
Abstract—A product is  produced in  a production train that 
consists  of  two  batch  reactors  in  series.  The  quality 
specifications require that a particular critical impurity (CI) in 
the product should be below 0.4%. The plant was experiencing 
series  of  poor  quality  batches  with  much  larger  critical 
impurity amounts and that was a cause of significant trouble.

Multivariate  batch  data  analysis  discovered  that  possible 
mixing issues in the second batch reactor (R2) were the cause of 
the problem. Therefore the recipe was changed in a way that 
improved the mixing.

Before  the  proposed  solution  was  implemented,  18  out  of 
specification batches were produced, out of total of 20 batches 
which  is  90%  out  of  specification.  After  the  solution  was 
implemented,  only  3  out  of  specification  batches  were 
produced,  out  of  total  of  98  batches,  which  is  3%  out  of 
specification.

The results achieved based on this work allowed the plant to 
produce  the  product  within  specifications  and  maintain 
shipping schedule.

INTRODUCTION

HE product that is discussed in this paper is produced in 
two batch reactors in series. The first reactor performs a 

preparation step where most of the reagents are loaded and 
the first reaction step occurs. The second reactor produces 
the final product. The reactors are multistep, i.e.,  there are 
multiple sequential steps that are followed for each batch in 
each reactor. The step sequences for both reactors are given 
in TABLE I. 

T

The end-point batch quality depends on the level of a critical 
impurity (CI) which is a side reaction product. The quality 
specifications do not allow this impurity to exceed 0.4% in 
the  final  product.  At  the  time  multivariate  data  analysis 
support  was required the plant  had made multiple batches 
with impurity levels much higher than the specification. To 
troubleshoot the plant, three categories of data analysis were 
performed.

Manuscript received September 22, 2010. Zdravko Stefanov is with the 
Dow  Chemical  Company,  Analytical  Technology  Center,  Freeport,  TX 
77541  USA  (phone:  979-238-5357;  fax:  979-238-0336;  e-mail: 
zstefanov@dow.com). 
Leo Chiang is with the Dow Chemical Company,  Analytical Technology 
Center, Freeport, TX 77541 USA (e-mail: hchiang@dow.com).

The first analysis is of Data Set A that includes analytical  
measurements of different properties of the final product and 
some batch  initial  conditions.  It  does  not  include  process 
data from the time trajectories  of the batches.  The second 
analysis  is  performed on two sets of  process  data that  do 
include the time trajectories of the batches (Data Sets B and 
C). The third data analysis is of Data Set D, a very small set  
that  includes  only  one  process  variable  plus  the  %CI for 
batches made in a subsequent campaign and it is used for 
final validation of the previous findings.

The main point of the paper is to show the applicability and 
usefulness  of  multivariate  batch  data  analysis  for 
troubleshooting  of  batch  processes.  Therefore  the 
mathematical background of the multivariate data analysis is 
not included in this paper due to limited space.

TABLE I
REACTOR SEQUENCES

Step number Step description
Reactor 1 (R1)
3 Load reactant 0
4 Load reactant 3
5 Load reactant 2
6 Load reactant 1
7 Heating up
8 Reacting
9 Cooling down
10 Waiting for R2
11 Prepare transfer line
12 Transfer to R2
Reactor 2 (R2)
33 Receiving material from R1
34 Load reactant 6
35 Load recycle material
36 Load reactant 7
37 Load reactant 5
38 Reacting
39 Adjust  property  1  and  wait  for 

next unit operation
40 Transfer to next unit operation
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ANALYSIS OF ANALYTICAL AND BATCH INITIAL 
CONDITIONS DATA (DATA SET A)

The data set includes the amounts of reactants 1, 2, 3, 5, 6 
and  7;  five  analytical  measurements  of  side  reaction 
products and the maximum temperature during step 38 in R2 
(the X variables). The Y variable is the concentration of the 
critical  impurity  (%CI).  The set  contains  25  batches.  The 
variables  in  this  set  were  proposed  by  the  plant  subject 
matter  experts as the data were  already available and any 
found correlations could provide insight that might help to 
solve the problem, while more complete plant data set that 
includes the time trajectories of the process variables could 
be collected.  This  data set  contains  values  measured  once 
per  batch  and  batch  conditions.  Therefore  it  was  not 
necessary to perform batch unfolding.
The data set was analyzed using Partial Least Squares (PLS) 
[1]. Only three variables from the data set were included in 
the  model  –  the  amount  of  reactant  1  and  two  of  the 
analytical  measurements  of  side  reaction  products.  The 
model parameters are given in TABLE II.

