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Abstract— Modeling of biological genetic networks forms
the basis of systems biology. In this paper, we present an
optimization-based inference scheme to identify temporally
evolving Boolean network representations of genetic networks
from data. In the formulation of the optimization problem, we
use an adjacency map as a priori information, and define a
cost function which both drives the connectivity of the graph
to match biological data as well as generates a sparse and
robust network at corresponding time intervals. Throughout
simulation studies on simple examples, it is shown that this
optimization scheme can help to understand the structure and
dynamics of biological genetic networks.

I. INTRODUCTION

Modeling of biological genetic networks has received
much recent research attention. Much work has been done
to develop Bayesian network models of genetic networks by
coding a priori knowledge on the regulatory relationships
into probabilistic models [1][2][3]. On the other hand, there
are many studies of identification of regulatory networks
using deterministic models such as ordinary differential
equations (ODEs) or linear models based on least squares
identification [4][5][6]. Also, there are many applications
of Boolean networks to modeling and analyzing biological
systems, as well as an increase of research activities to
address questions arising from biological applications [7][8].
Often, though, models of biological systems are too complex
to understand because of the large number of components
involved and the nonlinearity of the reaction or interaction.
As a result, the behavior of these systems in general cannot
be completely understood from a systems point of view.
Moreover, once a model structure is chosen, such as a mass
action kinetics or a nonlinear ODE model, prejudices of
the model are automatically imposed which then restrict the
representation and understanding of biological data.

Since a graph is a natural way to represent a biological
network, if a system can be abstracted into a graph, it can
help to understand the biological network. A graph is a set
of vertices which represents states, and a set of edges which
depicts the relationship or connection between two or more
states. A given connectivity or adjacency map is a signed,
directed graph GR = (V,E, S) where V is a set of vertices,
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E is a set of directed edges, and S : E → {−1, 0,+1}. For
example, eij = 1 represents the case in which input node j
activates output node i. If input node j inhibits output node
i, then eij = −1. If input node j does not affect output node
i, then eij = 0. Also, graphs are well-suited for situations
in which there is little prior or explicit knowledge of the
dynamics. Moreover, if we can build a graph model to rep-
resent biological data, we could escape imposed prejudices
from the model structure. There are several graph mining
approaches to biological networks [9][10]. These approaches
represent biological networks as graphs, where nodes repre-
sent genes and edges represent relationships between each
gene, and discover frequent patterns or motifs [9] in these
graphs. These approaches focus on structural features of
networks and they can effectively uncover the functional
interaction structure of a biological network. Also, these
approaches consider time-invariant networks and local or
modular behavior of large networks. Recent studies [11][12]
have proposed a concept of a temporal sequence of network
motifs where the motifs change according to the dynamic
nature of the biological system and can describe pivotal
developmental events which cannot be captured by the static
network approach: the former [11] develops algorithms for
graph-rewriting rules based on machine learning techniques,
which brings complexity issues which analyzing very large
graphs [11]. On the other hand, [12] applies a temporal
sequence of network motifs analysis by reconstructing the
active sub-networks (3-node sub-graphs).

The main idea of our scheme lies in representing the
captured relationship as a network path with a priori
information (a given connectivity map) and using convex
optimization techniques to find the time-varying sparsest
graph consistent with experimental observations. Despite
uncertainties about details for a given biological system,
we often have reasonable qualitative knowledge about in-
teractions of each gene, so we can use this information as
a priori information. In this setting, the model behavior is
solely based on this qualitative information which guarantees
biologically reasonable behavior: robustness and sparsity in
general. The ability of many biological networks to exhibit
their function reliably despite noise or perturbation is often
referred as functional robustness. We also note that biological
regulatory networks are likely to be sparse especially at
a fixed interval of time (for example, most transcription
factors (TFs) do not regulate most genes). Also, there are
expectations behind modeling efforts:

1) Networks represent the structure of complex connec-
tions so viewing evolving networks as dynamical systems
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allows us to predict many of their properties analytically.
2) If we can match signal propagation that drives the

placement of links and nodes, then the topology or the
structural elements will follow. It can help to move beyond
architecture and uncover the laws that govern the underlying
dynamic process.

