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Abstract— This paper details the design of various Linear
Parametrically Varying (LPV) controllers for the ADMIRE
fighter aircraft benchmark model. Attention is focused on the
improvement of the ADMIRE longitudinal dynamics handling
qualities. In this benchmark, performance and robustness must
be guaranteed over an extensive portion of the flight envelope.
To this end, three robust LPV gain-scheduling control design
techniques are investigated. Each technique is assessed in
terms of conservatism, off-line computation cost and ease of
implementation. For each controller, the non-linear aircraft
responses are given and discussed.

I. INTRODUCTION

In this paper, LPV control techniques are used to design

robust control augmentation systems for the ADMIRE fighter

aircraft model [1]. Three robust LPV control design tech-

niques are compared, namely full-block static multipliers [2],

scaled bounded real lemma [3] and parameter gridding LPV

control design techniques [4]. The multiplier approaches

[3], [5], [2] assume a plant given in terms of Linear Frac-

tional Transformations (LFTs). These LPV/LFT controller

syntheses use static multipliers and thus assume unbounded

parameter rate of variations. On the contrary, the parameter

gridding approach does not require any particular modelling

(mere linearized models suffice) and its formulation allows

for parameter rate information [4].

In this paper, attention is restricted to the control of

ADMIRE’s longitudinal dynamics but it is clear that lateral-

directional dynamics could be controlled using the same

control techniques. Controllers are compared in terms of

computational design cost, conservatism and implementation

issues.

The paper is organized as follows: Sections II and III

introduce the aircraft model, performance objectives, model

augmentation structure and weighting function selection.

Section IV briefly presents the different LPV controller

synthesis techniques that will be used to control the aircraft.

Section V shows the non-linear responses obtained with the

LPV controllers. Conclusions are given in VI.

The notation is fairly standard:

M Mach number

h Altitude

α Angle of attack

q Pitch rate

Nz Load factor
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δc Canard deflection

δe Elevon deflection

LPV Linear Parameter Varying

LFT Linear Fractional Transformation

FBM Full Block Multipliers

SBRL Scaled Bounded Real Lemma

R
m×n set of m× n real matrices

AT transpose of A
diag Block Diagonal matrix

In Identity matrix of size n

A > 0 A is a symmetric positive definite matrix

ker(A) Null-space of A

The L2 gain of a linear operator H is given by

‖H‖ = sup{‖Hw‖/‖w‖ : w 6= 0} over square integrable

signals w.

II. MODELLING AND CONTROL OBJECTIVES

A. ADMIRE

ADMIRE is a freely and publicly available advanced

simulation model of a generic fighter aircraft. ADMIRE was

developed and maintained by the Swedish Defense Research

Agency [1]. The aircraft is featured with a delta wing,

actuated canard configuration, inboard and outboard elevons

and thrust vectoring. The model incorporates actuator and

sensor models. In addition, the simulation package includes

trim and linearisation routines. ADMIRE has been used to

demonstrate various control techniques such as LPV control

in [6], non-linear control using backstepping in [7].

B. Longitudinal dynamics

The linearised short-period longitudinal dynamic model is

given by














α̇ = Zαα + Zqq + Zδeδe + Zδcδc

q̇ = Mαα + Mqq + Mδeδe + Mδcδc

Nz = nzαα + nzaq + nzδe
δe + nzδc

δc

x =
[

α q
]T

, y =
[

α q Nz

]T
, u =

[

δc δe
]T

(1)

where x is the state vector, y the measured output and u the

control input. Zα is the partial derivative of normal force (Z)

with respect to angle of attack (α) at equilibrium. Similarly,

Mα denotes the partial derivative of the pitching moment

with respect to α. We will assume that normal force and

pitching moment derivatives depend only on altitude (h) and

Mach number (M ); variations with respect to incidence and

control deflections will be neglected.
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For ADMIRE the flight envelope is defined as

0.3 ≤ M ≤ 1.2 and 100 ≤ h ≤ 6000 [m].

