
  

  

Abstract— This paper examines the problem of using 

thermostat offset signals to directly control distributed 

air conditioning loads attached to the grid.  The paper 

models these loads using a novel partial differential 

equation framework that builds on existing diffusion-

based load modeling ideas in the literature.  Both this 

PDE model and its finite-difference discretizations are 

bilinear in the state and control variables.  This key 

insight creates a unique opportunity for designing 

nonlinear direct load control algorithms with 

theoretically guaranteed Lyapunov stability properties.  

The paper’s main contribution to the literature is the 

development of the bilinear PDE model and Lyapunov-

stable controller for real-time management of 

thermostatic air conditioning loads.  

I. INTRODUCTION 

 his paper studies the problem of controlling the 

aggregate load imposed on the power grid by 

thermostatic air conditioning systems.  We develop a 

novel partial differential equation framework for modeling 

these systems’ temperature distributions.  Furthermore, we 

design a Lyapunov-stable algorithm that assumes these 

systems’ aggregate load to be measurable, and broadcasts a 

global thermostatic offset signal to control it.  

 In a broad sense, this paper examines demand-side energy 

management, defined as the process through which a smart 

grid can adjust the power demands of the loads it serves.  

The importance of demand-side energy management is 

increasing as: (i) the nation’s need for electricity grows, and 

(ii) intermittent renewable resources are used to meet more 

of this need [1,2].  Researchers have identified different 

types of candidate loads for demand-side energy 

management, including air conditioners [2-4], water heaters 

[5,6], plug-in electric vehicles [7,8], etc.  One can manage 

these loads through economic means (e.g., real-time pricing) 

or direct load control, the focus of this paper.  The 

overarching goal of this paper is to develop stable direct load 

control algorithms specifically for air conditioning loads.  

We assume these air conditioning loads to be 

thermostatically controlled, and seek a control algorithm that 

adjusts their aggregate power demand by broadcasting a 
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small global offset to their thermostat setpoints.  This is a 

challenging problem due to the complex aggregated 

dynamics of these thermostatic air conditioning loads.  We 

therefore seek a modeling and control framework that makes 

it possible to control these loads in a Lyapunov-stable 

manner despite this complexity.   

The existing literature on aggregated air conditioning load 

modeling was originally motivated by the “cold load 

pickup” problem [9].  Cold load pickup can be induced 

when, for instance, a utility responds to peak grid demand by 

temporarily shedding the air conditioning loads of 

consenting clients.  Upon restoration of power to these 

clients, their air conditioners typically demand full power in 

unison, resulting in a new “cold load pickup” peak.  The 

literature presents a variety of models for predicting both 

cold load pickup and other aggregate air conditioning system 

dynamics.  These include regression models based on past 

data [10], physics-based models [11], and stochastic Fokker-

Planck diffusion models [12].  This paper builds on a recent 

study by Callaway that uses a Fokker-Planck model to study 

the effectiveness of utilizing setpoint temperature offset 

signals to control the aggregate demands of thermostatic air 

conditioning loads [2].  Callaway linearized this model for 

small perturbations around nominal operating conditions, 

and developed a viable direct load control algorithm based 

on this linearization.  Our work is similar to Callaway’s 

excellent research in one respect: we show that for slow 

setpoint temperature variations, aggregate load dynamics are 

accurately modeled using two coupled partial differential 

equations.  These PDEs represent the diffusion of different 

air conditioning loads’ temperatures within the deadbands of 

their thermostats.  A key insight, highlighted in this paper 

for the first time, is the fact that both these diffusion PDEs 

and their finite-difference discretizations are bilinear in 

terms of aggregate state and control input variables.  This 

insight motivates this paper’s most important original 

contribution to the literature, namely, the development of 

Lyapunov-stable algorithms for direct air conditioning load 

control. The current version of this paper develops one type 

of Lyapunov-stable control methods that require both state 

and output feedback. Parallel to this effort, we are also 

investigating a sliding mode robust control design that can 

achieve Lyapunov stability without requiring full-state 

feedback.  

The remainder of the paper is organized as follows. 

