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Abstract— In order to facilitate optimal operation of pro-
cess plants in the presence of disturbances, optimal control
structure selection is important. In this paper we review the
controlled variable selection, c = Hy, where y includes all the
measurements. The objective is to find the matrix H such that
steady-state operation is optimized when there are disturbances
and inputs are adjusted to keep c constant. Several cases
are studied such as optimal individual measurements, optimal
combinations of fewer/all measurements and combinations of
disjoint measurement subsets of fewer/all measurements. The
proposed methods are evaluated on a distillation column case
study with 41 trays.

I. INTRODUCTION

Operating process plants close to the optimal even in the

presence of disturbances, aid in improved productivity and

profitability. Optimal control structure selection is vital for

optimal operation. The decision on which variables to be

controlled, which variables to be measured, which inputs to

be manipulated and which links should be made between

them is called control structure selection. Generally, the

decisions of control structure selection are based on heuristic

methods or on the intuition of process engineers. The scope

of this paper is to select controlled variables (CVs) associated

with the unconstrained degrees of freedom. We assume that

the CVs (c′s) are selected as individual measurements or

combinations of fewer/all available measurements y. This

can be written as

c = Hy where ny ≥ nc;

ny: number of measurements; nc:number of CVs = num-

ber of unconstrained MVs = nu ; where the objective is to

find a good choice for the matrix H. In general, we also

include the inputs (MVs) in the available measurements set

y.

Skogestad and coworkers [11], [9] have proposed to use

the steady state process model to find “self-optimizing”

variables with an assumption that plant economics are gov-

erned by the pseudo/steady state behavior. The idea of “self-

optimizing control” can be defined as suitable selection of

c′s and by keeping these CVs (c′s) at constant set points, the

operation gives acceptable steady state loss from the optimal

operation even in the presence of disturbances. The theory for
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self-optimizing control (SOC) is well developed for quadratic

optimization problems with linear models. This may seem

restrictive, but any unconstrained optimization problem may

locally be approximated suitably by this method. Alterna-

tively based on dynamic economics, a Mixed Integer Non-

linear Programming formulation is presented to select the

controlled variables for the manipulated variables [3]. In this

work, we concentrate only on “self-optimizing control”. The

“exact local method” [2] for SOC accounts for both distur-

bances and implementation errors. Here after we call “exact

local method” as “minimum loss method”. The problem of

finding CVs as optimal variable combinations (c = Hy,

where H is a full matrix) was originally believed to be non-

convex and thus difficult to solve numerically [2], but later

it has been shown that this problem may be reformulated as

a quadratic optimization problem with linear constraints [1].

The problem of selecting individual measurements, selecting

combinations of fewer measurements as controlled variables

are more difficult because of the combinatorial nature of

the problem. As the alternatives increase rapidly with the

process dimensions, exhaustive search is computationally

intractable. Kariwala and Cao [6] have developed methods

that use monotonicity of the objective function, but these

cannot be used in the presence of structural constraints. This

motivates the need to develop simple and efficient methods

that can both handle structural constraints and find c′s
as optimal individual measurements/combinations of fewer

measurements.

Structural constraints are needed to improve dynamic

controllability (i.e. fast response, control loop localization),

to reduce the time delay between the MVs to CVs. In this

paper, we consider the case where the c′s are obtained as

combinations of disjoint measurement sets, where each c is

obtained by combining the measurements from the process

unit or section associated with an input u and the cases with

structural constraints. Unfortunately for these cases we do

not have a convex problem formulation, but we derive upper

bounds to SOC problems with structural constraints using

3 approaches that result in convex quadratic programming

(QP) problems at each node in MIQP formulation.

In summary, we consider two interesting problems related

to finding H with structural constraints:

1) Selection of CVs as combination of disjoint measure-

ment subsets using all the measurements

2) Selection of CVs as both combination of disjoint mea-

surement subsets using only n measurements and that
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meet few additional structural constraints.

We try to address the above two problems using one of

the proposed approaches, when applied to the minimum loss

method formulation of [2]. Heldt [4] has reported an iterative

method, but it is still non-convex and does not guarantee

global optimum. In this study the proposed methods also can-

not solve problem 1 and 2 to give a globally optimal H with

specified structures, but the bounds obtained are of significant

value from a practical point of view. The developed methods

are evaluated on a distillation column case study with 41
measurements, where c′s are combinations of measurements

with specified structures. The developed MIQP methods for

SOC are generic and can easily be evaluated for any process

plant.

