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Abstract— The manuscript is concerned with characteri-
zations of a set of matrix-valued, time-varying, uncertain
multiplication operators. The set of uncertain multiplication
operators arises from robust stability analysis of systems
with aperiodic sampling-and-hold devices, where the sampling
periods are assumed to be bounded within a given range.
Conditions under which the uncertain operator is positive real
are identified. Based on the positive real property, a number
of quadratic constraints are derived for the uncertain operator.
Such quadratic constraints are proven to be useful in analyzing
robustness of aperiodic sampled-data systems against variation
of sampling intervals.

I. INTRODUCTION

Consider the state space system

ẋ(t) = Ax(t) +Bu(t)

where x and u respectively denote the state and the control

input taking values in Rn and Rm. A and B are two real-

valued matrices of comparable dimensions. We assume the

system is operated under the following scenario:

• Measurements of states are taken at time instances

t = τ [k] (k = 0, 1, · · · ) where {τ [k]} is a sequence

of unknown real numbers satisfying

τ [0] = 0, 0 < θ ≤ τ [k + 1] − τ [k] ≤ θ̄ <∞,

where θ and θ̄ are two given constants.

• The control input u is determined by the feedback rule:

u(t) = Fx(τ [k]), ∀ t ∈ [τ [k], τ [k + 1]).

Under the scenario stated above, the resulting feedback

system has the form

ẋ(t) = Ax(t) +BFx(τ [k]), ∀ t ∈ [τ [k], τ [k + 1]). (1)

Systems of such form are called “aperiodic sampled-data

control systems”. Applications of such system model can be

found in networked and/or embedded control systems (see

[1], [2] and references therein), where resources for mea-

surement and control are limited. In view of the widespread

of use of networked and embedded control systems, robust

stability analysis of system model (1) against variation of

sampling intervals is both theoretically and practically im-

portant. Various approaches for analyzing such robustness

property have been proposed in the literature; see, for exam-

ples, [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].
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Most existing results are based on the classical Lyapunov the-

orem, by either explicitly or implicitly constructing various

kinds of Lyapunov functions. In contrast, operator-theoretic

approaches receive relatively less attention; some previous

results are found in [7], [12], [13], [14]. In [14], system (1)

is transformed to a feedback interconnection of a linear-time-

invariant discrete-time system and a time-varying uncertain

multiplication operator, and a stability condition based on

the small gain theorem is proposed.

In this manuscript, we aim at refining the stability condi-

tion proposed in [14]. The key idea is to identify properties

of the uncertain multiplication operator useful to robustness

analysis of the aperiodic sampled-data system. In particular,

we are interested in the so-called “positive real” property

of the uncertain multiplication operator. Conditions under

which the uncertain operator is positive real will be derived.

Based on the positive real property, a number of quadratic

constraints are derived for the uncertain operator. Such

quadratic constraints are proven to be useful in analyzing sta-

bility of systems with aperiodic sampling-and-hold devices.

The remaining manuscript is organized as follows: the

rest of this section is devoted to introducing notations and

terminologies that will be used throughout the manuscript.

The exact problem formulation is given in Section II and

important characterizations of the spectrum of the uncertain

operator are presented in Section III. Integral quadratic

constraints which characterizes the positive real property of

the uncertain operator are derived in Section IV. Finally,

we give examples which demonstrate how the positive real

property is helpful in stability analysis in Section V and draw

a few concluding remarks in Section VI.

NOTATIONS AND TERMINOLOGIES

Symbols R, R+, Rn×m, C, C+, Cn×m, and Z+ are

used to denote the sets of real numbers, nonnegative real

numbers, n ×m real matrices, complex numbers, complex

numbers with nonnegative real part, n×m complex matrices,

and nonnegative integers, respectively. Given a matrix M ,

the transposition and the conjugate transposition of M are

denoted by M ′ and M∗, respectively. The spectrum of M
is denoted as eig(M). The notation M > 0 (“≥”) is used to

denote positive definiteness (positive semi-definiteness).

