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Abstract— In this paper, we develop a risk-based sensor
management scheme for unknown object detection and
process estimation under limited sensory resources. Bayesian
sequential detection and estimation methods are utilized for
risk analysis. The objective is to find every object of interest
in the mission domain and satisfactorily estimate the asso-
ciated process dynamics with minimum risks. Two types of
costs are taken into account for risk evaluation, i.e., the cost
of making an erroneous decision regarding object existence
or its estimates, and the cost of taking more observations for
a possibly better decision. The Rényi information divergence
is investigated to measure the information loss in making
a suboptimal sensor allocation decision, which is used to
formulate the observation cost. A set of simulation results
are provided to confirm the effectiveness of the proposed
sensor management scheme.

I. INTRODUCTION

Object search, detection and state estimation are chal-

lenging tasks due to the uncertainty in sensor perception.

In these cases, it is crucial to manage sensors such that

competing tasks are effectively assigned across multiple

objects to be detected and processes to be tracked. This

is especially true when the sensing resources are limited

(e.g., sensory range and number of sensors) compared to

the size of the mission domain and the large number of

objects.

In the literature, sensor management and task allocation

have been mainly studied under no resources constraints.

In [1], a distributed sequential auction scheme is pre-

sented for a multi-robot search and destroy operation.

The control goal is to allocate a vehicle to each ob-

ject and complete the task in minimum time. In [2],

the author proposes a Bayesian-based multi-target multi-

sensor management scheme. The approximation strategy

maximizes the expected number of targets. In [3], the

authors seek to maximize the probability of finding a

target with some foreknown location information in the

presence of uncertainty. Coordinated search and tracking

in probabilistic frameworks has been focused mainly on

optimal path planning and estimation. In [4], a cooperative

control scheme based on Fischer information measure

is proposed for the optimal path planning of a team of

uninhabited aerial vehicles (UAVs) in a ground target

tracking problem. In [5], the pursuit-evasion game and

map building problems are combined in a probabilistic

game theoretic framework. Sub-optimal pursuit policies
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are presented to minimize the expected capture time.

In [6], a dynamic strategy is developed to control the

relative configuration of sensor teams based on particle

filtering. The goal is to get optimal estimates for target

tracking through sensor fusion. Besides, the development

of a unified framework for search and tracking/localization

problems has been studied in several work [7]–[9]. A

recursive Bayesian estimator is used to fuse observations

with uncertainty in sensor perception. However, none of

the above work consider the problem of competing tasks

and apply to cases when there is only a single target

or the sensing resources are not limited. Hence, there is

need to develop sensor management schemes that are able

to choose optimally between competing tasks and make

minimum-risk decisions under limited sensing resources.

For object detection, Bayesian sequential detection

method formulated by Wald and Wolfowitz in [10] pro-

vides a strong theoretical background for risk analysis. It

is a sequential hypothesis testing for a stationary discrete

random variable, which allows the number of observations

to vary in order to achieve optimal decisions. For process

estimation, Bayesian sequential detection is extended to

Bayesian sequential estimation [11]. In Bayesian sequen-

tial settings, the goal is to minimize Bayes risk, which

include two types of costs: 1) the cost of making a wrong

decision without taking any further observation, and 2)

the cost of all the observations taken up to the decision

time. Rènyi information measures is used to model the

information loss in making a suboptimal sensor allocation

decision and formulate the observation cost [12], [13].

We seek to develop an integrated framework for proba-

bilistic object detection and process estimation treated as

tasks competing for the same limited sensory resources

via Bayesian sequential analysis.

The paper is organized as follows. A review of Bayesian

sequential detection for discrete random variables is pro-

vided in Section II. Its extension to Bayesian sequential

estimation for continuous random variables is developed

in Section III. In Section IV, we extend the Bayesian

sequential detection and estimation methods to multiple

elements (cells or objects) over the entire mission domain.