Section II presents a physics-based model of a single 

thermostatically controlled load (TCL), then aggregates this 

model using a Monte Carlo method.  Section III then derives 
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a control-oriented, PDE-based model of the aggregate load, 

and Section IV validates this PDE model vis-à-vis the Monte 

Carlo “primary model”.  Section V designs the Lyapunov-

stable direct load controller for the PDE model, and 

demonstrates its performance in simulation.  Finally, Section 

VI summarizes the paper’s key contributions.   

II. PRIMARY TCL MODEL 

This section introduces a physics-based model of a single 

thermostatically controlled load, then uses Monte Carlo 

simulation to simulate the aggregate dynamics of many 

TCLs.  We will refer to the resulting aggregate TCL 

dynamics model as the “primary model”.  Section III will 

then use continuum approximations to create a PDE-based 

representation of these aggregate dynamics.  This PDE 

representation will make it possible to design Lyapunov-

stable controllers for aggregate TCL dynamics.  

A. Primary model for aggregate TCLs 

Consider a large family of thermostatically controlled 

loads.  Suppose that the internal and ambient temperatures 

corresponding to each load, i, are Ti and T∞,i, respectively (in 
 

ͦ C).  Suppose, furthermore, that this load can be modeled as 

a thermal capacitance, Ci (kWh/
 
ͦ C), in series with a thermal 

resistance, Ri ( ͦ C/kW).  Finally, let the binary variable si(t) 

denote whether the load’s air conditioner is on or off, and let 

the rate at which the air conditioner absorbs (or injects) heat 

from the load when turned on be Pi (kW).  Then, one can 

model the dynamics of NL loads using a set of independent 

first-order ordinary differential equations [2]:  

( ),
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 Supposing that the on/off signal si(t) is governed by a 

thermostatic switching law with some deadband, i.e.,  
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where Tmax,i and Tmin,i are the upper and the lower limits of 

temperature deadband, and εt is the simulation time step.  

Now suppose that the upper and lower extremes of the 

above deadband are related to some setpoint temperature, 

Tsp,i,, as follows:  

    
, ,

min, , max, ,;
2 2

db i db i

i sp i i sp iT T T T
∆ ∆

= − = +              (3) 

where ∆ db is the width of the temperature deadband, which 

should be made small in order for the temperature to stay 

around the desired set-point. 

The aggregate TCL load can now be obtained as: 

1
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where ηi is the power system’s transmission efficiency. 

The overarching goal of this paper is to achieve demand-

side management of the above TCLs, meaning: to control 

their aggregate load , PT (t).  One way to achieve this is to 

broadcast a universal control signal that offsets the 

individual loads’ setpoint temperatures as follows: 

     
, 0,( ) ( ); 1 ( ) 1

sp i sp i i
T t T f t f tλ= + − ≤ ≤                (5) 

In Eq. (5), Tsp0,i is the initial set-point temperature, f(t) is 

the dimensionless universal control signal sent to all of the 

individual loads, and the parameter λi represents each load’s 

receptiveness to the control command.  Larger values of the 

parameter λi provide greater control authority over aggregate 

load, at the expense of possibly greater setpoint temperature 

variations, and vice versa.  In practice, the value of this 

parameter can depend on the type of load at hand.  For air 

conditioning systems, for instance, one may choose λ 

conservatively (e.g., in the order of ∆ db), whereas for water 

heaters it may be reasonable to adopt larger values.  

B. Numerical simulations 

This section presents two simulation studies that highlight 

the effect of setpoint temperature variations on aggregate 

load response.  Both studies consider a population of 1,000 

air conditioning systems.  The first simulation study 

examines the free dynamics of aggregated TCLs with no 

external setpoint manipulation, whereas the second study 

examines their forced response.  In examining the free 

response of TCLs, we consider both the case where their 

parameters are homogeneous and the case where the 

parameters are heterogeneous.  In the homogeneous case, all 

TCLs have the parameter values listed in Table 1 (adopted 

from [2]).  In the heterogeneous case, we distribute every 

parameter (i.e., C, P, R, ∆ db , η, Tsp0, and T∞) normally 

around the nominal values in Table 1.  The standard 

deviations of these independent parameter distributions are 

set to equal some fixed multiple of the corresponding mean 

values.  In both the homogeneous and heterogeneous 

parameter cases, the initial distribution of TCL temperatures 

is set to the following non-steady-state condition:  Two 

thirds of the loads are uniformly distributed along the 

temperature axis within the ON-state, and one third are 

uniformly distributed within the OFF-state.  