Symbol lm2 denotes the space of Cm-valued, square

summable functions defined on time interval [0,∞). In this

manuscript we consider the usual norm and inner product

functions for l2 space, which are denoted as ‖·‖l2 and 〈·, ·〉l2 ,

respectively. Likewise, given an operator H on l2 space, the

l2-induced norm of H is denoted by ‖H‖l2 A bounded linear-

time-invariant (LTI) self-adjoint operator Π on the l2 space
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Fig. 1. Feedback interconnection of Σ and ∆(A, θ).

defines a quadratic form on l2:

σΠ(v, w) :=

〈[

v
w

]

,Π

[

v
w

]〉

l2

=

∞
∑

k=0

[

v[k]
w[k]

]′(

Π

[

v
w

])

[k]

=

∫ π

−π

[

v̂(jω)
ŵ(jω)

]∗

Π(ω)

[

v̂(jω)
ŵ(jω)

]

dω

where v̂ and ŵ are Fourier transforms of v and w, re-

spectively. The operator Π is referred to as the multiplier

of the quadratic form σΠ. The multiplier Π is often block

partitioned into the form
[

Π11 Π12

Π∗
12 Π22

]

where the dimensions of Πij are consistent with those of v
and w.

Given an operator H and a quadratic form σΠ(v, w)
defined on l2 space, we said that H satisfies the integral

quadratic constraint defined by σΠ, or more often “H satis-

fies the integral quadratic constraint (IQC) defined by Π” to

emphasize the multiplier involved, if σΠ(v,H(v)) ≥ 0 for

all v ∈ l2. H is called “positive real” if it satisfies the integral

quadratic constraint defined by σp(v,H(v)) := 〈v,H(v)〉l2 .

II. PROBLEM FORMULATION

Consider the aperiodic sampled-data system (1). Let

x[k] := x(τ [k]). We have

x[k + 1] = Φ(τ [k + 1] − τ [k])x[k], (2)

where

Φ(τ) = eAτ +

(
∫ τ

0

eA(τ−η)dη

)

BF. (3)

Let τ [k + 1]− τ [k] = h0 + θ[k], where h0 ∈ [θ, θ̄]. In some

applications it is natural to assume θ = 0. In the sequel we

will occasionally make this assumption.

One can verify that (2) can also be expressed as

x[k + 1] = (Φ(h0) + ∆(θ[k])Ψ(h0)) x[k], (4)

where

Ψ(h) = AΦ(h) +BF, ∆(θ) :=

∫ θ

0

eAηdη. (5)

System (4) can be equivalently represented as a feedback

interconnection of an LTI discrete-time system Σ:

Σ[z] := Ψ(h0) (zI − Φ(h0))
−1

(6)

|b|e
3aπ
2|b| = |a|

b

a

Fig. 2. Illustration of the set P; the set includes the real axis (axis a) and
the pink area.

and the time-varying multiplication operator ∆(A, θ) : v 7→
w, w[k] = ∆(θ[k])v[k]. Figure 1 illustrates the feedback

system.

In [14], it is shown that l2 stability of the (Σ,∆) feedback

system shown in Figure 1 implies exponential stability of the

aperiodic sampled-data system (1). A small gain condition,

‖Σ‖l2 · ‖∆(A, θ)‖l2 < 1, is proposed to verify l2 stability

of the (Σ,∆) feedback system. Furthermore, an estimate

of ‖∆(A, θ)‖l2 is given and a procedure is provided for

checking exponential stability of (1).

The goal of this manuscript is aimed at refining the

stability condition proposed in [14]. More specifically, we are

interested in identifying the conditions under which ∆(A, θ)
is positive real. By definition, positive realness of ∆(A, θ)
implies that ∆(A, θ) satisfies certain IQCs. With these inte-

gral quadratic constraints identified, the general IQC stability

theory can be applied to derive stability conditions for the

(Σ,∆) feedback system.