II. MINIMUM LOSS METHOD

We here review the “minimum loss method” formulation

from [2] and its optimal solution from [1] and present some

new results (Theorems 4,5). We then provide some new

ideas for dealing with the nonconvex case with structural

constraints on H. We denote measurements, inputs or ma-

nipulated variables, disturbances by y,u and d respectively.

The economic cost function for the steady state operation is

denoted by J(u,d). In order to keep the operation optimal in

the presence of varying disturbances the inputs u are updated

according to d using online optimization (real-time optimiza-

tion). We denote the optimal cost as Jopt(uopt(d),d).
A simple and effective alternative is to update u using a

feedback controller, which manipulates u to keep the CVs c

at their specified set points cs.

c = Hy (1)

where cs = Hyopt(d
∗), H is the combination matrix and y

are measurements.

Note that feedback introduces implementation error

(noise) nc. In the presence of integral action in feedback

control the implementation error nc = Hny . The difference

between the cost functions of these two strategies is defined

as the loss [12].

L = J(u,d)− Jopt(uopt(d),d) (2)

Here “Self optimizing control” can be viewed as the

selection of optimal H in c = Hy and by keeping these c at

constant set point cs results in the minimal loss or that gives

acceptable loss from the optimal operation. The set point

cs are obtained from the optimal solution for the nominal

disturbance d.

In order to express the loss (L) as a function of distur-

bances, implementation errors locally, the loss is approxi-

mated using a second order Taylors series expansion around

the “moving” optimal uopt(d). We assume that the set of

active constraints for the process does not change with d

and nc. The linearized (local) model in terms of the deviation

variables is written as

∆y = Gy∆u+G
y
d∆d (3)

∆c = G∆u+Gd∆d (4)

where G = HGyand Gd = HG
y
d. For a constant set point

policy (cs = 0) [2].

It is assumed that the number of c′s is the same as the

number of unconstrained degrees of freedom u and that G =
HGy is invertible. This assumption is needed to guarantee

that the CVs are controlled at the specified set points using

a controller with integral action.

Theorem 1: [1], [2], [8] Minimum loss method : To mini-

mize the average and worst case loss for expected noise and

disturbances,
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≤ 1, find the H that solves the

problem

min
H

∥
∥
∥J

1/2
uu (HGy)−1HY

∥
∥
∥
2,F

(5)

where Y = [FWdWn)]; F =
∂yopt

∂d = GyJ−1
uuJud − G

y
d;

the 2-norm (maximum singular value) is for worst case loss,

frobenius norm (F ) is for average loss.

In many cases it is easier to find the optimal disturbance

sensitivity matrix F numerically by reoptimizing for various

disturbances. Kariwala et al. [8] prove that the combination

matrix H that minimizes the average loss in (5) is super

optimal and in the sense that the same H minimizes the

worst case loss in (5). Hence, only optimization problem (5)

involving the frobenius norm (F ) is considered in the rest of

the paper.

A. Finding full H without structural constraints

Theorem 2 (Reformulation as a convex problem): The

problem in equation (5) may seem non-convex [1], but

for the standard case where H is a full matrix (with

no structural constraints), it can be reformulated as a

constrained quadratic programming problem [1]

min
H

||HY||F

s.t. HGy = J1/2
uu

(6)

Proof: From the original problem in equation (5) the

optimal solution H is non-unique. If H is a solution then

H1 = DH is also a solution as (J
1/2
uu (H1G

y)−1H1F) =

(J
1/2
uu (HGy)−1HF) for any non-singular matrix D of nu×

nu size. This means the objective function is unaffected by

the choice of D. One implication is that HGy can be chosen

freely. We can thus make H unique by adding a constraint,

for example HGy = J
1/2
uu . More importantly this simplifies

the optimization problem in equation (5) to optimization

problem shown in equation (6). End Proof

Theorem 3 ([1]): An analytical solution to

(5) in Theorem 1 using Theorem 2 is HT =
(

YYT
)

−1
Gy
(

GyT (

YYT
)

−1
Gy
)

−1

J
1/2
uu .

Theorem 4 (Simplified analytical solution): Another ana-

lytical solution for the problem in (5) is

HT =
(
YYT

)−1
GyQ (7)

where Q is any non-singular matrix of nc × nc.

Proof. This follows trivially from Theorem 3, since if

HT is a solution then so is HT
1 = HTDT and we sim-

ply select DT = (Q−1(GyT

(YYT )−1Gy)−1J
1/2
uu )−1 =
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J
−1/2
uu GyT

(YYT )−1GyQ which is a nc × nc matrix.End

proof.