Table 1. Parameter values for the numerical simulations (Taken from [2]). 

Parameter Value 

R, Average thermal resistance 2 ͦ C/kW 

C, Average thermal capacitance 10 kWh/ ͦ C 

P, Average energy transfer rate 14 kW 

η, Load efficiency 2.5 

Tsp0, Initial set-point temperature 20 ͦ C 

T∞, Ambient temperature 32 ͦ C 

∆db, Thermostat deadband 0.5 ͦ C 

 

Figure 1(a) depicts the aggregate power response to the 

above initial conditions.  The plot includes the response of 

the homogeneous model, as well as the responses of three 
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heterogeneous models corresponding to different parameter 

standard deviation values (normalized with respect to each 

parameter’s mean value).  Examination of the plot shows 

that the homogeneous model exhibits oscillatory limit cycle 

behavior, while the heterogeneous models tend to damp 

these oscillations significantly over time.  This damping 

effect increases with parameter heterogeneity.  This 

relationship between parameter heterogeneity and damping, 

previously observed by Callaway [2], is extremely important 

because it makes aggregate TCL dynamics easier to control 

in a stable, non-oscillatory manner.  Fortunately, there is 

some inherent degree of parameter heterogeneity in any 

practical aggregate TCL system.  

Figure 1(b) depicts the temperature response of a few 

selected loads from the homogeneous model.  The most 

interesting observation is perhaps the fact that the rates of 

temperature variation with time for each load appear nearly 

constant during both the cooling and heating phases.  In 

reality, these rates are governed by the exponential solution 

to Equations (1-2), but for small temperature intervals such 

as the temperature deadband of the thermostat model here, 

they can be approximated by constant values.     

 
Fig. 1. Model simulation starting from a non-steady-state initial condition 

for a constant set-point temperature: (a) Aggregate power response for the 

homogenous model and the heterogeneous models with different standard 

deviation values, and (b) temperature responses of a few selected individual 

loads from the homogenous model. 

In the second simulation, we vary the set-point 

temperature smoothly within a limited range and monitor the 

aggregate load response of the homogenous and the 

heterogeneous models.  The set-point limits are set to λ =   

∆ db / 2, that is, the set-point is allowed to vary within the 

initial deadband range.  The same initial condition as the 

previous simulation is applied.  Figure 2 depicts the applied 

set-point temperature and the resultant aggregated power 

trajectories for different parameter standard deviation values.  

The figure shows that even small variations in setpoint 

temperature provide significant control authority over 

aggregate TCL demand, thereby motivating the remainder of 

this work.   

 
Fig. 2. (a) Set-point temperature variation, and (b) Aggregate power 

response for the homogenous model and the heterogeneous models with 

different standard deviation values     

III. DEVELOPMENT OF A CONTROL-ORIENTED MODEL FOR 

AGGREGATE TCLS 

Controlling the aggregate air conditioning load 

represented by Equations (1-5) can be very challenging for 

at least two reasons.  First, the model in Eq. (1-5) is hybrid, 

in the sense that it contains both continuously-varying state 

variables (i.e., temperatures) and discrete ON/OFF state 

variables (i.e., the thermostatic switching states).  Second, 

the model represents each TCL using a separate set of state 

equations, and uses Monte Carlo simulation to account for 

heterogeneity in parameters and initial conditions.  This 

implies that the model will have a very large order for any 

reasonable simulation study conditions.  