C. Control Allocation

Elevons and canards can be used as primary control vari-

ables. However, because they both contribute to the pitching

motion, they can advantageously be combined together in

a, new, single control variable δ. Here, the simple control

allocation method given in [8] is used. More precisely, if

(A,B,C) are state-space matrices of a strictly proper LTI

plant such that CB is full row rank, then, given a constant

and invertible weight Wu, one can define the new control

variable δ as

u = Hδ (2)

where

H = W−1
u (CB)T ((CB)W−1

u (CB)T )−1 (3)

In this approach, Wu is used to weight the contribution of

each actuator on the output specified by C. Note that C does

not necessarily represent the output matrix of the plant to be

controlled and, therefore, C can be chosen by the designer.

In our case, we want to optimize the generation of pitching

acceleration q̇.

For ADMIRE, the flight envelope was discretized over a

grid with a resolution of 0.04 in Mach number and 500 meter

in altitude. At each point of the grid, a linearized state space

model was computed. We selected C = [0 1] and

Wu =

[

1/δ2cm 0
0 1/δ2em

]

(4)

to improve the pitch rate to control ratio in the steady state.

δcm and δem weight, respectively, canard and elevon dis-

placements. It was soon noticed that elevons have sufficient

authority to meet pitch performance in the high speeds (i.e.

over Mach 0.7), while the canard contribution was more

significant at low velocity. This effect was taken into account

by gradually increasing the value of δem with Mach number.

δcm equals 30 all over the flight envelope, δem is 30 at Mach

0.3 so that canards have the same contribution as elevons and

increases linearly to 60 at Mach 0.7.

D. LFT modelling

Model (1) with u = Hδ in not in a form that is suitable for

LPV/LFT control techniques. But, from a family of linearised

models, it is relatively easy to construct LFT models using

polynomial interpolation. The basis (h,M,M2,M3) was

used in a least-squares curve fit algorithm in [9]. In this case,

we obtained an LFT model having 2 states, namely α and

q, with a parameter block of size 12 (∆ = diag(MI9, hI3)).
Figure 2 shows the LFT model against the original pitching

moment derivative Mq . Similar plots were generated for the

other longitudinal state-space coefficients. The general trend

is that around Mach 1 (transonic regime) the LFT model did

not capture well the aerodynamic variations. This is because

low order polynomials were used. Better approximations

could be obtained with higher order polynomials, however,

at the expense of larger LFT models.
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III. SYNTHESIS MODEL AND LPV CONTROLLER

SYNTHESIS ALGORITHMS

The design of the LPV controllers is based on the synthesis

model of Fig. 3. Load factor handling quality require-

ments are specified with a second order reference model

of constant damping ratio ξ = 0.8 and natural frequency

3.5 ≤ ωn ≤ 6.5 rad/s to translate the fact that the aircraft

has better capabilities at high Mach numbers. Second order

model characteristics is a standard way to depict aircraft

handling qualities based on pilot ratings [10]. It should be

noted that the reference model is also an LFT system to

account for the natural frequency varying linearly with Mach

number. Normal load factor tracking is enforced with the LTI

low pass first order filter Wperf (s) = 450 · 0.03·s+1

30·s+1
. Both

elevons and canards were modelled with the same, first order,

LTI system. Weights on the control signal (δ) and its time

derivative (δ̇) are chosen constant (Wde = 0.08, We = 0.1).
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Fig. 3. Synthesis model

These values were chosen so that the inverse does not exceed

the maximum performance of the actuators. The weighted

command is mixed between canards and elevons according

to a function of altitude and Mach (Fig. 1) so that a constant

weight accounts for the variation of actuators need. Noise

acting at sensors is taken into account with constant weights

(Wnα
= 0.15, Wnz

= 0.05, Wnq
= 0.05). Using standard

LFT modelling manipulation tools [9], it is easy to construct

an LPV/LFT representation of Fig. 3. Such a model takes

the form:








ẋ(t)
z1(t)
z2(t)
y(t)









=









A B1 B2 B3

C1 D1 D12 D13

C2 D21 D2 D23

C3 D31 D32 D3

















x(t)
w1(t)
w2(t)
u(t)









(5)

with

w1(t) = ∆(t)z1(t) , ∆(t) ∈ ∆e ∈ R
p1×m1 (6)

where ∆e is the convex polytope with vertices

{∆1,∆2, . . . ,∆N} and where closed-loop performance

channel is from the error z2 to the disturbance input w2.