In contrast to previous methodologies for dynamic graph
analysis [11][12], in this paper, we develop a convex
optimization-based inference method, where we embed the
dynamics of a linear time varying representation, and en-
force sparsity at corresponding time intervals. The rest of
this paper is organized as follows: Section II presents an
overview related to modeling of biological networks. An
optimization problem formulation is discussed in Section III.
Simple examples are given in Section IV. Also, we present
an example of biological network of HER2 over-expressed
breast cancer. Finally, conclusions are given in Section V.

II. OVERVIEW

We define a state vector x(t) = [x1(t), ..., xnx
(t)]T , the

components of which represent concentrations of proteins or
states in a biological network. The evolution of state x(t) can
be modeled using an ordinary differential equation (ODE):

ẋ(t) = f(x(t), p) (1)

where p is a parameter set. The nonlinear dynamic system
(1) can be approximated by a linear system based on forming
the Jacobian around steady states as shown below:

δẋ(t) =
∂f

∂x
δx(t) +

∂f

∂p
δp = Aδx(t) +Bδp (2)

A system in the form of (2) can be considered as a weighted
directed graph. Then, A represents connectivity and B rep-
resents the sensitivity of parameter variation. If Aij is zero,
node j has no direct effect on node i. Also, if Aij > 0, node
j activates node i. Similarly, if Aij < 0, node j inhibits node
i. In [10], a convex optimization is constructed as follows:

min
A,B̄
||( ˙̃X − B̄ −AX̃)W ||F

subject to card(A) ≤ k,Ai,j > 0, Ar,s < 0 (3)

where X̃(= [X1 X2 ... XL]) represents the time course data
set with different stimulations and/or inhibitions and each Xi

represents the matrix form of nx different components at M

different time points Xi =


xi1,1 xi1,2 ... xi1,M
xi2,1 xi2,2 ... xi2,M
... ... ... ...

xinx,1 xinx,2 ... xinx,M

.

Also, (= [B1 B2 ... BL]) represents the set of sensitivities of

parameter variation with Bi =

M︷ ︸︸ ︷
[bi ... bi] and W represents a

weighting matrix for specific experiments. Also, k is a given
positive constant which represents maximum connectivity, all
Ai,j > 0 represent activation edges (node j activates node i)
and all Ar,s < 0 represent inhibition edges (node s inhibits
node r). Therefore, this approach gives us the optimal static
graph map consistent with various experimental data sets.

In this paper, we extend this idea to a dynamic graph
model. First, we define X = [XT

N , X
T
N−1, ..., X

T
1 ]T ∈

Rnx·N×1 where Xk ∈ Rnx×1 is a snapshot of data or
known vector (normalized or Booleanized biological data) at
time k for 1 ≤ k ≤ N , the components of which represent
concentrations or activities in a biological network where
nx is the number of states of Xk and N is the number of
discrete time steps. We define G = F(G1, G2, ..., GN ) as
an augmented matrix of the dynamic graph Gk where each
Gk ∈ Rnx×nx is a connectivity map at time k for 1 ≤
k ≤ N which is based on a priori information GR. Also,
the augmented matrix, G, satisfies an evolution of the state
Xk with satisfies an evolution of the state Xk = GkXk−1.
Moreover, we define a common sub-graph Sk, an addition
sub-graph Ak and a removal sub-graph Rk at time k as
follows [11]:

Sk = Gk ∩Gk−1

Ak = Gk ∩ Sc
k

Rk = Gc
k ∩Gk−1 (4)

where superscript c indicates the complement of a set in
its ambient space. Therefore, Sk represents the common
sub-graph between Gk and Gk−1 and (Ak, Rk) shows the
evolution of the graph at time indicating how the biological
system changes over time.

III. OPTIMIZATION PROBLEM FORMULATION
In contrast to previous methodologies for dynamic graph

analysis [11][12], in this section, we formulate a convex
optimization-based inference method, where we embed the
dynamics of a linear time varying representation, and en-
force sparsity and smooth evolution at corresponding time
intervals.

A. Dynamic Graph (Linear Time Varying System)

The state Xk evolves along with time and constitutes the
following linear time varying system:

Xk = GkXk−1 (5)

where Gk = g(GR,Xk|Xk−1) = h(Ck,Wk) and Ck

represents connectivity and Wk is a weighting factor or
strength of connection. Therefore, Gk is a connectivity map
at time k which is based on a priori knowledge map
(GR) and consistent with experimental data. Note that Gk

describes how the evolution of components of Xk depends
on interactions with Xk−1 based on GR. For example, we
have given candidate edges in GR, only a few of these may
be selected, based on the relationship between Xk and Xk−1.
If all the interactions between each component are properly
identified, we can reconstruct the function Gk in terms of the
connectivity and weighting factor. For instance, Gk(i, j) =
0.5 represents that node j activates node i with strength 0.5
at the k step. The strength is related to the reaction rate
and the concentration of other species, demonstrated by the
Jacobian of a mass action kinetics.