To address the above two challenges, this section will use 

continuity approximations to aggregate Equations (1-5) into 

a pair of partial differential equations coupled at their 

boundaries.  These partial differential equations will govern 

the diffusion of TCLs between the upper and lower bounds 

of their respective temperature deadbands.  We will derive 

these PDEs for the free response of the TCLs first, then 

extend them to capture forced response dynamics and finally 

discretize them using finite differences.  This derivation 

4548



  

extends earlier research by Callaway [2] and Melhame and 

Chong [12] by incorporating the setpoint offset signal 

directly as a control input in the coupled PDEs.  It will 

assume parameter homogeneity among the TCLs, leaving 

the PDE-based modeling of heterogeneous loads as an open 

question for future research.  

A. Development of a Continuum-Level Free Model 

To develop a continuum-level free thermostatic load 

model, we assume that all the individual loads are 

distributed between the low-end and the high-end 

temperature limits.  At any given time instant, some of the 

loads are in the ON-state, moving from the high-end 

temperature to the low-end temperature, while some others 

are in the OFF-state traveling in the opposite direction.  The 

loads which hit the temperature boundaries change their 

thermostatic state from ON to OFF and vice versa.  This 

migration of loads in opposite directions between the two 

temperature boundaries can be described by two separate 

linear diffusion processes with coupled boundaries, as 

discussed next.   

Let Xon (T, t) and Xoff (T, t) represent the distribution 

(concentration) of loads at time t and temperature T, 

respectively at the ON and OFF states.  Then, assuming 

parameter homogeneity, the flux of the loads moving within 

the temperature bounds can be expressed as: 

     

( ) ( )

( ) ( )
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on on
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δ

δ
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=

=

                        (7) 

where the term δT/δt represents the variation of temperature 

with respect to time, which can be obtained from Eq. (1). 

The resultant fluxes (assuming that all the loads share the 

same parameter values) can then be recast as: 
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where αon and αoff  represent the local diffusion rates of the 

loads.  For a constant ambient temperature, and neglecting 

the variation of temperature around the initial setpoint 

temperature, these parameters can be approximated by their 

constant average values as:  

     

( ) ( ) ( )

( ) ( ) ( )

0 0

0 0

1
, ,

1
, ,

on on sp sp

off off sp sp

T T T T T T RP
CR

T T T T T T
CR

α α

α α

∞ ∞ ∞

∞ ∞ ∞

≅ = − −

≅ = −

      (9) 

These values respectively correspond to the average slope 

of the falling and rising temperature trajectories of the 

individual loads as shown in Figure (1).  In the remaining 

derivations, we will use the exact expressions for αon and αoff. 

However, their average values will be used for numerical 

simulations. 

 
Fig. 3. A small control volume with entering and exiting fluxes, and their 

relation to the variation of load concentration inside the control volume. 

For a small control volume of length dT, the rate of 

increase of the load concentration is given by the difference 

between the entering flux and the exiting flux divided by the 

length of the control volume (see Figure 3):  

( ) ( ){ }

( )

/

/ /

/

( , ) 1
, ,

,

on off

on off on off

on off

X t T
F t T F t T dT

t dT

F t T

T

∂
= − +

∂

∂
= −

∂

 (10) 

Merging Eq. (8) into Eq. (10), we can obtain the 

governing partial differential equation (PDE) of the system: 

( )/ //
,( , ) on off on offon off

X t TX t T

t T

α ∂∂  = −
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           (11) 

This equation represents two first-order linear diffusion 

processes, yet, we need to define the boundary conditions. 

Since the loads crossing the boundaries change their 

ON/OFF state, the loads that exit the OFF state will enter the 

ON state at the high-end boundary, and the loads that exit 

the ON state will enter the OFF state at the low-end 

boundary.  This interchange of loads at the boundaries is 

equivalent to equating the entering and the exiting fluxes at 

the boundaries, which can be expressed as:  

( ) ( ) ( ) ( )
min min

max max

@ @, , , ,T T T Ton on off off
T T

T T X t T T T X t Tα α= =∞ ∞
   = −                           

(12) 

The total aggregated power can be obtained by integrating 

the distribution of loads at the ON-state over the specified 

temperature range and multiplying it by the net power 

consumed by each load:  

( )
max

min

( ) ,
T

T on
T

P
P t X t dτ τ

η
= ∫                      (13) 

Equations (11)-(13) represent the continuum-level 

dynamics of the system with fixed set-point temperature. 