For ADMIRE, the LPV/LFT synthesis model obtained has

7 states (2 from the short-period longitudinal model, 4 from

weights and reference model and 1 from the actuator) and a

14×14 parameter block (a block of dimension 3 for altitude

and block of size 11 for Mach).

IV. LPV SYNTHESIS

In this section, the main LPV synthesis algorithms (full-

block multipliers [2], scaled bounded real lemma [3] and

parameter gridding LPV control design [4]) used to design

the LPV controllers for ADMIRE are briefly described.

A. Full Block Multipliers LPV Control

The full block multipliers LPV/LFT controller existence

conditions given in [2] are:

Theorem Consider the LPV model (5)-(6). There exists an

LPV/LFT controller such that the L2 gain performance

between z2 and w2 is less than or equal to γ if there exist

symmetric positive definite matrices X , Y and multipliers P
and P̃ satisfying:
(

∆i

I

)T

P

(

∆i

I

)

> 0,

(

I

−∆i

)T

P̃

(

I

−∆i

)

< 0 , i = 1, . . . , N

(7)

where P and P̃ are partitioned according to ∆ as

P =

(

Q S

ST R

)

and P̃ =

(

Q̃ S̃

S̃T R̃

)

(8)

with
Q < 0 , R̃ > 0 (9)

and such that
(

X I

I Y

)

≥ 0 (10)

ΨT













∗













T
















0 X 0 0 0 0
X 0 0 0 0 0

0 0 Q S 0 0
0 0 ST R 0 0

0 0 0 0 −γI 0

0 0 0 0 0 1
γ
I

































I 0 0
A B1 B2

0 I 0
C1 D1 D12

0 0 I

C2 D21 D2

















Ψ < 0 (11)

ΦT















∗















T





















0 Y 0 0 0 0

Y 0 0 0 0 0

0 0 Q̃ S̃ 0 0

0 0 S̃T R̃ 0 0

0 0 0 0 −γI 0

0 0 0 0 0 1
γ
I







































−AT −CT
1 −CT

2

I 0 0

−BT
1 −DT

1 −DT
21

0 I 0

−BT
2 −DT

12 −DT
2

0 0 I



















Φ > 0

(12)

where

Ψ = ker (C3 D31 D32) , Φ = ker
(

BT
3 DT

13 DT
23

)

The LTI part of the LPV/LFT controller can be computed

algebraically with the values of the Lyapunov matrices X
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TABLE I

LPV SYNTHESIS COMPLEXITY

Method Variables LMIs

Scaled BRL [11]
∑Np

i=1 di(di + 1) + n(n+ 1) + 1 4

Full Block Multipliers [2] (m1 + p1)(m1 + p1 + 1) + n(n+ 1) + 1 3 + 2Np + 2Np

Gridding (X(δ),Y(δ)) [4] (Np + 1)n(n+ 1) + 1 Ngrid(1 + 2Np )

Gridding (X(δ),Y0) [4] (Np + 1)
n(n+1)

2
+ 1 Ngrid(1 + 2Np )

Gridding (X0,Y0, fixed parameter) [4] (Np + 1)
n(n+1)

2
+ 1 2Ngrid

and Y and the multipliers P and P̃ . The calculations are

very similar to those involved in the construction of a central

H∞ controller. One peculiarity of Scherer’s Full Block

Multipliers LPV controller synthesis algorithms is the non-

standard form of the scheduling controller matrix variable

∆c. It is shown in [2] that the controller scheduling function

is

∆c(∆) = N−V
T
−
(S(∆)TPS(∆)− V−N−V

T
−
)−1V+(∆)

(13)

where

[V−(∆)V+(∆)] = S(∆)TU , S(∆)T =
[

∆T I
]

(14)

with matrix U columns form an orthogonal basis of P−P̃−1

and N− is a negative subspace of P − P̃−1. The reader is

referred to [2] for technical details. Note that the size of

∆c can be different from the original ∆ block of the LPV

system. But, very often in practice, ∆c and ∆ have same

dimensions.