The goal of system identification of biological systems
is to infer each Gk for 1 ≤ k ≤ N consistent with both
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biological data set X and a priori information GR. In
general, a gene regulation network (GRN) has the following
characteristics [13]:
1) Directionality: regulatory control is directed from regula-
tors to regulated genes.
2) Sparsity: each single gene is controlled by a limited
number of other genes, which is small compared to the total
gene content (and also to the total number of TFs) of an
organism.
3) Combinatorial control: the expression of a gene may
depend on the joint activity of various regulatory proteins.

Since GRNs have a sparse structure with combinatorial
control, we should reconstruct the sparsest graph consistent
with experimental observations. We can construct an opti-
mization problem as follows:

min
Gk

||Xk −GkXk−1||+ γ||Ak||

subject to Gk = g(GR,Xk|Xk−1) (6)

where the second term in the cost function penalizes the
cost of adding edges in order to avoid heavy combinatoric
computation. This term therefore enforces the network to be
sparse, where γ is a positive constant, representing the trade-
off between reconstruction error and sparsity. Here, we define
a function g as shown below:

Gk = g(GR,Xk|Xk−1) = GR⊕MAP = ProjMAPGR
(7)

where ⊕ is defined as a projection operator onto MAP ∈
Rnx×nx whose i-th column is a column vector, the compo-
nents of which are all one if Xk−1(i) is active, which means
the state of the i-th element is one or over the threshold. On
the other hand, if Xk−1(i) is non-active, then the i-th column
of MAP is a zero column vector. Therefore, this projection
gives us all possible candidate edges based on both Xk−1

and GR. For example, if xi at the (k − 1)th step is active,
then i-th column of GR contains the candidate edges. On the
other hand, if xi at (k − 1)th step is not active, we cannot
use the i-th column of GR as candidate edges.

We formulate the problem considering the overall time
step so that the penalty term for sparsity plays the role of
generating a sparse network. Thus, the optimal solution gives
us the sparsest and smooth evolving network which selects
corresponding effective edges. Also, we can reformulate sub-
graph Ak as follows:

Ak = Gk ∩ Sc
k = Gk ∩ (Gk ∩Gk−1)c = Gk −Gk−1 (8)

Then, we can construct a convex optimization problem for
the proposed identification problem as shown below:

min
G1,...,GN

N∑
k=1

||Xk −GkXk−1||2

+γ{
N∑

k=2

||Gk −Gk−1||F + ||G1||F + ||GN ||F }

subject to Gk = g(GR,Xk|Xk−1) (9)

Note that the first term of equation (9), the summation of
||Xk−GkXk−1|| forces to minimize the reconstruction error
for a given dynamical network at time k for 1 ≤ k ≤ N .
Also, we consider the second term, the summation of ||Gk−
Gk−1||F which plays the role of realizing a smooth evolution
and minimizes the change of network evolution. Finally, with
the penalty term ||G1||F + ||GN ||F which acts as a boundary
constraint, we can find the optimal sparsest dynamic graph.
We can also arrange and reformulate equation (9) as follows:

min
G
||X − GX ||2 + γ||(GT − G)×W ||F

subject to given X ,W
Gact

k ≥ 0, Ginhib
k ≤ 0, Gothers

k = 0 (10)

where X =
[
XT

N XT
N−1 ... XT

1 XT
0

]T ∈

Rnx·(N+1)×1, G =


Onx

GN Onx
... Onx

Onx
Onx

GN−1 ... Onx

... ... ... ... ...
Onx Onx ... Onx G1

Onx Onx ... Onx Inx

 ∈

Rnx·(N+1)×nx·(N+1), and W =


Inx Onx

Onx Inx

Inx
Onx

Onx
Inx

... ...

... ...

 ∈

Rnx·(N+1)×2·nx Note that the first term of the cost
function in equation (10) is a reconstruction error cost and
the second term plays the role of realizing a smooth and
sparse evolution of the network by selecting effective edges.

