
Application of optimal boundary control to reaction-diffusion system with
time-varying spatial domain

James Ng, Ilyasse Aksikas, Stevan Dubljevic

Abstract— This paper considers the optimal boundary con-
trol of a parabolic partial differential equation (PDE) with
time-varying spatial domain which is coupled to a second
order ordinary differential equation (ODE) describing the time-
evolution of the domain boundary. The infinite-dimensional
state space representation of the PDE yields a linear non-
autonomous evolution system with an operator which generates
a two-parameter semigroup with analytic expression provided
in this work. The nonautonomous evolution system is trans-
formed into an extended system which enables the optimal
boundary control problem to be considered. The optimal control
law of the extended system is determined and numerical results
of the closed-loop feedback system are provided.

I. INTRODUCTION

Reaction-diffusion systems with time-varying spatial do-
mains arise naturally in many physical processes including
the industrial processes of metal casting, Czochralski (CZ)
crystal growth and annealing processes where the domain
motion is characterized by a change in the material boundary.
In annealing processes the boundary motion is determined
by a mechanical pulling arm actuator which draws a solid
slab from a fluid bath, as depicted in the Fig.1. The purity,
component concentration, and metallurgical properties of the
material are often dependent on the temperature evolution
and the rate at which the slab cools during its processing,
see [1], which requires temperature regulation throughout
the slab in order to maintain a desired nominal temperature
distribution during the process.

The slab temperature dynamics are modeled in general
by a reaction-diffusion-convection PDE defined on the time-
dependent spatial domain. The boundary motion contributes
to a convective transport term in the parabolic PDEs expres-
sion associated with a time-dependent system coefficient.
Representation of the parabolic PDE on an appropriately
defined function space yields a nonautonomous evolution
system with solution expressed in terms of a two-parameter
semigroup, see [2]. Although the distributed control of
parabolic PDE systems with moving boundaries has been
considered in several works, see for example [3], [4], [5], the
ability to regulate the desired temperature spatial distribution
depends on the process setup which may impose limitations
on the actuators placement. For example in the CZ crystal
growth process, the temperature regulation of the crystal by
heaters placed along the pulled crystal, at the initial stage of
the process is not feasible in the presence of an ecapsulant
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Fig. 1. Annealing of a solid slab where f(ξ, t) represents the temperature.
The boundary ξ = l(t) is moving with velocity v(t) and heat input u(t)
is applied at the boundary ξ = 0.

which embodies the grown crystal and prevents the crystal
surface to be exposed to the heaters, [6]. Another example
is given by annealing processes in which the placement
of heaters along the slab domain becomes economically
infeasible if the slab is treated in a non-isolated thermal envi-
ronment. However, one can consider the boundary control of
such processes in which the heat is applied via conduction at
the domain boundary and it is usually applied in the process
control realizations when distributed actuation can not be
applied, see [9], [10].

Motivated by processes with the time-varying spatial do-
mains and boundary control formulation we consider the
system setup as depicted in the Fig.1 where the heat input
is applied at the stationary boundary. The process model for
the temperature dynamics are given by a reaction-diffusion
system modelled by a parabolic PDE which is unidirection-
ally coupled with the mechanical subsystem determining the
time-evolution of the spatial domain with dynamics described
by an ODE which describes the rigid body dynamics of
the moving slab. This paper is organized as follows: In
Section 2, the parabolic PDE model of the reaction-diffusion
system with time-varying spatial domain is presented and
the appropriate functional space setting is provided which
enables the representation of the PDE as a nonautonomous
linear parabolic evolution system with evolution operator
described by a two-parameter semigroup. In Section 3, the
evolution system is transformed in order to consider the
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optimal boundary control problem and we explore conditions
of spectral assignability of time-varying linear parabolic
PDE. Section 4 provides numerical simulation results of the
optimal control synthesis, and Section 5 concludes the paper
with the summary of results.

II. PRELIMINARIES

This section introduces the notation and the function space
setting and the parabolic PDE model on time-varying spatial
domain is presented. The nonautonomous evolution system
representation of the parabolic PDE is formulated and the
analytic expression of the solution operator of the initial
value problem is provided in terms of a two-parameter
evolution operator.

