solution of an MIQP explicitly, one needs

to enumerate all combinations of binary variables and solve

all resulting QPs explicitly. In the on-line application, all

explicit QP solutions must then be evaluated and compared

in order to apply the optimal control input. This approach

quickly becomes intractable since complexity grows rapidly

with the number of subsystems of the PWA model and

the prediction horizon. If the MIQP can be shown to be

quasiconvex however, the problem could be solved efficiently

on-line. Thus, the results of the present paper has potential

to increase the applicability of hybrid MPC in high-speed

control applications.

In general, a given MPC problem may be quasiconvex for

some, but not all relevant initial conditions. Nevertheless, the

results of the paper can be used to partition the domain of

the initial condition into smaller pieces where the objective

function can be shown to be quasiconvex. Such a procedure

could be used to reduce the complexity of the optimization

problem and thus reduce memory requirements and compu-

tation time in on-line applications.

The paper considers an application example from the

field of power electronics [10]. A switched mode step-down

(buck) DC-DC converter is modeled using PWA approxi-

mations [6] which gives a more accurate description of the

rippling converter state compared to the conventional averag-

ing approach [9]. Minimizing a quadratic cost subject to the

PWA dynamic constraints and input constraints corresponds

to minimizing a piecewise quadratic function which is indeed

shown to be quasiconvex for a certain set of initial conditions.

The paper is organized as follows. In Section II we

introduce the class of piecewise quadratic functions con-

sidered. Section III reviews the concept of quasiconvexity.

In Section IV we consider the special case of one-variable

functions and derive conditions for quasiconvexity. The result

is then used in Section V to derive conditions for the general

n-dimensional case. Section VI introduces a class of hybrid

MPC problems which correspond to minimizing piecewise

quadratic functions and in Section VII we consider a practical

example from the problem class which is indeed shown to

be quasiconvex for a certain set of initial conditions. Finally,

Section VIII concludes the paper.
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II. PIECEWISE QUADRATIC FUNCTIONS

Consider a rectangular polytope Ω in R
n defined as

Ω := {x ∈ R
n | ai ≤ xi ≤ bi, i = 1, . . . , n}

where ai < bi, i = 1, . . . , n. Let Ω be partitioned into

smaller rectangular regions by partitioning each interval

[ai, bi] into Ni pieces according to

ai = pi,0 < pi,1 < . . . < pi,Ni
= bi.

Then, the partition of Ω becomes

Ω =

Ntot
⋃

j=1

Ωj

where Ntot = Πn
i=1Ni is the number of regions in the

partition and where

Ωj := {x ∈ R
n | pi,sji−1 ≤ xi ≤ pi,sji , i = 1, . . . , n}

where sji is the ith component of the index vector sj taking

value in the set {1, . . . , N1} × · · · × {1, . . . , Nn}.

Let V : Ω → R be a continuous piecewise quadratic

function on Ω defined as

V (x) = Vj(x) if x ∈ Ωj (1)

where

Vj(x) :=
1

2
x′Hjx+ f ′

jx+ gj , Hj = H ′
j > 0 (2)

are assumed to satisfy

Vj(x) = Vk(x) ∀x ∈ Sjk (3)

where

Sjk := Ωj ∩ Ωk (4)

are the intersections of neighboring regions. We note that the

assumption Hj > 0 implies that each function Vj is strictly

convex and that (3) implies that the composite function V is

continuous. The function V may be convex, quasiconvex or

non-convex. In the sequel we derive necessary and sufficient

conditions for V being quasiconvex.

dVj
dx

∣

∣

∣

∣

x=pj

> 0
dVj+1

dx

∣

∣

∣

∣

x=pj

< 0

pj pj+1

Fig. 1. Non-quasiconvex piecewise quadratic function.

III. QUASICONVEXITY

Definition 3.1: A function f : Ω → R is quasiconvex iff

its domain Ω is convex and for all points x, y ∈ Ω and all

scalars λ ∈ [0, 1] it holds

f((1− λ)x+ λy) ≤ max{f(x), f(y)}. (5)

Lemma 3.1: A function f : Ω → R is quasiconvex iff its

domain Ω and all sublevel sets

Sα := {x ∈ Ω | f(x) ≤ α}

are convex.