An integrated risk-based sensor management scheme for

the detection and estimation of multiple elements is devel-

oped in Section V. We also discuss measures of expected

information gain for both detection (discrete random vari-

ables) and estimation (continuous random variables). The

paper is concluded with a summary of both current and

future work in Section VII.
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II. SEQUENTIAL DETECTION

A. State Description

Assume that we are given a domain Ω, where the

unknown objects of interest to be detected and estimated

are located. The domain is descritized into cells, each

denoted by cj , j = 1, · · · , N . The discretization is

assumed to be fine enough such that at most one object can

exist within a cell. Let the actual state of object existence

at cj be denoted by Xj , which is equal to 1 if object

exists (or, more generally, there is a process at cj to be

estimated) and 0 if no object exists (or, equivalently, there

is no process at cj).

B. Sensor Model

Here we employ a sensor model with a Bernoulli

distribution. For cell cj , at time t, the sensor is assumed

to give the output Yj,t = 1 (a “positive observation”, i.e.,

“object present”) or Yj,t = 0 (a “negative observation”,

i.e., “object absent”). The sensor model is given by the

following general conditional probability matrix,

B =

[

Prob(Yj,t = 0|Xj = 0) Prob(Yj,t = 0|Xj = 1)
Prob(Yj,t = 1|Xj = 0) Prob(Yj,t = 1|Xj = 1)

]

,

where Prob(Yj,t = i|Xj = l), i, l = 0, 1 describes the

probability of measuring Yj,t = i given Xj = l. Let β be

the detection probability, we have Prob(Yj,t = 0|Xj =
0) = Prob(Yj,t = 1|Xj = 1) = β and Prob(Yj,t =
1|Xj = 0) = Prob(Yj,t = 0|Xj = 1) = 1− β.

C. Bayesian Update Equations

As measurements are made with time, the probability

of object existence at cj is updated according to Bayes’

rule. At time t0 = 0 (before taking any measurements) we

assume that we have an estimate of the prior distribution

of object existence given by {p̄j,0, 1− p̄j,0}. At time t,

the sensor makes an observation Yj,t at a cell cj ∈ Ω. Let

Yj,1:t be the set of all measurements taken at cell cj from

time t = 1 up to time t. The prediction step gives the

predicted probability of object existence at cell cj at time

t + 1 given all measurements made up to and including

time t:

p̄j,t+1 ≡ Prob(X(cj) = 1; t+ 1|Yj,1:t)

= Prob(Xj = 1; t|Yj,1:t) = p̂j,t. (1)

At time t, the update step is as follows:

p̂j,t =
p̄j,tProb(Yj,t|X(cj) = 1; t)

Prob(Yj,t|Yj,1:t−1)
, (2)

where the denominator in the last expression in Equation

(2) is given by

Prob(Yj,t|Yj,1:t−1)

=

{

(1− β)(1 − p̄j,t) + βp̄j,t for Yj,t = 1
β(1− p̄j,t) + (1− β)p̄j,t for Yj,t = 0

.

Substituting this into Equation (2), for the update equation

we finally obtain

p̂j,t =

{

βp̄j,t

(1−β)(1−p̄j,t)+βp̄j,t
if Yj,t = 1

(1−β)p̄j,t

β(1−p̄j,t)+(1−β)p̄j,t
if Yj,t = 0

. (3)

Equations (1) and (3) constitute the belief prediction and

update equations for the probability mass function (p.m.f.)

of object presence at cell cj at time t.

D. Bayesian Sequential Detection for A Single Cell

For a single cell cj , the goal of Bayesian sequential de-

tection is to determine the actual state Xj with minimum

risk given a sequence of observations up to time t. In this

work, we will consider two types of costs when making

a decision: 1) the expected cost of making an erroneous

decision, and 2) the expected cost of taking future new

observations for a possibly better decision. When the risk

of not taking further measurements is lower, the sensor

will stop and make a decision regarding object existence

at cell cj .

1) Decision Cost Assignment: We first introduce the

hypotheses: Hj,0: the null hypothesis that Xj = 0; and

Hj,1: the alternative hypothesis that Xj = 1. Define the

cost of accepting hypothesis Hj,i when the actual state

at c̃ is Xj = k as Cik. Using a uniform cost assignment

(UCA), the decision cost matrix is given by

Cik =

{

0 if i = k

cτd if i 6= k
, τ ≥ 0,

where i = 0, 1 correspond to accepting Hj,0 and Hj,1, and

k = 0, 1 correspond to the true state Xj = 0 and Xj = 1.