B. Scaled Bounded Real Lemma LPV Synthesis (SBRL)

The SBRL can be viewed as a particular case of a full

block multipliers synthesis if one considers ∆e a hypercube

with Q = −R, S = 0 and where Q is restricted to commute

with the parameter structure. Thus, SBRL LPV synthesis is

computationally simpler but always produces more conserva-

tive results than a full-block multiplier synthesis. Note that

an SBRL LPV controller is scheduled with ∆c(∆) = ∆,

where ∆ is the parameter block of the augmented plant.

C. LPV synthesis by gridding

This LPV technique is based on an extension of the

Bounded Real Lemma to LPV systems [4]. This frame-

work accounts for incorporating parameter time derivative

information with parameter dependent Lyapunov functions.

If Lyapunov functions are both chosen parameter dependent,

then the parameter time derivative is needed in real-time for

updating the controller. If only one of the Lyapunov functions

is parameter dependent, then one gets more conservative re-

sults, but with the advantage that parameter rate is no longer

required in real time implementation. The method relies on

checking a finite number of LMIs at some points, Ngrid,

in the parameter space [4]. Good L2 performance is usually

obtained on coarse grid. However, a controller designed on a

coarse grid may have poor non-linear performance. In such

situation, it is necessary to redesign the controller on a denser

grid. Thus, LPV synthesis by gridding can be extremely time

demanding. Also, real-time implementation of the controller

is complicated since, at each sampling instant, one matrix

inversion and several matrices multiplications are required.

Table I shows the computational cost associated with

the different methods. In this table, n is the dimension

of the augmented plant state vector, Np is the number of

parameters, Ngrid represents the number of points chosen

in parameter space and m1 (resp. p1) is the number of

columns (resp. rows) of ∆. di is the size of repeated block

i associated to parameter i. For the ADMIRE augmented

plant of this paper we have n = 7, ∆ = diag(MI11, hI3)
and thus, Np = 2, d1 = 11, d2 = 3, p1 = m1 = 14.

Typically, Ngrid ≫ 2Np and thus Ngrid grows exponentially

with the number of parameters. SBRL is by far the less

computationally expensive but also it is the most conservative

method.

V. DESIGN AND SIMULATIONS RESULTS

A. Scaled BRL controller design

This method is by far the most conservative and failed

to give a solution on the full-flight flight envelope. SBRL

requires to describe the parameter space by an hypercube

and as Fig. 4 suggests only part of the flight envelope suits

this description. Thereby a controller was obtained for the

flight envelope over Mach 0.7. It should be noted that a

robust controller was also found through DK iteration for

the same partial flight envelope. A refined description of

the parameter space should be employed as can be with the

following methods.

B. Full block multipliers controller design

A first synthesis was carried out with the smallest hyper-

cube covering the flight envelope. The L2 performance level

obtained, γ, was about 400, an unacceptable performance

level for satisfactory tracking performance. It is well-known

that control surface efficiency decreases quickly with speed

and air density. In order to achieve good controller design,

we had to remove the low speed/high altitude region of the

flight envelope in which good tracking cannot be achieved.

Removing the problematic flight envelope corner can easily

be done in a FBM controller synthesis because the polytope

is not restricted to be a hypercube. We considered the 5

vertices polytope of Fig. 4 which excludes the low aircraft

performance region. In this case γ dropped from 400 to 4.3.
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Fig. 4. Polytopic cover for FBM LPV/LFT controller design

In this application, FBM synthesis involved 759 optimiza-

tion variables and required about 20 seconds of computation

time on a 2GHz PC.