IV. THE ONE-DIMENSIONAL CASE

Consider the one-dimensional case where Ω = [a, b] ⊂ R,

a < b. Let [a, b] be partitioned into N ≥ 2 pieces according

to

a = p0 < p1 < . . . < pN = b

and let V : [a, b] → R be a piecewise quadratic function

defined according to (1)-(3). We note that the continuity

conditions (3) reduce to pointwise equalities

Vj(pj) = Vj+1(pj), j = 1, . . . , N − 1

where pj are the points of the partition of [a, b].

Lemma 4.1: V is quasiconvex iff none of the points pj ,

j = 1, . . . , N − 1 of the partition satisfy

dVj

dx

∣

∣

∣

∣

x=pj

> 0,
dVj+1

dx

∣

∣

∣

∣

x=pj

< 0. (6)

Proof: We first prove that if V is quasiconvex, then

none of the points pj of the partition satisfy (6): Assume for

the sake of contradiction that V is quasiconvex and there is

a point pj , j ∈ {1, . . . , N − 1} satisfying (6). Since dVj/dx
are continuous functions, there exists ǫ > 0 such that

Vj(x) < Vj(pj) ∀x ∈ (pj − ǫ, pj)

Vj+1(x) < Vj(pj) ∀x ∈ (pj , pj + ǫ).
(7)

Take points x ∈ (pj − ǫ, pj), y ∈ (pj , pj + ǫ) and take

λ ∈ [0, 1] such that (1− λ)x+ λy = pj (such λ exists since

x < pj < y). It holds

V ((1− λ)x+ λy) = Vj(pj) > max{V (x), V (y)}

where in the last inequality we have used (7). This contradicts

that V is quasiconvex.

We now prove that if none of the points pj , j = 1, . . . , N−
1 of the partition satisfy (6), then V is quasiconvex: As-

sume for the sake of contradiction that no point pj , j =
1, . . . , N − 1 satisfies (6) and V is not quasiconvex. If V
is not quasiconvex, by Lemma 3.1 there exists a level set

Sα = {x ∈ [a, b] | V (x) ≤ α} which is not convex. In

other words, there exists a level set which can be written as

a union of disjoint intervals;

Sα =
⋃

k

[αk, βk]

where αk ≤ βk and βk < αk+1. Since Vj are convex, the

points βk and αk+1 cannot both be in the same interval
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[pj , pj+1] of the partition. This means that there are one or

more points pj between βk and αk+1, i.e.,

βk ≤ pj < pj+1 < . . . < pj+m ≤ αk+1.

Now consider the maximum of V restricted to the interval

[βk, αk+1]. Because the maximum of a convex function over

a polytope is obtained at a vertex of the polytope [3], the

maximum will be obtained at a (possibly non-unique) point

pk, k ∈ {j, . . . , j +m}.

The assumption Hj > 0 implies that Vj are non-constant

and thus, there exists ǫ > 0 such that

Vk(x) < V (pk) ∀x ∈ (pk − ǫ, pk)

Vk+1(x) < V (pk) ∀x ∈ (pk, pk + ǫ)

which implies that

dVk

dx

∣

∣

∣

∣

x=pk

> 0,
dVk+1

dx

∣

∣

∣

∣

x=pk

< 0

which contradicts that there is no point pj satisfying (6). This

concludes the proof.

V. THE N-DIMENSIONAL CASE

Consider now the case Ω ⊂ R
n, n ≥ 1. To derive

necessary and sufficient conditions for quasiconvexity of the

function V : Ω → R we use the definition of quasiconvexity

and consider V along all lines in Ω. When restricted to a

line, V reduces to a one-variable function and we apply the

result of Lemma 4.1 in Section IV to verify inequality (5).

The result is stated formally as follows.

Theorem 5.1: Let V : Ω → R be defined according to (1)-

(3) where Ω ⊂ R
n, n ≥ 1 and let Sij be defined by (4).

Let eij be the normal of the surface Sij pointing from Ωi

towards Ωj and let Zij be a matrix of columns spanning

the orthogonal complement of eij . V is quasiconvex iff for

all surfaces Sij of dimension n− 1 the following conditions

hold.