These equations are similar to the stochastic Fokker-Plank 

equations derived in [12], except that we have not included 

any disturbance term for simplicity.  

In the next section, we develop a continuum level forced 

system model for TCLs to take into account the set-point 

temperature variation. 

  

4549



  

B. Development of a Continuum Level Forced Model 

In the thermostatic load control scenario, the grid operator 

is able to vary the set-point temperature of the individual 

loads, altering their aggregate response. In such a forced 

system the temperature boundaries move with the set-point 

temperature. Thus, there will be different load exchange 

rates at the boundaries. Modeling the forced system is not 

straightforward in general.  However, if we keep the rate of 

variation of the set-point temperature slower than the 

internal diffusion dynamics of the system, i.e., 

( )
on sp off

T tα α< <ɺ , there will be a simple way of 

incorporating the set-point temperature variation in the 

model.  To do so, we assume the control volume shown in 

Figure (3) moves with the set-point temperature, as shown in 

Figure (4). The load flux experienced by the moving control 

volume can now be represented by the flux associated with a 

fixed control volume, obtained earlier, minus the flux 

introduced by the motion of the control volume:  
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            (14) 

Following the same procedure carried out in the previous 

section, we obtain the following governing equations for the 

system with setpoint temperature variation: 

( ) ( )/ //
,( , )

, ( )
on off sp on offon off

on sp off

T X t TX t T
T t

t T

α
α α

 ∂ −∂  = − < <
∂ ∂

ɺ

ɺ

                      (15) 
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Moving the setpoint temperature faster the load diffusion 

speed results in the separation of the loads from the 

temperature frame (i.e., the thermostatic deadband).  

Therefore, the above model will deviate from the actual 

system response in this scenario. Fortunately, in the problem 

outlined in this paper, the setpoint temperature is controlled 

by the grid operator, which can account for these constraints.     

 
Fig. 4. A moving control volume for the forced model derivation.  

Equations (15) and (16) represent the final continuum-

level model of the forced system. In the next section, we 

discretize these equations using the finite-difference method 

to obtain a finite-dimensional state-space representation of 

the system for further analysis and controller design. 

C. Finite-dimensional State-Space Model Development 

In this section, we apply the method of finite differences 

to the derived model to obtain its state-space representation.  

This will provide a starting point for the control design.  We 

discretize the temperature range between its two limits into 

small segments of uniform width.  At each segment, there is 

a flux of TCLs entering the segment and a flux leaving it, 

both of which we will represent using the backward 

difference method. Figure 5 provides a schematic 

representation of this discretization.  The resultant state-

space equations after applying the backward difference 

method to Equation (15) and using the average values of the 

diffusion coefficients are given by:  
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(17) 

where xj (t) denotes the number of loads at segment j, and 

T∆ = ∆ db/N  is the discretization length with N being the 

number of discrete segments in either the ON state or OFF 

state.  The state-space equations given in (17) can be 

interpreted as follows: The rate of change of concentration 

of loads in a given temperature segment is equal to the flow 

of loads entering the segment, minus the flow of loads 

leaving it.  Using the same interpretation, we can complete 

the state-space model derivation by obtaining the equations 

for the boundary segments, x1 (t) and xN+1 (t): 

1 1 2

1 1

( ) ( ) ( )

( ) ( ) ( )

off sp on sp
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off sp on sp

N N N

T T
x t x t x t

T T

T T
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α α

α α
+ +

− −
= − −
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− −
= +
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ɺ ɺ

ɺ

ɺ ɺ

ɺ

         (18) 

The aggregate load can now be expressed as the 

summation of loads at the ON-state, multiplied by the net 

power that every load consumes: 

 

 
Fig. 5. Finite-difference discretization of the system for achieving load 

propagation dynamics between the minimum and maximum temperature 

limits. 
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Equations (17), (18) and (19) can be lumped together to 

form a bilinear state-space matrix representation of the 

system as follows:                                                             
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      (20) 

where  x(t) = [x1(t), x2(t), … , x2N (t)]
T
  is the 2N×1 state 

vector, y(t) = PT (t) is the aggregate power,  C = [0, … , 0|N, 

P/η, … , P/η]  is the 1×2N state-to-output vector, A is the 

state matrix structured as: 
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and B is the input matrix given by: 
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This completes the state-space model derivation.  In the 

next section, we further analyze and simulate the model, and 

compare it with the primary model for validation. 