Here, cτd > 0 is the cost of making the wrong decision at

time τ ≥ 0 indicating the number of observations.

A detection estimator is a map X̂j,t+τ that maps

a sequence of observations Yj,1:t+τ into a decision

to accept Hj,0 or Hj,1, τ ≥ 0. Let the notation

C(X̂j,t+τ (Yj,1:t+τ ), Xj,t+τ ) denote the cost of using es-

timator X̂ given that the actual state at cj at time t + τ

is Xj,t+τ .

2) Detection Decision-Making: At cj , if a decision

regarding object existence is made without taking any

further observations, i.e., the observation number τ = 0,

we define a Bayes risk rj as the expected cost of accepting

the wrong hypothesis over all possible states conditioned

on all previous observations. The Bayes risk associated

with accepting Hj,0 is given by:

rj(X̂
1
j,t, τ = 0) = EXj,t|Yj,1:t

[C(X̂1
j,t, Xj,t)] = c0dp̂j,t. (4)

Similarly, the Bayes risk associated with accepting Hj,1

is given by:

rj(X̂
2
j,t, τ = 0) = c0d(1− p̂j,t). (5)

Next, we derive the risk associated with delaying the

decision and keeping taking a measurement at cj . Since

we do not have a measurement at time t+1 yet, define the

conditional risk, RXj,t+1
(X̂j,t+1(Yj,t+1), τ = 1), over all

possible measurement realizations at time t+ 1 associate

with the estimator X̂j,t+1(Yj,t+1) when the state is Xj,t+1

as

RXj,t+1
(X̂j,t+1(Yj,t+1), τ = 1)

= EYj,t+1|Xj,t+1
[C(X̂j,t+1(Yj,t+1), Xj,t+1)] + cj,obs,

where cj,obs is the cost for taking one more observation

at cj at the next time step t+ 1.

In this case, the Bayes risk rj is define as the expected
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conditional cost RXj,t+1
over all possible true states:

rj(X̂j,t+1(Yj,t+1), τ = 1)

= EXj,t+1|Yj,1:t
[RXj,t+1

(X̂j,t+1(Yj,t+1), τ = 1)].
When τ = 1, there are 4 possible estimators available.

We assume that the decision cost associated with taking

one more observation (τ = 1) is c1d > 0.

1) Estimator 1 (X̂1
j,t+1(Yj,t+1)): Accept Hj,0 whether

observing Yj,t+1 = 0 or 1.

rj(X̂
1
j,t+1(Yj,t+1), τ = 1) = c1dp̄j,t+1 + cj,obs. (6)

2) Estimator 2 (X̂2
j,t+1(Yj,t+1)): Accept Hj,1 whether

observing Yj,t+1 = 0 or 1.

rj(X̂
2
j,t+1(Yj,t+1), τ = 1)

= c1d(1 − p̄j,t+1) + cj,obs. (7)

3) Estimator 3 (X̂3
j,t+1(Yj,t+1)): Accept Hj,i when ob-

serving Yj,t+1 = i, i = 0, 1.

rj(X̂
3
j,t+1(Yj,t+1), τ = 1) = c1d(1 − β) + cj,obs. (8)

4) Estimator 4 (X̂4
j,t+1(Yj,t+1)): Accept Hj,i when ob-

serving Yj,t+1 = 1− i, i = 0, 1.

rj(X̂
4
j,t+1(Yj,t+1), τ = 1) = c1dβ + cj,obs. (9)

The optimal decision is the one that gives the minimum

risk:

r∗j (p̄j,t+τ ) = min
X̂j,t+τ ,τ

rj(X̂j,t+τ (Yj,t+τ ), τ).
3) Simulation Results: Figure 1 shows the minimum

Bayes risk curve r∗j as a function of p̄j,t+1 with β = 0.8,

cj,obs = 0.05 and c0d = c1d = 1 at a cell cj ∈ Ω. The

Bayes risk functions (4), (5), and (6)-(9) that construct r∗j
are also shown in the figure.