1) For all x ∈ Sij such that Z ′
ij∇xVi(x) = 0, it does not

hold

e′ij∇Vi(x) > 0, e′ij∇Vj(x) < 0. (8)

2) For all x ∈ Sij such that Z ′
ij∇xVi(x) 6= 0 it holds

e′ij∇xVi(x) ≤ e′ij∇xVj(x). (9)

Remark 5.1: In the one-dimensional case (n = 1), the

surfaces Sij are points and the normals eij are scalar and

thus, Zij = 0. This implies that the second set of conditions

in Theorem 5.1 disappears and the remaining inequalities are

indeed equivalent to the inequalities stated in Lemma 4.1

which considers the one-dimensional case.

Remark 5.2: We note that the conditions above holds for

the index pair (ij) if and only if it holds for the pair (ji).
We also note that the conditions of the theorem are linear

inequalities which should hold for all points in a polytope.

Such conditions can be formulated equivalently in terms of

a set of linear inequalities using the S-procedure [5], [7].

Ω

Ωj1

Ωj2

Ωj3

Sj1,j2

Sj2.j3

x

y

ξ

Fig. 2. Partition of Ω into regions Ωj . The line ξ is contained in regions
Ωj1 , Ωj2 , Ωj3 and crosses surfaces Sj1,j2 , Sj2.j3 .

Proof: According to the definition, V is quasiconvex

iff

V ((1− λ)x+ λy) ≤ max{V (x), V (y)} ∀λ ∈ [0, 1] (10)

holds for all x, y ∈ Ω. Because of continuity and the structure

of V , we need not show (10) for all x, y ∈ Ω. Firstly, if x
and y are both in the same set Ωj , then (10) follows directly

from convexity of Vj . Secondly, because of continuity we

may omit points x and y which lie in any set Sij and we

may also omit lines (1−λ)x+λy which intersect sets Sij of

dimension less than n − 1. Thus, V is quasiconvex iff (10)

holds ∀ x ∈ int(Ωi), y ∈ int(Ωj), i 6= j such that the line

(1−λ)x+λy does not intersect a set Sij of dimension less

than n− 1.

Consider x ∈ int(Ωi), y ∈ int(Ωj), i 6= j and let

ξ(λ) = (1− λ)x+ λy = x+ (y − x)λ = x+ rλ

be the line between x and y parameterized by λ ∈ [0, 1]
having direction

r := y − x.

The function V restricted to the line ξ is a continuous

piecewise quadratic function in λ. By assumption, the line

ξ is contained in m ≥ 2 regions Ωjk , k = 1, . . . ,m and

intersects m− 1 surfaces

Sj1,j2 , Sj2,j3 , . . . , Sjm−2,jm−1

all of dimension n− 1. Thus we have

Vξ(λ) := V (ξ(λ)) = Vξ,jk(λ) if pk−1 ≤ λ ≤ pk

where

0 = p0 < p1 < . . . < pm = 1

is a partition of the interval [0, 1] where pk, k = 1, . . . ,m−1
are the points where Vξ(λ) intersects Sjk,jk+1

;

Vξ(pk) ∈ Sjk,jk+1
, k = 1, . . . ,m− 1.
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The functions Vξ,j are defined as

Vξ,j(λ) =
1

2
Hjλ

2 + f̄jλ+ ḡj

Hj =
1

2
r′Hjr

f̄j = (Hjx+ fj)
′r

ḡj =
1

2
x′Hjx+ f ′

jx+ gj .

From Lemma 4.1 it follows that (10) holds iff none of the

points pk satisfy

dVξ,jk

dλ

∣

∣

∣

∣

λ=pk

> 0,
dVξ,jk+1

dλ

∣

∣

∣

∣

λ=pk

< 0. (11)

We now reformulate (11) in terms of the gradients of Vj .