A. Notation and function space description

The following notation will be used throughout this work:
A general Banach space will be denoted as X . If Y is
a Banach space, L(X ,Y) denotes the space of bounded
linear operators T : X → Y and L(X ) = L(X ,X ). The
time index t is taken in the interval [0, T ] for notational
convenience. The time-dependent spatial domain Ωt at some
time t ∈ [0, T ] is a bounded open set of Rn with smooth
boundary ∂Ωt, closure Ω̄t, and with the initial configuration
Ω0. The largest set will be denoted as Ω with boundary
∂Ω such that Ωt ⊆ Ω for all t ∈ [0, T ], and spatial points
are denoted by ξ ∈ Rn. The space of continuous functions
on Ωt is denoted as C(Ωt) and Ck([0, T ];X ) consist of all
functions which are k times continuously differentiable, with
k ∈ N, defined in the time interval [0, T ] and taking values
in X . The space Ck(Ωt), k ∈ N consists of the functions
having all derivatives up to order k continuous on Ωt and the
Hilbert space L2(Ωt) denotes the set of all square integrable
functions defined on Ωt. We will also use the notion of
precompact function spaces in describing compact imbed-
ding L2(Ωt) ⊂ L2(Ω) which enables the use of a single
inner product 〈 · , · 〉L2(Ω) = 〈 · , · 〉, see [11, Theorem 2.21-
2.22]. In this way we can handle time-dependent functions
defined on Ωt at each t ∈ [0, T ] by using the L2(Ω) inner
product. The Hilbert spaces Hm,p(Ω) with norm ‖ · ‖m,p
follow with standard definitions, properties and continuous
imbeddings. For simplicity, we denote H1,2(Ω) := H1(Ω)
and H2,2(Ω) := H2(Ω), which are dense in L2(Ω), see
[11], [12], [13].

B. Process model description

The parabolic PDE which describes the temperature dy-
namics in a spatial domain with time-dependent boundary
motion arises from the following, see [14].

Theorem 1 (Transport theorem): Consider a bounded
function x(ξ, t) ∈ C1(Ωt) on Ωt which is continuous
on ∂Ωt. Let the boundary be moving with finite velocity
v(t) ∈ C1([0, T ]). The Transport Theorem describes rate of
change of x with respect to time in Ω as:

ρCp
d

dt

∫
Ωt

x dξ = ρCp

∫
Ωt

(
∂x

∂t
+ v · ∇x

)
dξ (1)

where ∇ is the gradient operator on z ∈ Ω.
The positive constants ρ and Cp in the Eq.1 denote the

density and specific heat capacity of Ω which is assumed
to be a homogeneous and uniform material. The convective
transport term in the Eq.1 is expressed as:

v(t) · ∇x =
dξi
dt

∂xi
∂ξj

, i, j = {1, . . . , n} (2)

and arises from the deformation of the domain. Application
of energy balance principles yields the reaction-diffusion-
convection PDE which is defined as follows.

Definition 1: The parabolic PDE which describes the tem-
perature dynamics in a region Ωt is given by:

∂x

∂t
= A(ξ, t)x (3)

where there operator A(ξ, t) is defined as:

A(ξ, t) :=
n∑

i,j=1

∂

∂ξi
κij(ξ)

∂

∂ξj
−

n∑
k=1

vk(t)
∂

∂ξk
− g(ξ) (4)

with κ(ξ) ∈ C(Ω̄t) denoting the thermal diffusivity of the
region Ω which is positive and satisfies κij(ξ) = κji(ξ), and
g(ξ) ∈ C(Ω̄t) is the linearized reaction term.

Since κ(ξ) is symmetric and positive, the principle part of
the operator A(ξ, t) satisfies:

n∑
i,j

κij(ξ)ηiηj ≥ ε|η|2 for ξ ∈ Ωt, η ∈ Rn (5)

for constant ε > 0, which implies that A(ξ, t) in the Eq.4
is strongly elliptic for each t ∈ [0, T ]. The strong ellipticity
property in the Eq.5 is important in defining the evolution
system representation of the PDE in the Eq.3, together with
the continuity of the coefficients κ(ξ), g(ξ) and that v(t) ∈
C1([0, T ]) is continuous with C1([0, T ]) ⊂ Cα([0, T ]), for
α ∈ [0, 1), where Cα denotes the space of Hölder continuous
functions.

Remark 1: In the case of a time invariant region where
the motion of Ωt is isochronic, i.e. the boundary velocity
v(t) = 0, the contribution by convective transport vanishes
which leads to the standard expression of the reaction-
diffusion PDE.