Note that the intersection probabilities πL = 0.25 and

πU = 0.75 give the threshold points of whether to take

one more observation or not. If p̄j,t+1 < πL, accepting H0

with τ = 0 results in the minimum risk, and if p̄j,t+1 >

πU , accepting H1 with τ = 0 results in the minimum risk.

If τ∗ 6= 0, the sensor will postpone making a decision and

take one more observation.

III. SEQUENTIAL ESTIMATION

A. System Model: Single Sensor and a Single Process

In this section we develop risk analysis tools for

Bayesian sequential estimation. A linear system is as-

sumed for the process associated with a detected object

at cj (i.e., if we accept that Xj = 1, omitting the process

index j):

xt+1 = Ftxt + vt,

yt = Htxt +wt,

where {xt ∈ R
n, t ∈ N} is the state sequence, Ft ∈ R

n×n

is the state matrix, {vt ∈ R
n, t ∈ N} is the i.i.d. Gaussian

process noise sequence with zero mean and positive semi-

definite covariance Qt ∈ R
n×n, {yt ∈ R

m, t ∈ N} is the

measurement sequence, Ht ∈ R
m×n is the output matrix,

and {wt ∈ R
m, t ∈ N} is the i.i.d. Gaussian measurement

noise sequence with zero mean and positive definite

covariance Rt ∈ R
m×m. The initial condition for the

state is assumed Gaussian with mean x̄0 and positive

definite covariance P0 ∈ R
n×n. We will assume that the

initial state, process noise, and measurement noise are all

uncorrelated.

B. Sequential State Estimation

In sequential estimation decision-making (i.e., the esti-

mation plus the decision whether to take more measure-

ments or not), we assume that the estimation problem is

solved (here the Kalman filter is used for estimation) and

the only question to be addressed is whether we accept

the estimate as the true state (and, hence, stop taking

additional measurements) or we take (at least) one more

measurement. Hence, the list of decisions are: (1) stop,

and take no more measurements, and (2) take one more

measurement.

C. The State Estimation Problem

For the estimation problem, we use the Kalman filter

since it is the optimal filter for linear Gaussian systems. At

time step t, the state and error covariance matrix prediction

equations are given by [14]

x̄t = Ft−1x̂t−1,

P̄t = Qt−1 + Ft−1P̂t−1F
T
t−1.

The current posterior state estimate and error covariance

matrix are given by:

x̂t = x̄t +Kt (yt −Htx̄t) ,

P̂t = (I−KtHt) P̄t,

where

Kt = P̄tH
T
t

(

HtP̄tH
T
t +Rt

)−1
.

1) Estimation Error Cost assignment: The cost of

choosing a specific estimate xe
t (yt) (we will omit the

dependence on yt for notational brevity) when the ac-

tual state is xt is denoted by C(xe
t ,xt). We can set

C(xe
t ,xt) = cτe ‖xe

t − xt‖2 (quadratic cost with cτe > 0
being some τ -dependent cost value and τ ≥ 0 indicating

the number of future observations), or UCA:

C(xe
t ,xt) =

{

0 ‖xe
t − xt‖ ≤ ǫ

cτe ‖xe
t − xt‖ > ǫ

, (10)

where ǫ > 0 is some preset small interval. In this work,

for xe
t , we use the updated Kalman Filter estimate x̂.

2) Estimation Decision-Making: At time t, after mak-

ing a measurement yt, if we decide not to take any more

measurements, as in the sequential detection approach, the
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Bayes risk is defined as the expected value (over all possi-

ble true states, conditioned on all previous measurements)

of the cost of choosing the estimate x̂t:

r(x̂t, τ = 0) = Ext|y1:t
[C(x̂t,xt)]. (11)

If we assume a quadratic cost assignment, we have

r(x̂t, τ = 0) = c0eTr
[

P̂t

]

,

where c0e > 0 is the estimation cost when the sensor does

not take an observation (i,e., τ = 0).