B. Static Graph (Linear Time Invariant System)

If we assume that the graph model does not evolve with
time (static graph) such as with a linear time invariant system
[10], we can modify the structure G and constraint as shown
below for a fixed pattern graph:

G =


Onx G Onx ... Onx

Onx
Onx

G ... Onx

... ... ... ... ...
Onx

Onx
Onx

Onx
G

Onx Onx Onx Onx Inx


Gact ≥ 0, Ginhib ≤ 0, Gothers = 0 (11)

where G = g̃(GR) does not depend on time (compared with
Gk = g(GR,Xk|Xk−1) for a linear time varying system).
Note that for a fixed pattern, the optimal solution represents
the average connectivity map.

C. Dynamic and Static Graph

We can compare the dynamic graph and static graph
method: the main difference of cost function from dynamic
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Fig. 1. Possible cases for inhibition edge where 1 represents activated gene
and 0 represents deactivated gene.

and static graph is the penalty for sparsity as follows:

||(GT − G)W )||F,dynamic =


Onx

−GN

∆GN−1 Onx

Onx
∆GN−2

... ...
Onx ∆G1

G1 Onx

 (12)

||(GT − G)W )||F,static =


Onx

−G
Onx Onx

Onx Onx

... ...
Onx

Onx

G Onx

 (13)

where ∆Gk = Gk+1−Gk. Also, if we modify the constraint
for a dynamic graph similar to the static graph approach, the
dynamic graph approach gives us a lower cost than the static
graph approach because the structural constraint restricts the
degree of freedom of choosing edges.

D. Inhibition Edges

Based on our formulation of the optimization problem,
we can find the optimal solution which satisfies a trade-
off between representation of data (dynamics) and sparsity.
However, the optimal solution does not include any inhibition
edges because it is not necessary, as shown in Figure 1. For
example, if X is active (1) and Y is not active (0), then there
are two possible cases: X inhibits Y (connected, Figure 1
(left)) or no connection between X and Y (Figure 1 (right)):
However, we can handle inhibition edges using Boolean logic
as an algebraic constraint as shown below:

Y = not Ȳ (=∼ Ȳ) (14)

Also, we extend this algebraic constraint for normalized state
as shown below:

Y + Ȳ = 1 (15)

Consider the simple case shown in Figure 2, in which state
X inhibits state Y. Using an algebraic constraint (14), we can
change the inhibition edge to an activation edge with the new
state Ȳ as shown below:

X a Y =⇒ X a (∼ Ȳ) =⇒ X→ Ȳ − Y (16)

Hence, we extend states if there are inhibition input edges
and introduce a diagonal weighting matrixM, which makes
all species have the same penalty as shown below:

min
G
||M× (X̄ − GX̄ )||2 + γ||(GT − G)×W ||F (17)

Fig. 2. (A) Inhibition edge (X inhibits Y) (B) modified edge (X activates
Ȳ)

Fig. 3. (a) a priori connectivity map where the arrows indicate activation
and blunted lines denote inhibition. (b) snapshots of gene expression from
time k=1 to k=4 (red or 1: activated states, green or 0: deactivated states).

where X̄ represents extended states and Mii = {1, 1√
2
}.

If there exist x, x̄ for a specific state, Mii =
1√
2

and

otherwise, Mii = 1.

IV. EXAMPLES

In this section, we consider simple examples to illustrate
the proposed inference scheme.

A. Simple Gene Network

We first consider a toy example composed of four genes. A
priori information and the snapshots of gene expression are
shown in Figure3. Here we do not consider state extension
for inhibition edges which means the optimal solution does
not include any inhibition edges. By varying parameter γ,
we can sweep out the optimal trade-off curve between the
reconstruction error and the sparsity of a solution as shown
in Figure 4. We can choose the optimal parameter γ∗ by the

Fig. 4. Trade-off curve between the model fitting and the sparsity with
varying parameter γ (x-axis represents reconstruction error and y-axis shows
sparsity)
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Fig. 5. The optimal solution for example 1: the magnitude of each edge
represents strength of connection.

graphical representation: the extreme point γ∗ on the trade-
off between the sparsity and the reconstruction error. Once
we fix the parameter γ∗, we solve the constrained convex
optimization problem (10) using CVX[14]. Figure 5 shows
the dynamics of the connectivity graph. We can capture the
temporal graph not only in terms of connection but also
strength of the edge. Also we can compare two approaches:
dynamic and static graph approach with average of dynamic
graph.