C. Evolution system representation

Consider the 1-dimensional form of the parabolic PDE
in the Eq.3 on the time dependent spatial domain Ωt =
(0, l(t)) ⊂ R, with the homogeneous Neumann boundary
conditions:

∂x

∂ξ
(0, t) = 0,

∂x

∂ξ
(l(t), t) = 0 (6)

and define the nonautonomous linear operator:

A(t)x = A(ξ, t)x, for x ∈ D(A(t)) (7)

where D(A(t)) = H1(Ω) ∩ H2(Ω) is the domain of the
operator A(t) associated with the family of strongly elliptic
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operators A(ξ, t). The nonautonomous evolution system rep-
resentation of the initial and boundary value problem formed
by the PDE in the Eq.3 together with the Eq.6 is given by:

dx

dt
= A(t), x(0) = x0 (8)

for initial state x0 ∈ L2(Ω). The properties of the operator
A(ξ, t) and the associated nonautonomous operator A(t)
yields the solution x(t) of the initial value problem in
the Eq.8 in terms of a two-parameter evolution operator
U(t, s) such that x(t) is the generalized solution of the
initial and boundary value problem, see [15, Theorem 6.1,
Chapter 5; Lemma 6.1, Chapter 7] and [16, Chapter 6].
In order to construct the two-parameter semigroup U(t, s),
let κ(ξ) = κ > 0 (constant), and consider the eigenvalue
problem A(t)φ = λφ at each t ∈ [0, T ] which yields the time
dependent family of eigenvalues {λn(t)}t∈[0,T ], for n ∈ N,
determined as:

λn(t) = −κ
(
nπ

l(t)

)2

− 1
2
κ−1 v(t)2

2
− g (9)

One can note that the eigenvalues in the Eq.9 are real and
negative and for each t ∈ [0, T ] the spectrum σ(A(t)), which
is the same as the spectrum of the adjoint operator A∗(t) =
∂2/∂ξ2 + v(t)∂/∂ξ − g, is discrete and lies in the left half-
plane of C, with {0} /∈ σ(A(t)) for v(t) 6= 0. The growth
bound ω0 ∈ R is given by:

ω0 = sup
n≥1,t∈[0,T ]

Re(λn(t)) < 0 (10)

Then the operator A(t) is a sectorial operator for each t ∈
[0, T ], i.e. there exists a sector:

Sω = {λ ∈ C : |argλ| < π

2
+ ω}/{0}, ω ∈ (0, π/2] (11)

in the resolvent set ρ(A(t)) in which the spectrum of A(t)
is contained, i.e. σ(A(t)) ⊂ C/Sω , which implies that
the operator A(t) : D(A(t)) ⊂ L2(Ω) → L2(Ω) is
the infinitesimal generator a family of exponentially stable
semigroups (see, for example, [13], [15], [16]). This result
is demonstrated from the fact that at each t ∈ [0, T ], A(t) is
the negative of a Sturm-Liouville operator, see [17].

The eigenspace formed by the corresponding time-
dependent family of eigenfunctions {φ(ξ, t)}t∈[0,T ] is
one dimensional, where the eigenfunctions φ(ξ, t) ∈
C1([0, T ], L2(Ω)) are determined as:

φn(ξ, t) = Bn(t)e
1
2κv(t)ξ(

cos
(
nπ

l(t)
ξ

)
− 1

2κ
v(t)

(nπ/l(t))
sin
(
nπ

l(t)
ξ

)) (12)

The coefficients

Bn(t) =

√
2
l(t)

(
1 +

(
v(t)

2κ (nπ/l(t))

)2
)− 1

2

(13)

orthonormalize φn(ξ, t) with respect to the adjoint eigenvec-
tors ψn ∈ C1([0, T ], L2(Ω)) determined as:

ψn(ξ, t) = e−κ
−1v(t)ξφ(ξ, t) (14)

Utilizing the expressions for the eigenvalues and eigenfunc-
tions, the two-parameter semigroup U(t, s) is defined in the
following form.