III. CHARACTERIZATIONS OF THE SPECTRUM OF ∆(θ)

In this section, we characterize the spectrum of the matrix

∆(θ) defined in (5), and identify the conditions under which

the spectrum of ∆(θ) belongs to C+. The following lemma

shows the relationship between the spectrums of matrices A
and ∆(θ).

Lemma 1: eig (∆(θ)) = S1 ∪ S2, where

S1 =

{

eλθ − 1

λ
: λ ∈ eig(A), λ 6= 0

}

, (7)

and

S2 =

{

{θ} if 0 ∈ eig(A)

∅ otherwise
(8)

Proof: Let Jp(λ) denote the p× p Jordan block with λ
being the value of its diagonal elements. Consider the Jordan

canonical form of A

S−1AS = J =







Jn1(λ1)
. . .

Jnq
(λq)






,

where ni ≥ 0, i = 1, · · · , q, and n1 + · · ·+nq = n. Without

loss of generality, we assume λ1 = 0 and λi 6= 0, i =
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2, · · · , q. Clearly,

S−1∆(θ)S =

∫ θ

0

eS
−1ASηdη =

∫ θ

0

eJηdη

=















∫ θ

0

eJn1(λ1)ηdη

. . .
∫ θ

0

eJnq (λq)ηdη















.

Furthermore, each

∫ θ

0

eJni
(λi)ηdη is a upper triangular ma-

trix, whose diagonal entries are equal to θ if i = 1, and equal

to (eλiθ − 1)/λi if 2 ≤ i ≤ q. Finally, since the spectrum of

a matrix is invariant under similarity transformations, we see

that the spectrum of ∆(θ) consists of θ, which corresponds

to the zero eigenvalue of A, and (eλiθ − 1)/λi, which

corresponds to the eigenvalue λi of A, i = 2, · · · , q. This

concludes the proof.

Now consider the following subset of C

P := {a+ jb : |b|e
3aπ
2|b| ≤ |a|, a < 0} ∪ R+ (9)

An illustration of the set can be found in Figure 2. The

conditions under which eig(∆(θ)) ∈ C+ are given in the

following propositions.

Proposition 1: eig(∆(θ)) ⊂ C+ for all θ ∈ R+ if and

only if eig(A) ⊂ P.

Proof: Let λ := a + jb ∈ eig(A). Following Lemma 7

we know that the corresponding eigenvalue of ∆(θ) is either

equal to θ if λ = 0, or equal to e(a+bi)θ−1
a+bi if λ 6= 0. In the

latter case, the real part of the complex eigenvalue is equal

to

R(θ) =
1

a2 + b2
(

a(eaθ cos bθ − 1) + beaθ sin bθ
)

.

Note that R(0) = 0 and dR

dθ (θ) = eaθ cos bθ. Hence, if b =
0, dR

dθ (θ) ≥ 0 for all θ ∈ R+ which in turn implies that

R(θ) ≥ 0 for all θ ∈ R+. This proves that eig(∆(θ)) ∈ C+

if eig(A) ∈ R.

Suppose b 6= 0. It is then easy to verify that R(θ) has

local minimums at θk = 3+4kπ
2b if b > 0 or θk = −(3+4kπ)

2b
if b < 0, k ∈ Z+. The corresponding local minimums are

R(θk) = −a+ beaθk sin bθk = −a− |b|e
3aπ
2|b| e

2aπ
|b|

k

Clearly, if a > 0, R(θk) < 0 for all k ∈ Z+. This proves

that, if a > 0 and b 6= 0, then the real part of e(a+bi)θ−1
a+bi is

negative for some θ ∈ R+.

Finally, suppose b 6= 0 and a < 0. Then clearly

min
k∈Z+

R(θk) = R(θ0) = |a| − |b|e
3aπ
2|b|

and therefore R(θ) ≥ 0 for all θ ∈ R+ if and only if

|b|e
3aπ
2|b| ≤ |a|. Combining all cases together, we conclude

that R(θ) ≥ 0 for all θ ∈ R+ if and only if λ ∈ P. This

concludes the proof.