Corollary 1 (Important insight): Theorem 4 gives the

very important insight that Juu is not needed for finding

the optimal H, provided we have the standard case where H

can be any nc × ny matrix.

This means that in (5) we can replace J
1/2
uu by any

non-singular matrix, and still get an optimal H. This can

greatly simplify practical calculations, because Juu may be

difficult to obtain numerically because it involves the second

derivative. On the other hand, we have that F, which enters

in Y, is relatively straightforward to obtain numerically.

Although Juu is not needed for finding the optimal H, it

would be required for finding a numerical value for the loss.

Theorem 5 (Generalized convex formulation): An

optimal H for the problem (5) can be written as in

(8) using Theorem 4, where Q is any non-singular matrix

of nc × nc.

min
H

||HY||F

s.t. HGy = Q
(8)

Proof. The result follows from Corollary 1, but can more

generally be derived as follows. The problem in (6) is to

minimize

∥
∥
∥
∥
∥
∥

(J1/2
uu (HGy)−1

︸ ︷︷ ︸

X

HY)

∥
∥
∥
∥
∥
∥
F

. The reason why we can

omit the nc×nc matrix X, is that if H is an optimal solution

then so is H1 = DH where D is any nonsingular nc × nc

(see proof of Theorem 2). However, note that the matrix

X, or equivalently the matrix Q, must be fixed during the

optimization, so it needs to be added as a constraint. End

proof.

B. Dealing with structural constraints on H

For practical reasons, it may be interesting to obtain the c′s
as combinations of measurements with a specified structure.

min
H

∣
∣
∣

∣
∣
∣J

1/2
uu (HGy)−1HY

∣
∣
∣

∣
∣
∣

2

F

s.t.H = [specified structure]
(9)

By specified structure we mean that certain elements in

H are fixed to zero. We will consider the following special

cases:

Case 1. Selecting subset of measurements (some

columns in H are zero)

(a) Fixed subset. For example,

H =

[

0 h12 0 h14 h15

0 h22 0 h24 h25

]

. In such cases,

both Theorem 2 and 5 hold. This implies Juu

is not needed. This is quite obvious since it

corresponds to deleting some measurements.

(b) Optimal subset. where the objective is to select

measurements (e.g. 3 out of 5). In this case,

only Theorem 2 hold and we need Juu. This

is because in Theorem 2, HGy = J
1/2
uu and the

ordering of the loss in (5) and ||HF||F is the

same for all possible subsets.

Case 2. Specified structure (specified elements are zero

in addition to some columns in H are zero)

(I) Decentralized structure. For example,
If a process has 2 inputs and 5
measurements with 2 disjoint measurement
sets {1,2,3},{4,5}; then the structure is

HI =

[

h11 h12 h13 0 0
0 0 0 h24 h25

]

(II) Triangular structure. For example, If a process has

2 inputs and 5 measurements with partially disjoint

measurement sets as {1, 2, 3, 4, 5} for one CV and

{4, 5} for another CV, then the structure is HII =
[

h11 h12 h13 h14 h15

0 0 0 h34 h35

]

;

Theorem 2 do not hold in case 2. The reason is

that to have same structure as H in H1 = DH, D

must have a structure DI =

[

d11 0
0 d22

]

, DII =
[

d11 d12

0 d22

]

respectively so D is not a full matrix

as assumed when deriving Theorem 2.

Case 3. Selecting the best individual measurements

for decentralized control, for example, H =
[

h11 0 0 0 0
0 0 0 h24 0

]

. This is a special case of

case 2 (I), but Theorem 2 holds as it can also be

viewed as case 1(b) as the selection of the best nu

measurements. Then the non-zero part of H is a

square matrix and later we can choose D as inverse

of this square full matrix to arrive at a decentralized

diagonal H.

C. Dealing with specified disjoint structure

Consider using controlled variables c′s as combinations

of disjoint measurement sets, this can be viewed as separate

control of individual process units (process sub parts). This

is case 2 (I) for H,

H =








H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...

0 0 · · · Hniu








(10)

for which Theorem 2 does not apply. Here each Hi

corresponds to measurements and inputs of process unit i
and niu is the number of individual process units in the

plant. Note that, as opposed to cases 1 (a) and 3, Juu is

needed to find the optimal solution for case 2, this may

seem a bit surprising. For case 2, we do not have a convex

problem formulation, that is, we need to solve the nonconvex

problem in (9). This is not surprising as decentralized control

is generally a nonconvex problem. Nevertheless, using the

ideas from Theorems 2 and 5, with additional constraints

on the structure of H, give convex optimization problems

that provide upper bounds on the optimal H for case 2. In

particular, in Theorem 5 we may make use of the extra degree

of freedom provided by the matrix Q [13].