C. LPV controller design by gridding

For the parameter gridding approach, we decided that

X will vary linearly with altitude and with the square of

Mach number whereas Y will remain constant. The weights,

reference model and polytope were the same as those used

in the previous section. To get a satisfactory controller,

providing good non-linear responses, it was necessary to use

a grid of more than 206 points. As expected, this led to a

huge computational effort; the controller synthesis took about

6200 seconds of CPU time.

D. Non-linear time responses

A discrete version of the FBM controller was implemented

as a Simulink C++ mex function. The LTI part of the con-

troller was discretized at 100Hz using Tustin approximation.

The scheduling function was computed using (13). A LU

factorisation was needed for the inversion of the central

term and realized with standard linear algebra C++ routines

available in [12]. Finally, a unit time delay was added to

the feedback loop to prevent an algebraic loop or a further

matrix inversion.

A similar discrete implementation is used for the gridding

controller. At each time step, the controller state is computed

using basic matrix operations (addition, multiplication and

inversion). Discrete dynamics are then obtained via Tustin

approximation using a few additional simple matrix opera-

tions and another matrix inversion. [13] shows how to reduce

implementation complexity. Note that this implementation

requires the state-space representation of the synthesis model

and of the controller. The controller is implemented with

the use of lookup tables and a linear interpolation scheme.

As expected, such a control architecture may require a

considerable memory space as the controller complexity

increases with the size of the synthesis model, the structure

of Lyapunov functions and the number of grid points.

Figures 5 and 6 show the non-linear longitudinal time

responses obtained with the largest admissible load factor

demand, a step of 9g, with full-block multipliers and gridding

LPV controllers respectively. In both cases, simulation results

were obtained at a starting altitude of 1000m. The 9g

manoeuvres were restricted to Mach numbers higher than

0.7. Actually, at speeds below Mach number 0.7 there were

not enough engine power to maintain a sufficient airspeed

to avoid stall. At Mach 0.7, the aircraft stalls shortly after

the 5 second window of the figures. Similar responses were

obtained for a 2.4g step demand as shown in Fig. 7 and

8. This time, the Mach envelope was entirely covered. As

for the 9g pull-up at Mach 0.7, the manoeuvre performed

at Mach 0.4 or at Mach 0.5 makes the aircraft approaching

stall.

In all cases, it is observed that both controllers deliver very

good performance across the operational flight envelope.
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Fig. 5. Nonlinear simulation with FBM LPV/LFT controller: 9g pull-up

VI. CONCLUSIONS

Three LPV synthesis algorithms have been used to design

a longitudinal controller longitudinal dynamics of the AD-

MIRE aircraft model. Two proved very successful, namely

the full-block multipliers and the LPV gridding controller

synthesis techniques. In addition, the latter allow for a

general polytopic description of the parameter space which

was very useful to achieve good design by avoiding ill-suited

parameter combinations.

The Scaled Bounded Real Lemma LPV/LFT synthesis

(SBRL), which looks potentially attractive from a com-

putational point of view, did not lead to any satisfactory

solution. This is because the multipliers class is too small and

assumption on the parameter space (a hyper-rectangle) make

SBRL too conservative. In contrast, the gridding method

(which is perhaps the most flexible method as it does

not require an LFT representation of the plant and allows

for parameter dependent Lyapunov functions) may require
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Fig. 6. Nonlinear simulation with LPV gridding controller: 9g pull-up
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Fig. 7. Nonlinear simulation with FBM LPV/LFT controller: 2.45g pull-up

a considerable amount of points for a successful design.

For ADMIRE, we had to use the weighting functions of

a previous design (i.e. the full block multiplier controller

design) to get a satisfactory controller. Complexity both in

terms of implementation (large memory space requirements

for look-up tables, matrix operations in real time) and off

line computation are perhaps the most serious drawbacks of

the gridding approach. On the contrary, the FBM controller

synthesis provides a good trade-off between performance,

complexity and implementation. Its main drawback is that it

needs an LFT model. The derivation of LFT models from a

non linear model always introduces parametric uncertainties

which are due to fitting errors. The effect of these errors on

design and analysis can be difficult to characterize.
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Fig. 8. Nonlinear simulation with LPV gridding controller: 2.45g pull-up
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