Proposition 2: Suppose eig(A) ∩ Pc 6= ∅, where Pc =
C\P. Then eig(∆(θ)) ⊂ C+ for all θ ∈ [0, θ0], where

θ0 = min
λ∈eig(A)∩Pc

θ̆(Reλ, Imλ) (10)

and θ̆(a, b) is the greatest lower bound of the following set
{

θ : θ > 0,
1

a2 + b2
(

a(eaθ cos bθ − 1) + beaθ sin bθ
)

< 0

}

.

Proof: Let λ := a + jb ∈ eig(A) ∩ Pc. Denote

the eigenvalue of ∆(θ) corresponding to λ as λ∆(θ). By

Proposition 1, we know that

Reλ∆(θ) =
1

a2 + b2
(

a(eaθ cos bθ − 1) + beaθ sin bθ
)

and Reλ∆(θ) < 0 for some positive θ. Hence θ̆(Reλ, Imλ)
is well defined. Furthermore, from the proof of Proposition 1,

we also know that Reλ∆(0) = 0 and the derivative of

Reλ∆(θ),

dReλ∆

dθ
(θ) = eaθ cos bθ,

which is nonnegative for θ ∈
[

0, π
2|b|

]

. Thus, by continuity

we know that Reλ∆(θ) ≥ 0 for θ ∈ [0, θ̆(Reλ, Imλ)].
Having established this, it is now clear that eig(∆(θ)) ⊂ C+

for all θ ∈ [0, θ0], where

θ0 = min
λ∈eig(A)∩Pc

θ̆(Reλ, Imλ).

A conservative estimate of θ0 is given in the following

proposition.

Proposition 3: Suppose eig(A) ∩ Pc 6= ∅, where Pc =

C\P. Then eig(∆(θ)) ⊂ C+ for all θ ∈
[

0, π
2b0

]

, where

b0 = maxλ∈eig(A)∩Pc |Imλ|.
Proof: Following the arguments in the proof of Propo-

sition 2, we know that Reλ∆(0) = 0 and

dReλ∆

dθ
(θ) ≥ 0, ∀θ ∈

[

0,
π

2|b|

]

.

Thus, Reλ∆(0) ≥ 0 for all θ ∈
[

0, π
2|b|

]

. This concludes the

proof.

Proposition 2 provides a mean to estimate an upper bound

of θ for which ∆(θ) is passive. The algorithm involves

finding all eigenvalues of A which locate in Pc and the cor-

responding θ̆. For a λ ∈ eig(A) ∩Pc, a good approximation

of θ̆(Reλ, Imλ) can be easily found by sweeping θ over a

dense grid of
[

π
2|b| ,

3π
2|b|

]

. Actually, numerical experiments

indicate that θ̆(Reλ, Imλ) is usually just slightly larger than
π

2|b| .

IV. POSITIVE REALNESS OF ∆(A, θ) AND THE

CORRESPONDING INTEGRAL QUADRATIC CONSTRAINTS

In this section, we consider the multiplication operator

∆(A, θ) : v 7→ w defined in Section II

w[k] = (∆(A, θ)v) [k] = ∆(θ[k])v[k] (11)
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and show under what conditions the operator is positive

real. Furthermore, based on positive real property, charac-

terizations in the form of integral quadratic constraints are

identified for ∆(A, θ). Note that if |θ[k]| is upper bounded

by a constant for all k, then ∆(A, θ) is a bounded operator

on l2.

Theorem 1: Consider the multiplication operator ∆(A, θ)
defined in (11). Suppose A can be diagonalized by the

similarity matrix T , such that

T−1AT =







λ1In1

. . .

λqInq






, (12)

where ni, i = 1, · · · , q, are positive integers and n1 +
· · · + nq = n. If 0 ≤ θ[k] ≤ θ0 for all k, where θ0 is

defined as in (10), then T−1
∆(A, θ)T is positive real and

∆(A, θ) satisfies integral quadratic constraint defined by the

multiplier

Π1 =

[

T−1 0
0 T−1

]∗ [
0 X
X∗ 0

] [

T−1 0
0 T−1

]

(13)

where X has the form

X =







X1

. . .