IV. MODEL ANALYSIS AND SIMULATIONS 

In this section, we provide an eigenvalues analysis for the 

developed state-space model. Furthermore, we simulate the 

free and the forced state-space models and compare them 

with the primary Monte Carlo model simulations.  

A. System Analysis 

To examine the stability properties of the system, we start 

with analyzing the eigenvalues of the state matrix.  Since the 

system is bilinear, we focus our attention on the case where 

the control input is zero, and stability is therefore governed 

by the A matrix only.  For a constant ambient temperature, 

the matrix A does not change, and the system represents a 

free linear time-invariant (LTI) system. The eigenvalues of 

A can be obtained through the following characteristics 

equation: 
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N N

off offon on

db db db db

N NN Nα αα α
λ λ

        
+ − − =        

∆ ∆ ∆ ∆           
  (22) 

which immediately implies that λ = 0 and λ = 

( )
on off db

N α α− ∆  are two real eigenvalues of the system 

with the latter having a negative sign.  

Figure 6 shows eigenvalues of the system for different 

discretizations, for the parameter values listed in Table 1.  

As seen, the eigenvalues of the system form an ellipse on the 

left-half complex plane.  The larger the number of finite-

difference discretizations, the larger the ellipse. 

 
Fig. 6. Eigenvalues of the system state matrix for different discretizations.  

B. Numerical Simulations 

The obtained bilinear system model is numerically 

validated here against the primary system model.  Figure 7 

depicts the response of the free state-space model compared 

to the primary model with homogeneous parameters for the 

initial condition explained in section 2.2.  Moreover, Figure 

8 shows the comparison of the forced state-space system 

with the primary model under set-point temperature 

variation.  We can see in both free and forced model 

simulations that the state-space model is able to accurately 

reproduce the response of the primary model for larger 

discretization numbers.  In other words, the higher the 

resolution of the discretization, the higher the accuracy of 

the state-space model. 
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Fig. 7. Comparison between the free responses of the discretized state-space 

model and the primary model.   

 
Fig. 8. Comparison between the forced responses of the discretized state-

space model and the primary model (for the input shown in Fig 2). 

Now that a control-oriented state-space model is 

developed for the aggregate TCLs, in the next section we 

analyze this model for the purpose of control design. 

V. CONTROL ANALYSIS AND DESIGN FOR AGGREGATED 

TCLS 

In this section, we use the Lyapunov theory to analyze the 

output controllability of the derived bilinear state-space 

model, and develop an asymptotically-stable control 

paradigm for the system.  Due to the bilinearity of the 

system, standard controllability tests used for linear systems 

analysis cannot be directly employed.  Thus, we use the 

Lyapunov method in this paper to gain useful insights into 

the system’s output controllability.   

A. Analysis of system’s output controllability 

To examine the system’s output controllability, we start 

with defining a control error for the closed-loop system, and 

try to obtain control laws under which the control error 

converges to the origin, or to a small bounded region.  