Theorem 2: Denote φn(t) := φn(ξ, t) and ψn(t) :=
ψn(ξ, t). Consider the operator A(t) : D(A(t)) → L2(Ω)
defined as:

A(t) :=
∞∑
n=1

Λn(t)〈 · , ψn〉φn (15)

with

Λn(t) =
{(

t
d

dt
λn + λn

)
φn +

∂

∂t
φn

}
φ−1
n (16)

The operator A(t) is the infinitesimal generator of the two-
parameter semigroup U(t, s) with the analytic expression:

U(t, s)x(s) :=
∞∑
n=1

eλn(t)te−λn(s)s〈x(s), ψn(s)〉φn(t) (17)

for x(s) ∈ L2(Ω), 0 ≤ s ≤ t ≤ T .
The operator U(t, s) in the Eq.15 satisfies the following

properties, see [15], [16]:
P1. U(t, t) = I , U(t, s) = U(t, r)U(r, s) for 0 ≤ s ≤ r ≤

t ≤ T
P2. For x(s) ∈ L2(Ω)

A(t)U(t, s) =
∂U(t, s)
∂t

and similarly,

−U(t, s)A(s) =
∂U(t, s)
∂s

P3. ‖U(t, s)‖ ≤ L1, ‖A(t)U(t, s)‖ ≤ L2(t − s)−1, and
‖A(t)U(t, s)A(s)−1‖ ≤ L3 for constants Li > 0.

Then the generalized solution to the nonautonomous evo-
lution system in the Eq.8 is expressed in terms of the two-
parameter semigroup as:

x(t) = U(t, s)x(s), for 0 ≤ s ≤ t ≤ T (18)

which is the generalized solution of the initial and boundary
value problem for the 1-dimensional form of the PDE in
the Eq.3 together with the prescribed boundary conditions
in the Eq.6. The two-parameter semigroup is utilized in the
development of the boundary control problem in the Section
III.

D. Spatial domain motion

In the context of the annealing process depicted in the
Fig.1, whereby the material is pulled from a fluid medium by
a mechanical actuator subsystem, the spatial domain motion
is determined by the second order ODE for rigid body
mechanics:

M
d2 l̂(t)
dt2

+ c
dl̂(t)
dt

+ al̂(t) = Fm(t) (19)

with initial conditions l(0) = l0, dl(0)/dt = l̇0 where M ,
a and c denote the constant coefficients of mass, elasticity
and dampening of the rigid body system. The input to this
mechanical subsystem is the force applied by the actuator,
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Fm(t) and it is assumed that Eq.19 is in deviation form
such that l(t) = l̂(t) + C > 0 for all t ∈ [0, T ] for constant
C > 0. One can see that the mechanical subsystem influences
the dynamics of the PDE system through the evolution of
the spatial domain length l(t) and the boundary velocity
dl(t)/dt = v(t) such that the Eq.3 is unidirectionally
coupled with the Eq.19. Moreover, the controller for the
mechanical subsystem is considered entirely decoupled from
the controller for the temperature dynamics modelled by the
PDE in the Eq.3 which is formulated in the following section.

Remark 2: The analysis and representation of solutions
of the Eq.8 with time-dependent eigenvalues has also been
studied in [18] where it is presumed the nonautonomous
operator can be separated into time invariant and time
dependent parts, i.e. A(t) = (A+B(t)). The corresponding
eigenvalues consist of a discrete principal spectrum and time-
dependent part, which corresponds to the case considered in
this work.

III. OPTIMAL BOUNDARY CONTROLLER SYNTHESIS

We consider the boundary control problem for the 1-
dimensional form of the PDE in the Eq.3 in which the
boundary conditions in the Eq.6 are replaced with:

∂x

∂ξ
(l(t), t) = 0,

∂x

∂ξ
(0, t) = u(t) (20)

The function u(t) is the manipulated input at the domain’s
boundary. In contrast to the case of distributed control, i.e.
control within the spatial domain, the application of control
to the boundary requires some additional modifications to
the original system.

A. Boundary control system representation

The methodology proposed in [9], [19] enables the trans-
formation of the boundary control problem into a and dis-
tributed control problem with linear state space representa-
tion. To this end, consider the following linear system on the
state space X = L2(Ω):

dx(t)
dt

= A (t)x(t)

Bu(t) = u(t)
(21)

The operators A (t) and B are defined as follows. For φ ∈
L2(Ω),

A (t)φ :=
∂

∂ξ

(
κ
∂φ

∂ξ

)
− v(t)

∂φ

∂ξ
(22)

with the domain,

D(A (t)) =
{
φ ∈ L2(Ω) : φ,

∂φ

∂ξ
are a.c.,

A (t)φ ∈ L2(Ω), and
∂φ

∂ξ
(l(t), t) = 0

}
where a.c. means absolutely continuous. Let the boundary
operator B : X → R be a linear operator defined as:

Bφ :=
∂φ

∂ξ
(0, t) (23)

with the domain D(A (t)) ⊆ D(B) defined as:

D(B) :=
{
φ ∈ L2(Ω) : φ is a.c.,

∂φ

∂ξ
∈ L2(Ω)