Xq






,

and Xi = X∗
i ∈ Cni×ni , i = 1, · · · , q, is any positive

semidefinite matrix.

Proof: Given v ∈ l2, let w = ∆(A, θ)v, vT = T−1v,

and wT = T−1w. One can verify that

wT [k] = T−1
∆(A, θ)TvT [k] =

(

∫ θ[k]

0

eT
−1ATηdη

)

vT [k]

=







δ1[k]In1

. . .

δq[k]Inq






vT [k] =







δ1[k]vT,1[k]
...

δq[k]vT,q[k]






, (14)

where δi[k] = eλθ[k]−1
λi

if λi 6= 0, or δi[k] = θ[k] if λi = 0.

Furthermore, since 0 ≤ θ[k] ≤ θ0 for all k, Reδi[k] ≥ 0
for all i = 1, · · · , q and for all k. Therefore, let wT,i[k] =
δi[k]vT,i[k] and we have

(XwT [k])∗vT [k] + vT [k]∗(XwT [k])

=

q
∑

i=1

(2Reδi[k]) vT,i[k]
∗XivT,i[k] ≥ 0, ∀ k.

This proves that
〈[

vT
wT

]

,

[

0 X
X∗ 0

] [

vT
wT

]〉

l2

≥ 0,

which in turn implies that ∆(A, θ) satisfies IQC defined by

Π1. Finally, by taking X as the identify matrix, we prove

that T−1
∆(A, θ)T is positive real.

Theorem 2: Consider the multiplication operator ∆(A, θ)
defined in (11). Suppose A satisfies (12) and all λi, i =
1, · · · , q, are real. Also suppose there exists a constant θ̄

such that 0 ≤ θ[k] ≤ θ̄ for all k. Then T−1
∆(A, θ)T is pos-

itive real and ∆(A, θ) satisfies integral quadratic constraint

defined by the multiplier

Π2 =

[

T−1 0
0 T−1

]∗ [
0 X
X∗ 0

] [

T−1 0
0 T−1

]

(15)

where X has the form

X =







X1e
jψ1

. . .

Xqe
jψq






,

Xi = X∗
i ∈ Cni×ni , i = 1, · · · , q, is any positive

semidefinite matrix, and ψi ∈
[

−π
2 ,

π
2

]

.

Proof: The proof is similar to that of Theorem 1. The

crucial difference here is that, since all eigenvalues of A are

real, δi[k], i = 1, · · · , q, are real and positive for all k. Thus,

(XwT [k])∗vT [k] + vT [k]∗(XwT [k])

=

q
∑

i=1

(2δi[k] cosψi) vT,i[k]
∗XivT,i[k] ≥ 0, ∀ k.

This implies that ∆(A, θ) satisfies IQC defined by Π2.

Finally, taking X as the identify matrix (all Xi = I and

all ψi = 0) shows that T−1
∆(A, θ)T is positive real.

Theorem 3: Consider the multiplication operator ∆(A, θ)
defined in (11). Suppose A satisfies (12) and all λi, i =
1, · · · , q, are real. Also suppose all θ[k] have the same value.

Then ∆(A, θ) satisfies integral quadratic constraint defined

by the multiplier

Π3 =

[

T−1 0
0 T−1

]∗ [
0 X
X∗ 0

] [

T−1 0
0 T−1

]

(16)

where X : [−π, π] → Cn×n has the form

X(ω) =







X1(ω)ejψ1(ω)

. . .

Xq(ω)ejψq(ω)






,

and Xi, i = 1, · · · , q, is a Cni×ni matrix-valued function

which satisfies Xi(ω) = Xi(ω)∗ ≥ 0 for all ω ∈ [−π, π].
The function ψi : [−π, π] → R, i = 1, · · · , q, satisfies

ψi(ω) ∈
[

−π
2 ,

π
2

]

for all ω ∈ [−π, π].