TABLE II
DATA SET A PLS MODEL PARAMETERS

Number  of 
variables

Number  of  principal 
components

R2X R2Y Q2Y

3 1 0.605 0.665 0.583

The model explains about  67% of the variation in  the CI 
concentration. The cross-validation R2 (Q2Y) is close to the 
R2. The model fit is given in Fig.  1. It is observed that the 
trend in the CI concentration variation is followed well, even 
if after batch 13 in the data set the predictions are poorer 
compared to the first 13 batches.  

Fig. 1.  Observed versus predicted %CI content, data set A 
PLS model

The  analysis  shows  that  the  amount  of  reactant  1  has 
negative  correlation  to  the  %CI  and  the  two  analytical 
measurements  of  side  reaction  products  have  positive 
correlation to the %CI.  The correlation between the amount 
of  reactant  1  and the %CI is weak,  and if the amount of 
reactant  1  is  removed,  the  model  R2 drops  only  to  0.62, 
therefore  it  can be concluded that  only the two analytical 
measurements of side reaction products are of importance. 
The  positive  correlation  with  one  of  the  side  product’s 
concentration  could  be  explained  by  the  chemistry  of  CI 
formation. High residual of the side reaction products could 
mean that the active complex formation with reactant 7 was 
somehow hindered,  and therefore  the chemicals  could not 
react  fully  to  the  final  product.  This  will  leave  more 
precursor to react to CI.  The side products’ concentrations 
are  correlated.  Because  there is  only one major  source  of 
variation, the model contains one principal component.

Regarding the decrease in model quality for the batches after 
batch 13, it was decided to split the data in two parts, one 
from batches  1  to  13  and  another  batches  14  to  25.  The 
predictions are much better when the data are separated, see 
Fig. 2.

Fig. 2.  Observed versus predicted %CI for two subsets of 
batches, data set A

This improvement in prediction was assumed to be due to 
another process factor not included in the dataset. After the 
plant  subject  matter  experts  were  consulted  about  what 
possibly changed  at  batch  14,  it  became clear  that  a  new 
reactant 7 batch was used for the batches from 14 onward. 
The change in reactant 7 seems to be the contributor to the 
change in the behavior of the plant.
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PROCESS DATA ANALYSIS
The  results  presented  in  the  previous  section  make  sense 
from  process  knowledge;  however,  there  is  no  particular 
handle (i.e., input variable) that could be used to drive the 
%CI  back  into  specification.   All  variables  identified  as 
correlated to the %CI in Section II are analytical results after 
the product is made. Therefore process data were collected 
to perform a full batch data analysis, meaning that the entire 
batch trajectories of the process variables during each batch 
were used as inputs (X). The batch data were unfolded from 
3  dimensions  (batch,  time  and  process  variables)  to  two 
dimensions using the scheme given in Fig. 3.

Fig. 3.  Batch data unfolding scheme

The batch unfolding scheme in Fig. 3 is otherwise known as 
Nomikos and MacGregor [2] unfolding and is very effective 
in  detecting  batch-to-batch  differences,  which  is  the  case 
here.

A. Analysis of 35 batches made in March 2008 (data set B)

This  data set  includes a  total  of  29 process  variables,  the 
%CI quality variable and includes all steps in R1 and R2. 
The objective here is to build a PLS model to predict the 
%CI. If a good model is built, then the contributing variables 
can be investigated and a possible handle to drive the %CI 
back into specification can be found. In this case, indeed, a 
good PLS model was built. The model predicts very well the 
batches  included  in  the  data  set,  see  Fig.  4.  The  model 
parameters are given in TABLE III.
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Fig. 4.  Observed versus predicted %CI, data set B PLS 
model