}
Consider a function b(ξ, t) := b(t) which is assumed to
exist such that for all u(t) and Bu(t) ∈ D(A (t)), the
relation Bb(t)u(t) = u(t) is satisfied. The function b(t) ∈
D(A (t)) is selected as b(t) = ξ− 1

2 l(t)ξ
2 which satisfies the

above relation. The transformation p(t) = x(t)− b(t)u(t) is
introduced which leads to the system:

dp(t)
dt

= A(t)p(t) + (A (t)b(t))u(t)− b(t)u̇(t)

p(0) = p0 ∈ D(A)
(24)

where the function u̇(t) = du(t)/dt is the time derivative
of the input. The associated operator A(t) with domain
D(A(t)) = {φ ∈ D(A (t))/Bφ = 0} is defined on the state
space X such that:

A(t)φ = A (t)φ in D(A(t)) (25)

with the domain

D(A(t)) := D(A (t)) ∩ ker(B)

=
{
φ ∈ L2(Ω) : φ,

∂φ

∂ξ
are a.c., A (t)φ ∈ L2(Ω),

and
∂φ

∂ξ
(0, t) = 0,

∂φ

∂ξ
(l(t), t) = 0

}
The operator A(t) which is the nonautonomous linear oper-
ator in the Section II, with g = 0, and is the infinitesimal
generator of a family of strongly continuous semigroups for
each t ∈ [0, T ], and that the operators b(ξ, t) and A (t)b(ξ, t)
are bounded such that the Eq.24 has the unique solution:

p(t) = U(t, s)p0 −
∫ t

s

U(t, τ)b(τ) u̇(τ)dτ

+
∫ t

s

U(t, τ)(A (τ)b(τ))u(τ)dτ
(26)

where for 0 ≤ s ≤ t ≤ T the operator U(t, s) is the two
parameter evolution operator in the Eq.17. The solution of
the system in the Eq.21 takes the form:

x(t) = p(t) + b(t)u(t) (27)

where x0 = p0 + b(0)u(0) is the initial condition of the
Eq.21. From the Eq.24, the original boundary control prob-
lem is then represented as a distributed control problem by
the following system on the extended state space X e = R⊕X

dpe

dt
=
(

0 0
A (t)b(t) A(t)

)
pe +

(
1
−b(t)

)
ue

pe(0) =
(
u(0)
p(0)

) (28)

where the state and the input are given by:

pe =
(
u(t)
p(t)

)
and ue =

du(t)
dt

(29)
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The Eq.28 is represented as the abstract boundary control
system representation:

dpe(t)
dt

= Ae(t)pe(t) +Be(t)ue(t) (30)

B. Spectrum assignability

In this part, we remark on some aspects regarding the
stabilizability of the boundary control problem which has
been formulated as the distributed control problem in the
form of the Eq.30. One of the primary concerns in designing
a feedback regulator is the ability of the controller to stabilize
or enhance the stability of the system. Among the controlla-
bility criteria is the implied arbitrary spectral assignability
by state feedback. The spectral assignability of boundary
control feedback systems in the form of the Eq.30 has been
considered in several works, see [9], [20], [21]. The results
therein included the following conditions which have been
modified accordingly to reflect the nonautonomous operator
A(t) considered in this present work. The conditions for
stabilizability of the boundary control system in the Eq.30
are as follows:

C1. A(t) is an unbounded spectral operator with discrete
spectrum σ(A(t)) and normalized eigenvectors φn.
The eigenvalues are distinct and the eigenspaces are
one-dimensional;

C2. inf
i 6=j

t∈[0,T ]

|λi(t)− λj(t)| = ε > 0

C3. sup
j≤n<∞

∞∑
j=1
j 6=n

1
|λj(t)− λn(t)|2

<∞

C4. 0 /∈ σ(A(t)), inf |λj(t)| > 0,
∞∑
j=1

1
|λj(t)|2

<∞

For unstable systems it is presumed that there is an index
J such that Reλj ≥ 0 for j ∈ J and Reλj < 0 for
j /∈ J which means that there exists only a finite number
of unstable modes. Under the conditions C1-C4, and an
additional completeness assumption, see [9], the system in
the Eq.30 is stable under integral feedback a necessary and
sufficient condition is that:∑

j∈J
Reλj(t) <∞ (31)

In this case, the spectrum of the closed loop operator can be
assigned such that:

Γ = σ(Ae(t) + 〈 · , g〉Be) < 0 (32)

We note that the operator A(t) given by the Eq.15 satisfies
the conditions C1-C3 since A(t) is a sectorial operator
having a discrete spectrum with {0} /∈ σ(A(t)) for each
t ∈ [0, T ], and by the properties P1-P3 the A(t) is the
infinitesimal generator of a family of analytic semigroups.
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t

Fig. 2. Domain and boundary velocity evolution with system parameters,
M = 1.95, c = 2.5 and a = 1.