Proof: The crucial point here is that all θ[k] have the

same value. This implies that each δi[k], as defined in (14),

has the same value for all k. In other words, the operator

∆(A, θ) is time invariant. Let v ∈ l2, w = ∆(A, θ)v, vT =
T−1v, wT = T−1w, and v̂, ŵ, v̂T , ŵT are Fourier transforms

of v, w, vT , and wT , respectively. Since ∆(A, θ) is time

invariant, we have

ŵT = ∆(A, θ)v̂T , ⇔







ŵT,1
...

ŵT,q






=







δ1v̂T,1
...

δqv̂T,q






.
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Moreover, note that
〈[

v
w

]

,Π3

[

v
w

]〉

l2

=

∫ π

−π

[

v̂T (ejω)
ŵT (ejω)

]∗ [
0 X(ω)

X∗(ω) 0

] [

v̂T (ejω)
ŵT (ejω)

]

dω

=

q
∑

i=1

∫ π

−π

(2δi cosψi(ω))v̂T,i(e
jω)∗Xi(ω)v̂T,i(e

jω)dω

(17)

Since the eigenvalues of A are all real, by Lemma 1 all

δi are larger than or equal to zero. Furthermore, Xi(ω) =
Xi(ω)∗ ≥ 0 and ψi(ω) ∈

[

−π
2 ,

π
2

]

for all i and for all ω ∈
[−π, π]. Therefore, the integrant of integral (17) is greater

than or equal to zero for all ω ∈ [−π, π], which in turn

implies that

〈[

v
w

]

,Π3

[

v
w

]〉

l2

≥ 0

and ∆(A, θ) satisfies IQC defined by Π3. Finally, again,

taking X as the identify matrix (all Xi(ω) = I and all

ψi(ω) = 0 ∀ω) shows that T−1
∆(A, θ)T is positive real.

To end this section, we provide for ∆(A, θ) an integral

quadratic constraint characterization that comes from the

upper bound of ‖∆(A, θ)‖l2 , and the general IQC theory

by which one can use to derive stability conditions for the

(Σ,∆) feedback system.

Theorem 4: Suppose 0 < θ[k] ≤ θ̄. Then ∆(A, θ) satis-

fies integral quadratic constraint defined by the multiplier

Π4 =

[

γ2e−A
∗ξe−Aξ 0

0 −e−A
∗ξe−Aξ

]

(18)

where ξ is any real number and

γ =

∫ θ̄

0

eµ(A)ηdη, µ(A) := λmax

(

A+A∗

2

)

.

Proof: See [14].

Theorem 5 (IQC): Consider the (Σ,∆) feedback system

shown in Figure 1. Assume Σ is stable and there exists a

constant θ̄ such that 0 < θ[k] ≤ θ̄. Suppose

1) ∆(A, θ) satisfies the IQC defined by Π;

2) Π11 ≥ 0 and −Π22 ≥ 0;

3) there exists ǫ > 0 such that

[

Σ(ejω)
I

]∗

Π(ejω)

[

Σ(ejω)
I

]

≤ −ǫI, ∀ ω ∈ [−π, π].

Then the feedback interconnection of Σ and ∆ is stable.

Proof: The theorem presented above is completely ana-

log to that of [15], where the continuous-time systems were

considered.

V. EXAMPLES

In this section, we show how helpful the positive real

property is in reducing conservatism of stability analysis by

two examples.

Example 1: Let A = 0, B = 1, F = −
ε

h0
, where 0 <

ε≪ 1. Let τ [k+1]− τ [k] = h0 + θ[k], where 0 ≤ θ[k] ≤ θ̄.

With these values, we have

Φ(h0) = eAh0 +

(

∫ h0

0

eAηdη

)

BF = 1 − ε

Ψ(h0) = AΦ(h0) +BF = eAh0(A+BF ) = −
ε

h
∆(θk) = θk

and the discrete-time system Σ has the form

Σ[z] = −
ε

h0

1

z − 1 + ε
.