Consider a scalar λ̄ ∈ [0, 1] and let x̄ be the corresponding

point on the line ξ so that x̄ = x+ rλ̄. It holds

dVξ,j

dλ

∣

∣

∣

∣

λ=λ̄

= r′∇xVj

∣

∣

x=x̄
. (12)

Substituting the expression above in (11) it follows that (10)

holds iff none of the points pk satisfy

r′∇xVjk(x+ rpk) > 0, r′∇xVjk+1
(x+ rpk) < 0. (13)

The inequality (13) holds for all lines (1−λ)x+λy in Ω
iff for all surfaces Sij , there is no point x ∈ Sij and direction

r pointing from Ωi to Ωj satisfying

r′∇xVi(x) > 0, r′∇xVj(x) < 0, e′ijr > 0. (14)

where eij is the normal of the surface Sij pointing from Ωi

to Ωj and where the inequality e′ijr > 0 restricts r to be

directed from Ωi toward Ωj .

To show quasiconvexity of V we need to show that for all

Sij , there is no point x ∈ Sij and direction r satisfying (14).

The inequality (14) is quadratic in x and r and is therefore

non-trivial to verify. In order to derive a simpler (equivalent)

statement of (14) we note the following.

• The continuity condition implies that Vi and Vj are

identical on Sij . This implies that the partial derivatives

along directions parallel to and inside Sij are also

identical for the two functions and we can therefore

write

∇Vi(x) = ∇V⊥(x) +∇V i(x)

∇Vj(x) = ∇V⊥(x) +∇V j(x)
(15)

where ∇V⊥ is the projection of Vi (Vj) onto Sij and

where ∇V i, ∇V j are parallel with the normal eij .

• The surface Sij can be split into two subsets;

S1
ij := {x ∈ Sij | V⊥(x) = 0}

= {x ∈ Sij | Z ′
ijVi(x) = 0}

S2
ij := {x ∈ Sij | V⊥(x) 6= 0}

= {x ∈ Sij | Z ′
ijVi(x) 6= 0}.

We now proceed with the reformulation of (14). For each

surface Sij we consider the two cases that x ∈ S1
ij and

x ∈ S2
ij .

Case 1: Assume x ∈ S1
ij so that ∇V⊥(x) = 0. In this

case ∇Vi and ∇Vj are parallel to eij and we can without

loss of generality choose r = c · eij , c > 0 in (14). Doing

so, one can show that there is no direction r satisfying (14)

iff it does not hold

e′ij∇Vi(x) > 0, e′ij∇Vj(x) < 0.

This is guaranteed by the first set of inequalities in Theo-

rem 5.1.

Case 2: Assume x ∈ S2
ij so that ∇V⊥(x) 6= 0. By

Gordan’s Theorem [8] there is no solution r to (14) iff there

is a solution y ≥ 0, y 6= 0 to

y1(−∇Vi(x)) + y2∇Vj(x) = y3eij . (16)

Using the decomposition (15) in (16) we get

(y2 − y1)∇V⊥ − y1∇V i + y2∇V j = y3eij .

By assumption, ∇V⊥ is non-zero. Furthermore, ∇V⊥ is

orthogonal to eij and the coefficient multiplying ∇V⊥ must

therefore be zero in order for the equation to have a solution.

Thus it must hold y2 = y1 and we get

y1(∇V j −∇V i) = y3eij

which has a solution y ≥ 0, y 6= 0 iff

e′ij∇Vj ≥ e′ij∇Vi.

This is guaranteed by the second set of inequalities in

Theorem 5.1. This concludes the proof.

Corollary 5.1: Consider the case where V has dimension

strictly greater than one so that Ω ⊂ R
n, n ≥ 2. Then V is

quasiconvex iff for all surfaces Sij it holds

e′ij∇xVi(x) ≤ e′ij∇xVj(x) ∀x ∈ Sij .
Proof: Since each function Vj is strictly convex,

the function Vj restricted to the surface Sij has a unique

minimum and thus, the equality Z ′
ij∇xVi(x) = 0 can hold

for at most one point x ∈ Sij . Assume that Z ′
ij∇xVi(x) = 0

holds for a point x∗ ∈ Sij . By Theorem 5.1 we then have to

consider inequality (8) for the point x∗ and the inequality (9)

for all points x ∈ Sij \ x∗. However, by continuity, (9)

holds for all x ∈ Sij \ x∗ iff (9) holds for all x ∈ Sij .