TABLE III
DATA SET A PLS MODEL PARAMETERS

Number  of 
unfolded 
variables

Number  of  principal 
components

R2X R2Y    Q2Y

77 2 0.733 0.824 0.746

The actual process variables used in the model are:
– R2 agitator amps during step 34
– R2 weight during step 34
– Duration of step 6 in R1
– Duration of step 36 in R2

The first two variables reflect the amount of work put by the 
agitator in R2, respectively the mixing quality. More mixing 
work delivered (amps of the agitator higher) corresponds to 
lower  %CI.  This  observation  is  also  confirmed  by  past 
process experience. The plant subject matter experts shared 
that the mass transfer during the reaction is running on ‘the 
ragged edge’ and if the process tips over the edge, dire CI 
results  can  occur.  The  correlation  of  the  %CI  to  the  R2 
agitator amps during step 34 is shown in Fig. 5. (Note that in 
the plot, the variables are scaled to the range of 0-1.) It  is 
clear  that  there  is  good  inverse  correlation  between  these 
variables.
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Fig. 5.  Relation between R2 agitator amps in step 34 and 
%CI

Using the findings from the modeling of this data set and 
after  a discussion with the plant  subject  matter  experts,  it 
was decided to take action and change the future batches in 
two ways. 

– First, the batches were made “skinnier”, i.e. the reactant 1 
amount  was  reduced  by  10%  compared  to  the  original 
recipe.
– Second,  the  agitator  in  R2  was  repaired  after  some 
mechanical issues were discovered.

After  these changes were implemented, the plant  resumed 
operation and all  consecutive batches of the product  were 
produced in specification. 

Although  the  implementation  of  these  measures  led  to 
successfully  finishing  the  campaign,  more  analysis  was 
performed on the data from the entire campaign. The main 
reason for this was that the “skinny” batches led to decrease 
in throughput and the plant slowly increased the recipe to 
normal reactant 1 charge. However the %CI did not increase. 
Therefore  it  was  of  great  interest  to  investigate  this  and 
check if there are some additional factors that might have 
influenced the CI formation. This analysis is covered in the 
next section.

B. Analysis of 88 batches made from March and April 2008  
(data set C)
1) Analysis of the large variation in the %CI

The process variables in this data set are the same as these in 
data set B. Again a good PLS model was built. The model 
predicts very well the batches included in the data set, see 
Fig.  6. The PLS model parameters are given in TABLE IV. 
The time series plot in Fig. 7 shows that the model captures 
the big changes in the %CI. A very indicative observation is 
batch 5999, where a single bad batch is predicted well.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Y
V

ar
(%

C
I (

sp
ec

 o
f 0

.4
%

))

YPred[2](%CI (spec of 0.4%))

y=1*x-3.759e-008
R2=0.8271

SIMCA-P+ 12.0.1 - 2010-09-12 18:03:47 (UTC-6) 

Fig. 6.  Observed versus predicted %CI content, data set C 
PLS model

Fig. 7.  Observed versus predicted %CI content, data set C 
PLS model, time series

TABLE IV
DATA SET C PLS MODEL PARAMETERS
Number  of 
unfolded 
variables

Number  of  principal 
components

R2X R2Y Q2Y

602 2 0.601 0.827 0.675

The  main  question  to  answer  here  is  why  the  difference 
before and after the “skinny” batches. The contributions to 
the predictions reveal  that there are two main contributing 
variables:

– R2 agitator amps during step 34 
– R2 parameter 1 during step 40
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The importance of the R2 agitator amps in step 34 is not a 
huge surprise, since it was discovered to be important in the 
previous analysis. If this variable is plotted together with the 
%CI (Fig. 8, note that all variables are scaled to the range of 
0-1),  it  is  clear  that  the  amps were  even  higher  after  the 
“skinny” batches. It is also observed that the agitator amps 
clearly indicated the high %CI in batch 5999.

Fig. 8.  %CI versus R2 agitator amps in step 34, data set C

The other variable that experiences significant change after 
the “skinny” batches is the R2 parameter 1 in step 40. If this 
variable is plotted together with the %CI (Fig.  9, note that 
the variables are scaled to the range of 0-1), it is clear that 
the  parameter  1  dropped  quite  significantly  after  the 
“skinny” batches. It shows that the parameter 1 variable can 
be another important indicator for the CI formation.