The idea is to exclude the matrix J
1/2
uu (HGy)−1 in front

of HF in (9). However, when H has a specified structure, we

do not generally have enough degrees of freedom to make
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J
1/2
uu (HGy)−1 = I . To proceed, we have considered the

following 3 options :

1) Use the non-zero (nnz) elements in D to match any

nnz number of elements in HGy to J
1/2
uu . This results

in multiple choices to select nnz elements in HGy , so

an MIQP formulation is presented to find the optimal

H with specified structure.

2) Introduce a constraint HGy ≤ Q [14], this provides

extra freedom to choose optimal structured H. Q must

be chosen to have negative elements in each row to

obviate the trivial solution.

3) Use a constraint to let J
1/2
uu (HGy)−1 have a structure

similar to the D that preserves the structure in H,DH

and the remaining problem is to minimize ||HF||F .

Numerical evidence shows that option 1, option 2 and

option 3 provide good upper bounds to the problem in (9).

We present details of option 1 only in this paper.

The optimal solution to equation (9) is non-unique, so if

H is a solution then H1 = DH is also a solution as for

any non-singular matrix D of nu × nu size that preserves

the structure in constraint of equation (10). The number of

non-zero elements in matrix D is nnz .So we can select any

nnz number of elements in Q = HGy freely. There are

multiple choices of selecting the nnz elements in Q, and all

of these can be explored by formulating it as a mixed integer

formulation.

In this formulation, we let nunu numbers of binary

variables (zj) denote which elements in Q should be matched

to HGy . Only nnz non-zero elements in D that preserve the

structure) of these nunu binary variables should be 1 and the

rest should be 0. The non-singular matrix Q can be chosen

to solve the resulting MIQP faster. In our case, we simply

selected Q = 0.01J
1/2
uu and resulting MIQP formulation is

min
H

||HF||F

s.t. −m(1− zj) ≤[HGy −Q]element ≤ m(1− zj)

zi ∈ {0, 1}

(11)

nunu∑

j=1

zj = nnz; set of eqns

nunuk∑

l=nu(k−1)+1

zl = nuk

∀k = 1,2, . . . , number of blocks

H = [specified structure]

where nuk
is the number of inputs in block k. The constraints

in the reformulated problem are: (i) Among the nunu number

of elements in HGy , nnz elements match the elements of Q,

(ii) Equality constraint : Sum of binary variables associated

to elements in HGy to nnz , (iii) The structure imposed on

H.

Only certain D matrices preserve the structure imposed

on H in equation (10), which means that only certain nnz

elements of HGy can be matched to elements of Q matrix.

For example, if we match an element 1, 2 in HGy to Q12

then the associated binary variable z2 is 1; if we do not

match the element 2, 1 in HGy to Q21 then the associated

binary variable znu+1 is 0. Similar to the big-M constraints

in MIQPs, the scalar m is used to bound the unmatched

elements of HGy in the range −m to m. The problem in the

decision matrix H in equation (11) is vectorized as described

in [15]. Solving equation (11) results in controlled variables

c′s as combinations of disjoint measurements sets of all

measurements. This provides the upper bound for problem

in equation (9) to find c′s as the combinations of disjoint

measurement subsets.

III. MIQP BASED FORMULATIONS

A. MIQP Formulation for best subset selection

The best measurement subset selection problem is to find

c′s as best combinations of measurement subsets. Some

solution approaches are (i) partial branch and bound methods

[7] (ii) generalized singular value decomposition methods

[4] (iii) MIQP based formulations [15]. We discuss only the

MIQP formulations here.

min
xaug

xT
augFaugxaug

s.t. GyT

newxaug = Qδ

Pxaug = n

σi ∈ {0, 1} ∀i = 1, 2, · · · , ny

(12)















−M 0 · · ·

0 −M · · ·

.

.

.

.

.

.

.
.
.

0 . . . −M















σi ≤

















xi
xny+i

.

.

.

x(nu−1)ny+i

















≤















M 0 · · ·

0 M · · ·

.

.

.

.

.

.

.
.
.