Furthermore, if (9) holds for all x ∈ Sij , then this implies

that (8) holds and thus, the first set of inequalities in the

theorem are redundant. Thus, in the case when the variable

dimension is n ≥ 2 it is sufficient to verify (9) for all x ∈ Sij

to verify quasiconvexity of V .

Corollary 5.2: Consider the case where V has dimension

strictly greater than one so that Ω ⊂ R
n, n ≥ 2. Then V is

convex if it is quasiconvex.

Proof: Assume for the sake of counterargument that V
is quasiconvex, but not convex. Then there exists neighboring

sets Ωi, Ωj , points x ∈ int(Ωi), y ∈ int(Ωj) and a line

ξ(λ) = x + rλ, λ ∈ [0, 1] where r := y − x is in the

direction from Ωi to Ωj such that

dVξ,i

dλ

∣

∣

∣

∣

λ=λ̄

>
dVξ,j

dλ

∣

∣

∣

∣

λ=λ̄
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where λ̄ ∈ [0, 1] is such that x̄ := ξ(λ̄) ∈ Sij . Using (12)

we conclude that r and x̄ satisfy

r′∇xVi(x̄) > r′∇xVj(x̄).

Using the decomposition (15) and decomposing r as r =
r⊥+r‖ where r⊥ is orthogonal to the normal eij of Sij and

r‖ is parallel to eij , this is equivalent to

r′‖∇V i(x̄) > r′‖∇V j(x̄) ⇔

e′ij∇V i(x̄) > e′ij∇V j(x̄)

where the equivalence follows because r‖ = c · eij , c >
0. By Theorem 5.1, the last inequality above contradicts

the assumption that V is quasiconvex and thus we have a

contradiction. This concludes the proof.

Remark 5.3: The fact that in dimensions higher than one,

the function V is convex if it is quasiconvex is a consequence

of the fact that the ”pieces” Vj are assumed to be strictly

convex.

VI. APPLICATION IN HYBRID MPC

The present section introduces a class of hybrid MPC

problems where the result in Theorem 5.1 can be used to

determine whether or not the problem is quasiconvex.

Consider a PWA system defined over a partition of the

domain of the control input;

xk+1 = Axk +Biuk + fi

if pi−1 ≤ uk ≤ pi, i = 1, . . . , ν
(17)

where x ∈ R
n, u ∈ R, A, Bi, fi are constant matrices of

matching dimensions and where

a = p0 < p1 < . . . < pν = b

is the partition of the domain of the control input into ν
pieces. The PWA vector field is assumed to be continuous

and thus satisfies

Bipi + fi = Bi+1pi + fi+1, i = 1, . . . , ν − 1.

We consider the problem of minimizing a quadratic cost

criterion over a finite prediction horizon, i.e., the control

objective is to minimize

J =

k+N
∑

l=k

(xl − xref)
′Q(xk − xref) (18)

where Q = Q′ > 0, N is the prediction horizon and xref

is the reference. We minimize (18) subject to the dynamic

constraints (17) and initial condition xk = x0. This problem

can be stated as minimizing V (U) : Ω → R, Ω ⊂ R
N

which is a function of the vector of control inputs U :=
[uk, . . . , uk+N−1]

′ defined according to (1)-(2) where

Hj := B′
jQBj

fj := f1j + f2jx0

f1j := B′
jQ(Fj −R)

f2j := B′
jQA

gj :=
1

2
(Ax0 + F −R)′Q(Ax0 + F −R)

where

A :=











A
A2

...

AN











, Bj :=











Bsj1
0 . . . 0

Asj1
Bsj2

. . . 0
...

AN−1Bsj1
. . . BsjN−1











R :=











rref
xref

...

xref











, Fj :=











fsj1
Asj1

+ fsj2
...

AN−1fsj1 + · · ·+ fsjN−1











where the index vector sji ∈ {1, . . . , ν}N describes the

sequence of active regions of the PWA system. We note that

the continuity condition (3) is satisfied by continuity of the

PWA model (17).

The cost function described above depends on the initial

condition x0. Clearly it is of interest to verify quasiconvexity

of the problem for a set of initial points. Thus, we want

to know for which initial conditions x0 inequality (9) of

Theorem 5.1 holds. In other words, we want to investigate

for which x0 it holds

e′ij(Hix+ f1i + f2ix0) ≤ e′ij(Hjx+ f1j + f2jx0)

∀x ∈ Sij

(19)

for all surfaces Sij of dimension n − 1. Using the S-

procedure [5], [7] the condition can be equivalently stated

as a set of linear inequalities.