Fig. 9.  %CI versus R2 parameter 1 in step 40, data set C

2) Analysis of the small variation in the %CI

Many batches in this campaign were produced well within 
specification. It was interesting to see if for these batches the 
process experience from past campaigns still holds. For that 
purpose only these batches were modeled and the important 
variables investigated.

The first model built using this data predicts the %CI well, 
except for two batches, 5976 and 5993. The score plot does 
not  indicate  anything unusual  for  these  batches.  Also,  the 
distance to the model plane (SPE) of these batches is also 
within  the  critical  limits.  These  batches  are  therefore 
unexplained outliers and the error could be due to analytical 
issues or some other  factors  not reflected  in this data set. 
Therefore these two batches were removed.  Consequently, 
more outlying batches were found, that were also removed, 
and  all  removed  batches  represent  14%  of  the  original 
number of observations. This means that 86% of the original 
data was retained to build the final model. The final model 
predicts  the  %CI  very  well,  see  Fig.  10.  The  model 
parameters are given in TABLE V.
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Fig. 10.  Observed versus predicted %CI, low %CI batches, 
outliers removed

TABLE V
DATA SET D PLS MODEL PARAMETERS, LOW %CI 
BATCHES
Number  of 
unfolded 
variables

Number  of  principal 
components

R2X R2Y Q2Y

10 2 0.930 0.865 0.850

The two process variables used to build the model are the 
duration of step 8 in R1 and the R2 parameter 1 in step 38, 
minutes 2 to 10 in the step. The parameter1 in step 38 alone 
explains 70% of the variation in the %CI, see Fig.  11. This 
observation  was  confirmed  by  the  plant  subject  matter 
experts and it was pointed out that this behavior is expected 
when the %CI is within its normal range. 
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Fig. 11.  %CI versus R2 parameter 1 in step 38, low %CI 
batches

C.Analysis of 23 batches made in July 2008 (data set D)
For  this  campaign,  no  multivariate  data  analysis  was 
performed to model the %CI. Instead, the R2 agitator amps 
were monitored to detect possible problems. The campaign 
started relatively well and six batches of good product were 
produced  with  %CI  in  specification.  Then  the  CI 
concentration  increased  and  after  a  series  of  poorly 
performing batches,  the  plant  applied  the  “skinny”  recipe 
that was found to work well in the spring campaign. That 
action seemed to fix the problem and the rest of the batches 
were  produced  within  specification.  With  respect  to  the 
correlation between the %CI and the agitator amps in R2 in 
step 34, it was still present, as it is clear from Fig. 12.

Fig. 12.  %CI versus R2 agitator amps in step 34, July 2008 
campaign

CONCLUSIONS

In summary, the analysis of the March and July campaigns 
revealed  that  the  concentration  of  the  CI  in  the  product 
depends  greatly  on  the  mixing  efficiency  in  R2.  Both 
observations  are  confirmed  by  past  plant  experience, 
however  now there  is  a  very  good  indicator  for  possible 
troubles with the CI. That is the R2 agitator amps in step 34. 
This  variable  consistently  correlates  with  the  CI 
concentration  in  the  product.  Another  result  of  this 
investigation is the discovery of the “skinny” recipe, which 
works fine with respect to the quality of the product.

The agitator amps in step 34 are an indicator, not a handle 
that  can  be  manipulated  to  drive  the  %CI  back  in 
specification.  The  negative  side  of  the  “skinny”  recipe 
solution to the CI problem is obviously the decrease in the 
throughput,  which  is  a  very  undesirable  side  effect. 
Therefore more fundamental research is required to discover 
a better handle to control the CI impurity.  Nevertheless,  a 
handle is  better  than none and the multivariate  batch data 
analysis was the technology that made the critical difference 
and helped to discover the handle of the “skinny” recipes. 
This is a unique situation in batch processing, where run-to-
run  control  of  the  same  product  is  achieved  by  using  of 
different  recipes.  Usually  different  recipes  are  used  for 
making of different products. In this case different recipes 
produce  different  levels  of  the  CI.  If  an  unmeasured 
disturbance affects the process and the batches start drifting 
towards higher %CI, the recipe is changed to a “skinnier” 
one until the %CI is back within specifications. 
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