0 . . . M















σi

where XT
aug =

[
xT
δ σ1 σ2 . . . σny

]
;

Faug =
[
YδY

T
δ 0

]
; GyT

new =
[
GT

δ 0
]
; P = [0 1] and n

is the measurement subset size. where Xaug,Faug,G
yT

new,P
are of size (nuny + ny) × 1, (nuny + ny) × (nuny +
ny), nunu × (nuny + ny), 1× (nuny + ny) respectively.

Starting from (6), the best measurement subset selection

problem can be formulated with the “big M” parameter as in

(12) [13]. Note that Q can be chosen as Q = rJ
1/2
uu (where

r is positive scalar) to preserve the loss ordering of different

measurement sets in the MIQP formulation (12). However r
should be selected suitably as very small values can interfere

with the MIQP solver tolerances.

B. CVs as combinations of disjoint measurement sets of all

measurements

For practical reasons, it may be interesting to obtain the

c′s as combinations of disjoint measurement sets; meaning

that it has a specified structure. The problem in equation (9)

is non-convex, and, unfortunately, Theorem 2 cannot be used

to get a convex QP because of the structural constraints in

H. But we can use the ideas from Theorem 2 to derive a

convex QP that provides a good upper bound as described

in II-C.

C. CVs as combinations of disjoint measurement sets of

fewer measurements

It is easy to extend the problem formulation in (9) to find

CVs as best combinations of fewer measurements in disjoint

sets with some more additional constraints by introducing ny
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new binary variables (σ1, σ2, . . . , σn). The MIQP problem

becomes

min
xN

xT
NFNxN

s.t. G
yT

N xN = Qδ

PNxN = n; big −M constraint in (12)

(13)

σi ∈ {0, 1} ∀i = 1, 2, · · · , ny

zj ∈ {0, 1} ∀j = 1, 2, · · · , nunu

ny
∑

i=1

σi +

nunu
∑

j=1

zj = ny + nnz

set of eqns

nunuk
∑

l=nu(k−1)+1

zl = nuk ;

nyk
∑

m=1

σ(ny(k−1)
(k−1)+m) = nk

∀k = 1, 2, . . . , number of blocks

set of eqns xN(ind) = 0

ind associated to 0 in H

where XT
N =

[
xT
aug z1 z2 . . . znunu

]
; FN =

[Faug 0]; G
yT

N =
[
GT

new 0
]
; PN = [P 0] and n is

the measurement subset size, nnz is the number of non-

zeros in D, nuk
, nyk

and nk are the numbers of inputs,

measurements and measurements to be selected in disjoint

set k. Where XN ,FN ,GyT

N ,PN are of size (nuny + ny +
nunu)×1, (nuny+ny+nunu)×(nuny+ny+nunu), nunu×
(nuny + ny + nunu), 1× (nuny + ny + nunu) respectively.

IV. DISTILLATION CASE STUDY

The MIQP formulations for obtaining CVs as combina-
tions of disjoint measurement are evaluated on binary distil-
lation column case study [10], where reflux L and boil up V
are the remaining steady-state degrees of freedom (u). The
41 stage temperatures are taken as candidate measurements.
Note that we do not include the inputs in the candidate
measurements for this case study. The economic objective
J for the indirect composition control problem is

J =

(

xH
top − xH

top,s

xH
top,s

)2

+

(

xL
btm − xL

btm,s

xL
btm,s

)2

(14)

where J is the relative steady state composition

deviation.xH
top,x

L
btm,xH

top,s,x
L
btm,s,L and H denote

the heavy component composition in top tray, light

component composition in bottom tray, specification of

heavy component composition in top tray, specification

of light component composition in bottom tray, light and

heavy key components respectively. The MIQP formulation

described in section III-A is implemented for the distillation

column with 41 trays to find the 2 CVs as the combinations

of 41 tray temperatures. An MIQP is set up for this

distillation column with the choice M=1 for the big-M

constraints in equation (12). We solved the MIQP to find the

CVs as the combinations of best measurement subset size

from 2 to 41. The CPLX solver in IBM ILOG Optimizer

was used to solve the MIQP problem [5].

We study the case with two disjoint measurements subsets;

one for the top section and one for the bottom section of

the distillation column. This structure is desirable, mainly

for dynamic reasons, to select one combined measurement
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L
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s
s

 

 

H full

H disjoint

Fig. 1. The loss vs the number of included measurements where the c
′
s

are combinations of (i) all measurements (solid), (ii) disjoint measurements
sets (top and bottom of column)(dash dot).

c1 from the top section (trays 21 to 41) and one combined

measurement c2 from the bottom section (trays 1 to 20).