Note that

Σ[ej0] = −
1

h0
,

Σ[ejφ0 ] = j
ε

h0

1

sinφ0
, cosφ0 = 1 − ε, 0 < φ0 < π,

Σ[ejπ] =
ε

h0

1

2 − ε
.

Thus we have

ReΣ[ejω] < 0, |Σ[ejω]| >
ε

h0

1

sinφ0
, ∀ω s.t. cosω > 1 − ε,

ReΣ[ejω] ≥ 0, |Σ[ejω]| ≤
ε

h0

1

sinφ0
, ∀ω s.t. cosω ≤ 1 − ε.

Hence by the small gain condition proposed in [14], which

is equivalent by applying Theorem 5 with IQC defined by

Π4, one obtain the upper bound θ̄ as

‖Σ‖−1
l2

= h0.

On the other hand, with the positive real property of

∆(A, θ), we may apply Theorem 5 with IQC defined by

Π1 + Π4 (with T = I in Π1). In this case, the stability

condition becomes: there exists x ≥ 0 and ǫ > 0 such that

θ̄2|Σ[ejω]|2 − 1 + 2xReΣ[ejω] ≤ −ǫ, ∀ ω ∈ [−π, π].

It can be readily verified that, for the above stability condition

to hold, the upper bound θ̄ must satisfy the constraint

θ̄2
(

ε

h0

1

sinφ0

)2

< 1, ⇔ θ̄ <
h0 sinφ0

ε
= h0

√

2 − ε

ε
.

Since ε ≪ 1, clearly, one obtain a much better bound for

θ[k] if the positive real property of ∆(A, θ) is taken into

account.

Example 2: Consider the following third order unstable

system:

A =





0 1 0
0 0 1

1010 99 −10



 , B =





0
0
1





with the feedback gain

F =
[

−1016.9 −116.1 3.2
]
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and the nominal sampling period h0 = 0.01 assuming that

θ = 0. One can verify that

‖Ψ(h0)(zI − Φ(h0))
−1‖l2 = 517.49

and hence the gain information of ∆(A, θ) guarantees the

stability if

0 ≤ θ[k] ≤ 0.0013, ∀k,

but not for θ[k] ≥ 0.0014. In other words, the small gain

condition

‖∆(A, θ)‖l2 · ‖Ψ(h0)(zI − Φ(h0))
−1‖l2 < 1

holds for θ ∈ [0, 0.0013], and fails to hold if θ ≥ 0.0014.

On the other hand, applying Theorem 5 with IQC defined

by Π:

Π :=

[

γ2I 0
0 −I

]

+ ζ

[

0 T−∗T−1

T−∗T−1 0

]

,

where T is the similarity transformation matrix which diag-

onalizes A and ζ is a positive real parameter, one obtains

that the stability is guaranteed for

‖∆(A, θ)‖l2 < 0.0029,

which is satisfied if

0 ≤ θ[k] ≤ 0.00179.

In other words, by utilizing the gain information together

with the positive real property of ∆(A, θ), the stability

margin is improved by more than 37%.

VI. CONCLUDING REMARKS

Robustness analysis of aperiodic sampled-data systems

against variation of sampling intervals is considered. The

methodology adopted here follows that of [14]. The key

idea is to transform the aperiodic sampled-data system into a

feedback interconnection of an LTI discrete-time system and

an uncertain multiplication operator; conditions for stability

are then obtained by applying IQC theory to the transformed

system. The new technical contribution of this manuscript

is to identify the conditions under which the uncertain

multiplication operator is positive real, and to derive the

corresponding integral quadratic constraint characterizations

for the operator. Two examples are given to illustrate that

the new IQCs indeed can reduce conservatism of stability

analysis. Detailed comparison to other recent articles on this

subject, e.g., [16], [17], remains open and is a subject for

future research.
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