We also need to compute the (expected) risk associated

with taking more observations (τ ≥ 1). Since we do not

have measurements over time period t + 1 : t + τ yet,

define the conditional risk, Rxt+1:t+τ
(x̂t+τ (yt+1:t+τ ), τ)

over all possible measurement realizations over t+1 : t+τ

given the state xt+τ at time t+ τ as

Rxt+1:t+τ
(x̂t+τ (yt+1:t+τ , τ))

= Eyt+1:t+τ |xt+1:t+τ
[C(x̂t+τ (yt+1:t+τ ),xt+τ )] + κτcobs,

where cobs is the cost of taking an observation and κ > 0
is some scaling parameter. The Bayes risk is defined as

the weighted conditional risk Rxt+1:t+τ
, weighted by the

predicted density function p(xt+1:t+τ |y1:t) at time t+1 :
t+ τ :

r(x̂t+τ (yt+1:t+τ ), τ)

= Ext+1:t+τ |y1:t

[

Rxt+1:t+τ
(x̂t+τ (yt+1:t+τ ), τ)

]

.

If we choose a quadratic error cost assignment, the ex-

pected Bayes risk if we take more measurements is given

by

r(x̂t+τ (yt+1:t+τ ), τ) = cτeTr
[

P̂t+τ

]

+ κτcobs.

If we choose UCA, the computation of r can be
performed using Monte-Carlo approximation. If the state
dimension is 1, the expected Bayes risk is given by

r(x̂t+τ (yt+τ), τ ) = c
τ
e



1− Erf





ǫ

2

√

2P̂t+τ







+ κτcobs, (12)

where τ = 0, 1 and

Erf(·) = 2√
π

∫ (·)

0

e−t2dt

is the error function and ǫ is an error bound as indicated

in Equation (10).

The optimal decision corresponds to a particular obser-

vation number τ∗ that yields minimum Bayes risk:

τ∗ = argminτ r(x̂t+τ , τ).

IV. EXTENSION TO MULTIPLE ELEMENTS

We now extend the Bayes risk formulation for a singe

cell in Section II and a single object in Section III to the

case when a sensor chooses among multiple elements (cell

or object).

Let us first consider the Bayes detection risks at a cell

cj . The risks associated with making a detection decision

at cj at the current time step t do not change in multi-

element case because this is the decision associated with

cell cj itself. Hence, they are the same as Equations (4)

and (5). The Bayes risk rk associated with observing

element ck (including the possibility of choosing cj again)

at the next time step t+1 given that the sensor is observing

cj at t is define as:

rk(X̂k,t+1(Yk,t+1), τ = 1)

= EXk,t+1|Yk,1:t
[RXk,t+1

(X̂k,t+1(Yk,t+1), τ = 1)],
where the conditional risk is given by:

RXk,t+1
(X̂k,t+1(Yk,t+1), τ = 1)

= EYk,t+1|Xk,t+1
[C(X̂k,t+1(Yk,t+1), Xk,t+1)] + ckj,obs,

where ckj,obs is the observation cost assigned for cell cj
if it decides to take an observation at element ck at the

next time step t + 1. The optimal decision is then to

choose a combination of X̂j,t+τ , τ = 0, 1, element ck
and observation number τ that minimizes Bayes risk:

r∗j,min = min
X̂j,t+τ ,k,τ

(

rj(X̂j,t, τ = 0), rk(X̂k,t+1(Yk,t+1), τ = 1)
)

.

For the process estimation of a detected object cj , the

Bayes risk of not taking any more measurement is the

same as Equation (11). The (expected) risk of taking one

more measurement associated with some element ck:

rk(x̂k,t+1(yk,t+1), τ = 1) =
∫ ∫

C(x̂k,t+1(yk,t+1),xk,t+1)p(xk,t+1|yk,1:t+1)dxk,t+1

p(yk,t+1|yk,1:t)dyk,t+1 + κckj,obs.