Define the control error as: 

( ) ( ) ( )
d

e t y t y t= −                          (23) 

where yd (t) is the desired aggregate load trajectory to be 

followed by the TCLs.  Next we define a positive-definite 

Lyapunov candidate function:  

21
( ) ( )

2
V t e t=                                (24) 

The derivative of this Lyapunov function for the system 

described by Eq. (20) is obtained as: 

  
{ }

{ }

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d

d

V t e t e t e t y t Cx t

e t y t C x t C x t u t

= = −

= − −A B

ɺ ɺ ɺ ɺ

ɺ
          (25) 

It is important to note that the term CBx(t) in Eq. (25) is 

the coefficient of the control input, u(t).  Therefore it plays a 

key role in determining the output controllability of the 

system. Hence, we first focus on this term, which can be 

simplified to:     

( )2

( ) [0, ... , 0, | ,0 , ... , 0, ] ( )

( ) ( )

N

N N

P P
C x t x t

T T

P
x t x t

T

η η

η

= − −
∆ ∆

= − +
∆

B

      (26) 

Equation (26) indicates that in order for the control input 

to remain effective, the collective number of loads at the 

boundary segments, i.e., xN (t) + x2N (t), must be nonzero for 

all time.  This will be the necessary and sufficient condition 

for the system’s output controllability.  We will see that if 

this condition holds, we can design asymptotically stable 

feedback controllers, in the Lyapunov sense, for the output 

tracking control of the system. 

One way to achieve the controllability condition described 

above is to start from a strictly nonzero initial distribution, 

and keep the set-point temperature variation slower than the 

load diffusion dynamics.  This way, the continuity of the 

load distribution will be preserved throughout the process. 

Therefore, the boundary segments will always contain a 

number of loads. Maintaining strictly nonzero load 

distribution over the temperature deadband is even more 

feasible in practice because of the artificial damping effect 

created by the inherent heterogeneity of thermostatic loads. 

 B. State-space control design 

If the system matrices A, B, C are known, the state vector 

x(t) is measureable or observable in real-time, the desired 

load trajectory yd (t) is known and is differentiable, and the 

output controllability condition holds, i.e. CBx(t) ≠ 0, then 

one control design to achieve asymptotic output tracking 

control of the system is given by:    

{ }1

1
( ) ( ) ( ) ( )

( )
d

u t y t C x t k e t
C x t

= − +A
B

ɺ

               

(27) 

where k1 is a positive control gain.  Note that e(t) = yd (t) – 

Cx(t). 

To prove the asymptotic convergence property of the 

above control law, we replace Eq. (27) into the derivative of 

the Lyapunov candidate function, Eq. (25) to obtain:   

  2

1
( ) ( )V t k e t= −ɺ                            (28) 

The combination of Eq. (28) and (24) yields: 

1
( ) 2 ( ) 0V t k V t+ =ɺ                              (29) 

which results in the solutions: 
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( )

( )
1

1

( ) (0)exp 2 ,

( ) (0)exp

V t V k t

e t e k t

= −

= −
 

                      (30) 

This simply indicates the exponential convergence of the 

tracking error to zero with the rate of k1.
 

A numerical simulation is provided here to illustrate the 

tracking performance of the proposed control law.  A 

multiple-frequency sinusoidal desired trajectory depicted in 

Figure 9(a) is applied.  The controller is implemented and 

the system is released from the same initial condition given 

in Sec. 2.  Results indicate the convergence of the aggregate 

load response to the desired trajectory (subfigure 9a) and the 

exponential convergence of the tracking error to zero 

(subfigure 9b), as expected.  Moreover, the setpoint 

temperature remains within the specified bounds (subfigure 

9c), while its rate of variation remains slower than the 

diffusion rates of the loads.  It is remarked that the state 

vector x(t) used in the controller is directly measured from 

the simulated state-space model. 

 
Fig 9. State-space control implementation: (a) power tracking, (b) error 

convergence, and (c) set-point temperature variation. 

VI. CONCLUSIONS 

In this paper, we developed a novel modeling and control 

framework for the direct load control of thermostatic air-

conditioning loads using a universal setpoint temperature 

command.  We derived the underlying partial differential 

equations describing the system dynamics under set-point 

temperature transients. The resultant model is a 

conditionally controllable, open-loop stable bilinear system. 

Using the Lyapunov stability criteria, we obtained the 

controllability condition, and designed a state-space 

feedback controller for the asymptotic output tracking 

control of the system.  Numerical simulations were provided 

to show the validity of the model and the performance of the 

controller for load following during the demand-side load 

management of thermostatic air-conditioning systems.     
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