VII. EXAMPLE

As an example of the problem class described in Sec-

tion VI above we consider the switched mode step-down

converter depicted in Fig. 3. The switched dynamics of the

converter are described by

ẋ(t) = Ax(t) + s(t)B0vs +B1io(t)

where x = [vc, iℓ]
′ is the state (where vc is the capacitor

voltage and iℓ is the inductor current), vs is the source

voltage, io is the load current and the system matrices are

A =

[

0 1

xc

− 1

xℓ
0

]

, B0 =

[

0
1

xℓ

]

, B1 =

[

− 1

xc

0

]

.

The switch function s(t) ∈ {0, 1} represents the position of

the switch. The switch function is controlled using fixed-

frequency switching and a so-called duty cycle dk ∈ [0, 1]
according to

s(t) =

{

1 t ∈ [kTs, (k + dk)Ts)

0 t ∈ [(k + dk)Ts, (k + 1)Ts)

where Ts > 0 is the switch period. The parameter values of

the circuit are taken from [1].

To obtain a tractable control model of the switched dy-

namics we apply the PWA modeling approach introduced

in [6]. Compared to the standard averaged model [9], the

PWA model in [6] gives a more accurate description of the

system state. Unlike the averaged model, the PWA model

represents the switching ripple which is inherent in the state
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vs

iℓ

vc

xℓ

xc

+

−

s = 1

s = 0

io

Fig. 3. Synchronous step-down converter.

of a switched mode power converter and thus has potential

for improved performance.

To derive the PWA model, the domain [0, 1] of the duty

cycle is partitioned into ν = 2 pieces and we thus obtain a

PWA model on the form (17) defined on the partition

0 = p0 < p1 = 1/2 < p2 = 1

with system matrices

A =

[

0.9075 0.0870
−2.0294 0.9075

]

B1 =

[

0.1383
1.9807

]

, B2 =

[

0.0468
2.0780

]

f1 =

[

−0.0870
0.0925

]

, f2 =

[

−0.0413
0.0439

]

.

We consider the control objective (18) with Q = I , N =
2 and xref = [1, 1]′. The resulting optimization problem

corresponds to minimizing a piecewise quadratic function on

the form (1)-(2) defined over a four-piece partition of R2.

To see for which initial conditions x0 the problem is

convex we consider the inequality (19) for the four surfaces

Sij defining the partition. For each surface the inequality

becomes a single hyperplane and the set of initial conditions

that yield a convex problem is thus defined by the intersection

of four halfspaces. The hyperplanes are illustrated in Fig. 4.

The set of initial conditions which lie above the hyperplanes

(away from the dashed lines) yield a convex problem.
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Fig. 4. Subset of the initial conditions for which the MIQP is convex.

VIII. CONCLUSION

The paper derived necessary and sufficient conditions for

quasiconvexity of continuous piecewise quadratic functions.

The conditions were first derived for the one-dimensional

case and this result was then used to derive conditions for

the general n-dimensional case. The conditions are stated in

terms of linear inequalities which can be verified efficiently.

It is shown that in dimensions higher than one, the function

is convex if it is quasiconvex. Thus, there are no functions of

the considered class which are quasiconvex, but not convex if

the dimension is higher than one. This result is a consequence

of the assumption that the ”pieces” of the piecewise quadratic

function are strictly convex.

A class of hybrid MPC problems were considered where

solving the resulting mixed integer quadratic optimiza-

tion problem consists of minimizing continuous piecewise

quadratic functions. The quasiconvexity can be verified using

the derived conditions. This allows to determine for which

initial points a gradient search could be used to find the

optimal system input efficiently. A practical example from

the hybrid MPC problem class was considered and proved

to be quasiconvex for a certain set of initial conditions.

In general it is unlikely that a problem from the class

considered is quasiconvex for all initial conditions of interest.

Future work could therefore include using the result of the

paper to develop an algorithm for partitioning a problem into

subregions where quasiconvexity/concavity can be shown.
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