If under a quadratic cost assignment, the expected Bayes

risk is given by

rk(x̂k,t+1(yk,t+1), τ = 1) = c1,ke Tr
[

P̂k,t+1

]

+ κckj,obs,

where c1,ke > 0 is the estimation cost with 1 observation

associated with element k. If under UCA and assuming a

1 dimensional state, the expected Bayes risk is given by

rkj (x̂j,t+1(yj,t+1), τ = 1)

= c1,ke



1− Erf





ǫ

2
√

2P̂j,t+1







+ κckj,obs.

The Bayesian sequential estimation method finds a par-

ticular combination of element ck and observation number

τ that yields the decision with minimum Bayes risk r∗j,min

for each given observation yj,t+1.

r∗j,min = mink,τ (rj(x̂j,t, τ = 0), rk(x̂k,t+1, τ = 1)) .

V. RISK-BASED SENSOR MANAGEMENT FOR

INTEGRATED DETECTION AND ESTIMATION

A. Problem Statement

In this section, we develop an integrated sensor man-

agement scheme based on Bayesian sequential detection

and estimation introduced in Sections II and III and their

extension to multiple-element case in Section IV.

B. Detection and Estimation Sets

Let QD(t) ⊆ Ω be the set of cells for which no detection

decision has been made up to time t and that are expected

to be within the sensor’s coverage area at the next time

step t+1. Let QT (t) be the set of detected objects that still

need further measurements before an estimation decision

can be made and that will be within the sensor’s coverage

area at the next time step t+1. Let Q(t) = QD(t)∪QT (t).
Let E(t) be the set of all cells in which it has been decided
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that no objects exist up to time t. Let T (t) be the set of

all processes that have the minimum Bayes risk which no

further measurements are required.

C. Decision List

At some time t, a sensor makes one of two types of mea-

surements of an element cj : (1) a detection measurement

or (2) an estimation measurement. Based on the decisions

made, an element cj ∈ Q(t) can transition between the

above mentioned sets as shown in Figure 2. Note that

each arrow is associated with a Bayes risk and the optimal

decision is made with overall minimum risk. The dashed

arrows represent possible transitions of an already decided

element and are not included in the risk computations in

this paper.

time step t

E

Q

T

QD

QT

H0

H1

satisfactory

pdf
j

j

j
j

Fig. 2. Transition of an element cj ∈ Q(t) at time t.

D. Observation Decision Costs

Define the cost of taking an observation at element cj
as

cj,obs = E[Ij∗ ]− E[Ij ], (13)

where E[Ij ] is the expected information gain when mea-

suring cj and c∗j is the element with the highest value of

expected information gain. Hence, cj,obs models the in-

formation loss in making a suboptimal sensing allocation.

We use the Rényi information divergence in computing

the gain in information.

a) Rényi Information Divergence for Discrete Ran-

dom Variables: For detection, the divergence is com-

puted between two binary discrete random variables:

the expected posterior p.m.f. {p̂j,t+1, 1− p̂j,t+1} and the

predicted probability mass function p.m.f. {p̄j,t, 1− p̄j,t}
[12]:

Ij,α ({p̂j,t+1, 1− p̂j,t+1} | {p̄j,t, 1− p̄j,t})

=
1

α− 1
log2

(

p̂αj,t+1

p̄α−1
j,t+1

+
(1− p̂j,t+1)

α

(1 − p̄j,t+1)α−1

)

.

Since we need the Rényi information divergence to be a

proper metric, we have to use α = 0.5.

If we let Ij,α;Yj,t+1=1 and Ij,α,Yj,t+1=0 denote the Rényi

information gain for the two possible types of sensor

outputs at time t+1, the expected Rényi information gain

is then given by

EYj,t+1|Yj,1:t
Ij,α;Yj,t+1

(p̂j,t+1‖p̄j,t+1)

=

1
∑

i=0

Prob(Yj,t+1 = i|Yj,1:t)Ij,α;Yj,t+1=i.

b) Rényi Information Divergence for Continuous
Random Variables: For continuous random variables (e.g.,
for estimation), the Rényi information divergence at time t
is computed between two continuous random variables: (a)
the expected posterior probability density function (p.d.f.)
p(xj,t+1|yj,1:t+1) after another (unknown) measurement
yj,t+1 is made, and (b) the predicted p.d.f. p(xj,t+1|yj,1:t)
given the measurements up to yj,t [12], [13]
Ij,α (p(xj,t+1|yj,1:t+1)|p(xj,t+1|yj,1:t)) =

1

α− 1
log2

∫

p(xj,t+1|yj,1:t)

(

p(xj,t+1|yj,1:t+1)

p(xj,t+1|yj,1:t)

)α

dxj,t+1.