In addition to the structures mentioned in (10), the follow-

ing structural constraints are also incorporated. To select n
number of measurements, ⌊n/2⌋ number of measurements

should be selected from top trays ⌊ny/2 + 1 : ny⌋, and rest

of the measurements should be selected from {1 : ⌊ny/2⌋};

1) to select 2 measurements, ⌊n/2⌋ = 1 measurement

should be selected from bottom trays 1 to 20 tempera-

ture measurements and other 1 measurement from top

trays 21 to 41 temperature measurements

2) to select 9 measurements, ⌊ny/2⌋ = 4 measurements

should be selected from bottom trays 1 to 20 temper-

ature measurements and rest from top trays 21 to 41

temperature measurements.

Meas c
′
s as combinations of measurements Lossall c

′
s as combinations of measurement Lossdis

c
′
s c

′
s with disjoint structure

2
c1 = T12

c2 = T30
0.03657

c1 = T12

c2 = T29
0.036868*

3
c1 = T12 + 0.0446T31

c2 = T30 + 1.0216T31
0.024583

c1 = T12

c2 = T30 + 0.9898T31
0.024593**

4
c1 = T11 + 11.2295T30 + 11.5251T31

c2 = T12 + 11.5844T30 − 11.79T31
0.016365

c1 = 1.0088T11 + T12

c2 = T30 + 0.9898T31
0.016385**

†disjoint H,(Case 2 for H); ∗ clearly not optimal because this is Case 3 for
H and all structures must give same solution; ∗∗ is just an upper bound

TABLE I

THE SELF OPTIMIZING VARIABLES c
′
s AND ASSOCIATED LOSSES,

WHERE c
′
s ARE (I) COMBINATIONS OF MEASUREMENTS, (II)

COMBINATIONS OF DISJOINT MEASUREMENT SUBSETS

The loss associated to (10), and these structural constraints

is also shown in Fig. 1. Fig. 1 show that the loss in

terms of the relative composition deviation (14), decreases

as the number of included measurements increases from 2
to 41. For the included number of measurements, the actual

measurements set, combination weights are determined as

part of the MIQP solution. From Fig. 1, we see that the

loss with c′s as combinations of disjoint measurement sets

is very close to the loss with c′s as combinations of all the
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Fig. 2. CPU time requirement for computations in Fig.1
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included measurements; the loss for the worst case increases

only by a factor of 1.32. However, the computation time is

much shorter; from Fig. 2, we see that obtaining the c′s as

combinations of disjoint measurement sets is approximately

2 orders of magnitude faster than without the structural

constraints.

The actual optimal controlled variables (measurement

combination H) for the cases with 2, 3 and 4 measurements

are shown in Table I. For the case with 2 measurements,

we just give the measurement, and not the combination,

because we can always choose the D matrix to make H = I
(identity). For the case with 3 and 4 measurements, we

selected D to make selected elements in H equal to 1. For

the case with 2 measurements, the optimal measurement

set is {T12, T29}. However, the proposed method in (13)

only gives an upper bound (because it matches only two

elements in HGy), and this is why it gives a non-optimal

set {T12, T30} and the loss is increased slightly from 0.0365
to 0.0369. Interestingly, the optimal measurements for the

disjoint and full H case are same for 3 and 4 (Table I)

measurement sets. However, since we are restricted in how

we can combine measurements in the disjoint case, there is a

small difference in the associated losses. Thus, although the

method (11) developed for obtaining c′s as combinations of

disjoint measurements sets are not exact, it serves as a tight

upper bound for the true optimal solution for the problem in

(9).

V. CONCLUSIONS

The minimum loss method of self optimizing control

for optimal control structure selection with economic cost

function as criterion is addressed. The MIQP based formu-

lations to find controlled variables as best individual mea-

surements, as best combinations of fewer/all measurements

are reviewed. As controlled variables are combinations of

fewer/all measurements of process plant, there is a possibility

of poor controllability between u′s and c′s. To overcome this

disadvantage, the controlled variables are only allowed to be

combinations of measurements of disjoint measurement sets,

where each measurement subset is associated to a particular

unit in a process plant. The method proposed provided a

very close upper bound to the exact solution of c′s as

combinations of disjoint measurement sets. Even though

the proposed method is not exact the upper bound for the

solution is of significant value from a practical point of view.

For the distillation column case study the loss increases by

a factor of 1.32 with the disjoint measurement set structural

constraint.
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