C. Linear Quadratic Regulator synthesis
In order to obtain a stabilizing feedback regulator for

above boundary control formulation, we consider the fol-
lowing quadratic optimization problem:

min
ue

∫ T

0

(
|Qpe(τ)|2 + |Rue(τ)|2

)
dτ + 〈Qpe(T ), pe(T )〉

subject to

dpe(t)
dt

= Ae(t)pe(t) +Be(t)ue(t)

(33)

where pe(t) and ue(t) are the input and state defined in the
Eq.29, see [22] and pe(0) ∈ R⊕X . The input is minimized
over all possible controls ue(t) subject to the differential
constraint given by the boundary control system. The oper-
ator Q ∈ L(R⊕X ) is the self-adjoint and nonnegative, and
the operator R ∈ L(R) is coercive. Since A(t) generates a
C0-semigroup on L2(Ω) for all t ∈ [0, T ] which gives the
state evolution in the Eq.26, the optimization problem in the
Eq.33 has the continuous and unique minimizing solution
ue(t) given by the feedback formula:

uemin(t) = −R−1(Be(t))TΠ(t)pemin(t) (34)

where the operator Π(t) ∈ L(R ⊕ X ) is the strongly con-
tinuous, self adjoint, nonegative solution of the differential
Riccati equation

d

dt
Π(t) + (Ae(t))∗Π(t) + Π(t)Ae(t)

− Π(t)Be(t)R−1(Be(t))TΠ(t) +Q = 0
(35)

with final condition Π(T ) = Q where (Ae(t))∗ is the adjoint
of Ae(t), see [9], [22].

Remark 3: The structure of the extended state system in
the Eq.30 plays a role in the choice of state weights in
the control parameter Q =

(
Q11 0

0 Qnn

)
which is typically

taken with only positive entries along its main diagonal. In
particular, the first entry Q̃11 influences the first state of the
extended state system p̃1 = u(t) and therefore acts as the
input penalty term to the extended state system.

IV. SIMULATION AND NUMERICAL RESULTS

The boundary control problem for the annealing process
discussed in the Section I and depicted in the Fig.1 is
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Fig. 3. Optimal boundary input u(t) applied to boundary of the slab at
the boundary ξ = 0. Control parameters selected as R = 0.001, Q11 = 1,
Qnn = 15.

considered. The 1-dimensional form of the PDE in the Eq.3
on time-dependent spatial domain is utilized to approximate
the temperature dynamics in the slab. The spatial domain,
as described in the Section II-D with moving boundary at
ξ = l(t), has length and boundary velocity evolution depicted
the Fig.2. The evolution system is simulated using n =
10 modes which were sufficient in capturing the dominant
system dynamics such that increasing the number of modes
did not significantly change the numerical results. Utilizing
the boundary control formulation in the Section III, the
operator Π(t) is determined by solving the finite dimensional
backwards differential Riccati equation analogous to the
Eq.35. The the optimal control law in the Eq.34 is determined
and the time evolution of the input is shown in the Fig.3. The
time evolution of the closed loop temperature distribution of
the slab is shown in the Fig.4. Beginning from the initial
temperature distribution, the influence of heat input to the
boundary at ξ = 0 can be seen as the system evolves and
settles around the nominal distribution of x(ξ, t) = 0. At the
simulation time of t = 40 the boundary input to the system
converges towards zero as the slab temperature is almost
completely dissipated.

V. SUMMARY

In this paper, we have considered the optimal boundary
control of reaction-diffusion processes with time-varying
spatial domain. The domain evolution was modelled using
the second order ODE for rigid body mechanics. The func-
tional space framework was developed in connection with
nonautonomous evolution system representation of the PDE
model of the reaction-diffusion process. The solution of the
nonautonomous evolution equation was provided by the two-
parameter semi-group U(t, s) and used in the expression of
the boundary control problem extended system representa-
tion. The optimal control law for the extended system was
determined and numerical simulations results demonstrate
that the temperature distribution in the time-dependent spatial
domain is stabilized by the optimal heat input applied at the
boundary.
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