For linear Guassian models combined with a Kalman

filter, we have [13]:

Eyj,t+1|yj,1:t
Ij,α(pj(xt+1|y1:t+1)‖pj(xt+1|y1:t))

=
1

2(1− α)
log

( |αR−1HP̄t+1H
T + I|

|R−1HP̄t+1HT + I|α
)

+
1

2
Tr
[

I−
(

αR−1HP̄t+1H
T + I

)−1
]

E. Solution Approach

Figure 3 summaries the solution approach as a general

flow chart. At time step t, the sensor takes an observation

at the current element cj ∈ Q(t− 1). Based on this real-

time observation and the prior probability, the updated

(posterior) probability and the predicted probability are

obtained via a recursive implementation. The predicted

probability is treated as the prior probability at the next

time step t + 1. We then compute the corresponding

Bayes risk, where the updated probability is used to

compute the Bayes risk rj(τ = 0) of making a direct

detection/estimation decision without taking any further

observations, and the predicted probability is used to com-

pute the Bayes risk rj(τ = 1) associated with taking one

more observation. Bayesian sequential decision-making is

then employed as follows. If the minimum Bayes risk

r∗j,min is giving by taking future observations, then the

sensor will take an observation at some element ck ∈ Q(t)
(including the possibility of choosing cj) at the next

time step t + 1. Otherwise (τ = 0), the sensor makes

a detection/estimation decision at cj , and moves to some

ck ∈ Q(t)\{cj} that minimizes the Bayes risk and takes

an observation at that element at the next time step t+1.

This process is repeated until a detection/tracking decision

can be made at every element in Q(t).

VI. SIMULATION RESULTS

Assume that we have N = 10 cells initially, among

which there are 7 processes (Cell 1-7) to be detected

and estimated. The initial predicted probability p̄j,t=0 for

j = 3 is set to be 0.1 and that for all the other cells is

0.5. The sensor detection probability β follows a Gaussian

distribution with mean 0.6 and variance 0.1. The states are

assumed to be time-invariant Gaussian processes with zero

mean and positive definite covariance 0.1. The processes

parameters are: F = 1,H = 1,R = 1,Q = 0.1. UCA

is assumed and ǫ is set to be 0.1. The decision costs

for detection and estimation are c0d = 1, c1d = 0.3, c0e =
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Fig. 3. Decision flowchart.

1, c1e = 0.16. The information gain scaling parameter κ is

chosen to be 0.06.

All the objects have been detected and have their

processes estimated except that there is a missed detection

at Cell 4. Figures 4(a), 4(b) and 4(c) show the detection

and estimation results as examples. Figure 4(d) enlarges

the estimation performance of Cell 1 during time period

1-300. Figure 5 shows the assigned observing cell at

each time step according to the proposed scheme and the

dots represent the detection stopping time for each object.

Since there is a missed detection at Cell 4, no estimation

is performed after the detection decision X4 = 0 is made

at time step 137.
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Fig. 4. Updated probability p̂j,t, and actual state x (blue) and state
estimate x̂ (red) for (a) Cell 4, (b) Cell 6, and (c) Cell 8, and (d) Enlarged
estimation performance for Cell 1 during time period 1-300.
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Fig. 5. Observed cell at each time step for a 10-cell detection and
estimation problem (green dots: detection stopping time for each object).

VII. CONCLUSION AND FUTURE WORK

In this paper, we develop an integrated sequential de-

tection and estimation approach for optimal sensor allo-

cation schemes. Rényi information gain measures is also

introduced to model the observation cost. Future work

will extend the above framework to nonlinear system

estimation. Object mobility will be taken into account

by using a probabilistic (Markov chain) model with non-

identity probability transitions.
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