B. HER2 OVEREXPRESSED BREAST CANCER

We are interested in HER2 over-expressed breast cancer,
which represents 20-30% of breast cancers. The experimental
studies were done for investigating the effects of Tyrosine
Kinase inhibitors (TKIs) on the BT474 and SKBr3 cell lines
[16]. In this work, short term effects and long term effects
of applying Gefitinib (a TKI) to those cell lines were studied
and important effects of how the cancer cells overcome or
escape from the inhibitory effects of TKIs were discovered.
The authors in [16] showed that HER3 is recruited from
the cytoplasm to the cell membrane to increase the trigger-
ing signal by vesicular trafficking in order to escape from
HER2 inhibition. Also, they tested the effects of vesicular
trafficking: when vesicular trafficking was stopped, phospho-
HER3 and phospho-Akt did not survive from the inhibition
of HER2.

We suspect there are short-term and long-term topological
changes because TKI can inhibit and regulate downstream
effectively in the short-term but it cannot regulate for the
long-term. During the short-term, there is Positive Negative
(PN) Feedback [17] so TKI inhibits HER3 effectively. How-
ever, for long-term behavior, even small triggering signal can
amplify the phospho-Akt signal because of Positive Positive
(PP) Feedback which is similar to vesicular trafficking. On
the other hand, if the topology does not change, TKI should
be able to regulate downstream over the long-term even

though HER3 is recruited by vesicular trafficking. We define
the a priori map from biological information [16][18][19]
where we include a nucleus model to capture this possible
topology change. The behaviors of the nucleus are not yet
understood, however we abstract it with the switch as shown
in Figure 6. Basically, there is a fail-safe mechanism, HER2-
HER3 signaling which is buffered so that it is protected
against an inhibition of HER2 catalytic activity and it is
driven by the negative regulation of HER3 by Akt [18]. Also,
there is a compensatory mechanism by cross-talk between
MAPK and Akt which results in robust activation of this
buffering. However, the compensatory buffering prevents
apoptotic tumor cell death from occurring as a result of
the combined loss of MAPK and Akt signaling [18]. For
example, once a signal is triggered and either MAPK or
Akt is high, then the nucleus stays active so MAPK and/or
Akt are trying to keep the compensatory buffering. However,
once both MAPK and Akt are down regulated, the nucleus
is deactivated for all time.

We apply the proposed optimization technique and the
result is shown in Figures 6 and 7. Here, we use the generated
data in Figure 7(upper) based on biological experimental data
(western blot [16][18]). There are three main steps: before
TKI is introduced (triggering network), right after TKI is
introduced (short-term) and long term behavior after TKI
is introduced. We can capture the topology change of the
biological network: for the initial stage (Figure 6 (a)), the
signal is triggered and propagated along activation edges.
After TKI is introduced (Figure 6 (b)), downstream compo-
nents such as pHER3, pPI3K, Akt and MAPK are regulated
because TKI inhibits and regulates downstream components.
Moreover, the biological network shows PN Feedback which
effectively modulates signal responses. Finally, for long term
behavior (Figure 6 (c)), even if a small triggering signal is
introduced (because of TKI inhibition, step 17-step 20), the
downstream components are not regulated but are activated
because the biological network evolves to Positive Positive
(PP) Feedback which induces a slower but amplified signal
response and enhances bi-stability.

V. CONCLUSIONS

In this paper, we have proposed a convex optimization-
based inference method in order to understand and identify
a model for time evolving biological networks. The identi-
fication problem has led to a convex optimization problem
with two main penalty functions by which we can match the
experimental data with a sparse and robust representation,
using a priori information of structure. We show that the
proposed schemes can be useful to capture the dynamic evo-
lution of the network and understand the biological system
with a systems point of view, through examples. Also, we
use this algorithm to study a breast cancer signal pathway to
understand short-term and long-term behaviors.
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Fig. 6. (a) Signal is triggered (b) TKI is introduced (short term) (c) TKI is introduced (long term) (gray: not triggered edge, red : activation edge, blue :
inhibition edge, light red/blue: deactivated edges after once activated).

Fig. 7. The upper two figures show the normalized biological data and
the assumed nucleus level. The other (lower) figures show the strength of
the downstream edges. For example, the edge connecting HER23 to MAPK
(middle figure) is activated from step 4 to step 9 but deactivated from step
9 to 18.
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