
Iterative learning control for nonlinear systems with input constraints
and discontinuously changing dynamics

Marnix Volckaert* , Moritz Diehl** , Jan Swevers*

Abstract— This paper discusses the implementation and ap-
plication of an iterative learning control (ILC) algorithm for
nonlinear systems with input constraints and discontinuously
changing dynamics. The ILC approach consists of two steps:
in the first step the nominal model of the plant is corrected
based on the previous iteration’s output, and in the second
step the corrected model is inverted to track the reference.
Both steps are formulated as nonlinear least squares problems
with a sparse, banded structure, and solved using an efficient
implementation of an interior point method called IPOPT. Due
to this implementation high order systems and long data sets
can be efficiently processed. The considered application is a
trajectory tracking problem of a one degree-of-freedom robot
arm carrying an object that is suddenly released during motion.
Both the case where the exact time instant of release is known
and unknown are considered.

I. INTRODUCTION

Many industrial applications require a system to perform
a given task repeatedly. The task is often represented by a
reference output yr, that needs to be followed by the system’s
output y. Iterative learning control (ILC) is an open loop
control strategy that exploits the repetition of the task to
iteratively improve the input signal u that is applied to the
system.

Initial research into ILC resulted in a general formulation
of the update law of the following form [1]:

ui+1 = Q[ui + L(ei)], (1)

with Q(·) and L(·) a robustness and learning operator respec-
tively, and ei the tracking error, defined as ei = yr − yi.
Generally regarded as the first ILC algorithm is the work by
Arimoto et al. [2], for which L(ei) = Γei and without ro-
bustness operator. More elaborate (model based) algorithms
were developed by extending the learning operator to the
inverse of a linear model of the system, and choosing Q(·) as
an operator to guarantee convergence of the algorithm, such
as a zero-phase low pass filter [1]. These methods are based
on linear models, and are often formulated in the frequency
domain, which makes it hard to adapt them in their current
form to nonlinear systems. [3] shows an extension of the
general form by introducing a nonlinear learning operator.

* Marnix Volckaert and Jan Swevers are with the Department of Mechani-
cal Engineering, Katholieke Universiteit Leuven, Leuven, Belgium. Address
all correspondence to: marnix.volckaert@mech.kuleuven.be.

** Moritz Diehl is with the Department of Electrical Engineering,
Katholieke Universiteit Leuven, Leuven, Belgium.

This work benefits from FWO-project G.0422.08, K.U.Leuven-BOF
PFV/10/002 Center-of-Excellence Optimization in Engineering (OPTEC),
IWT-SBO-project 80032 (LeCoPro) and the Belgian Programme on In-
teruniversity Attraction Poles, initiated by the Belgian Federal Science
Policy Office (DYSCO).

Other examples of nonlinear ILC algorithms are the Newton-
type and secant-type ILC schemes described in [4].

The majority of ILC research focuses on time invariant
systems. Efforts to extend the general ILC approach to LTV
systems include [5], [6] and [7]. These control methods can
be applied to systems with continuously changing dynamic
behavior. However, many applications involve systems that
have discontinuously changing dynamics, such as pick and
place machines that pick up and release objects of a certain
mass. Furthermore, an important drawback of these methods
is that they cannot take actuator constraints into account.

This paper considers an ILC algorithm that can overcome
the shortcomings of the presented existing algorithms. In
other words an algorithm that can be applied to nonlinear
systems with discontinuously changing dynamics, and that
can account for input constraints. The authors have intro-
duced such an algorithm in [8]. The algorithm consists of
two steps: a model correction and a model inversion, which
are both formulated as a nonlinear least squares problem.
It was shown in [8] that a particular case of the introduced
algorithm is equivalent to the existing linear quadratically
optimal ILC algorithm (LQOILC), as described in [1].

Since [8] focused more on the theoretical background of
the algorithm, and on its equivalence with LQOILC under
certain conditions, this paper focuses on the practical imple-
mentation and validation of the algorithm. More specifically,
this paper discusses how an interior point method algorithm
for large scale sparse nonlinear programs called IPOPT [9] is
used such that large data records can be efficiently processed.
The validation case study is a one degree-of-freedom robot
arm carrying an object that is suddenly released during
motion.

Section II briefly introduces the ILC algorithm described
in [8]. Section III discusses the practical implementation of
the algorithm using IPOPT. Section IV describes the numer-
ical validation case study and demonstrates the performance
of the algorithm, followed by conclusions in section V.

II. NONLINEAR ILC WITH CONSTRAINTS

This section briefly summarizes the two step ILC algo-
rithm that was introduced in [8]. Let us assume that an
approximate input-output model P̂ of the considered plant
P is available. Let u = [u0, u1, · · · , uN−1]T and y =
[y0, y1, · · · , yN−1]T , with N the number of samples, denote
the input and output signal respectively. Since the purpose of
ILC is to find the input signal that tracks a reference output
yr, the problem is essentially to solve for u∗ = P−1(yr).

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3035

Since the plant is not know exactly, this problem cannot be
solved directly.

The presented algorithm transforms this plant inversion
problem into a model inversion problem, using a corrected
model P̂c. This corrected model is a function of the nom-
inal model P̂ and a correction vector α, written as α =
[α0, α1, · · · , αN−1]T . There are several alternatives to cal-
culate P̂c, such as:

P̂c(u,α) = P̂ (u)+α, P̂ (u+α), diag(α)·P̂ (u). (2)

The model correction vector α is updated after each iteration
based on the input and output data vectors ui and yi mea-
sured during trial i. This model correction step is the first step
of the ILC algorithm and consists of calculating the optimal
value of αi, such that P̂c(ui,αi) describes yi better than
P̂ (ui). It is described in detail in [8] that this corresponds to
minimizing the predicted next iteration tracking error, ei+1.
The optimization problem that constitutes this first step can
be formulated as:

αi = arg min
α
‖yi − P̂c(ui,α)‖2Qα + ‖α‖2Rα + ‖α−αi−1‖2Sα

s.t. (3)
gα(α) ≤ 0,

where ‖ · ‖ denotes the weighted 2-norm, Qα is an N ×N
positive-definite diagonal matrix, and Rα and Sα are N×N
positive-semidefinite diagonal matrices. The function gα(α)
is a (non)linear function to constrain the vector α.

Regularization with Rα 6= 0N×N controls the magni-
tude of αi along the data record. For example, increasing
the weighting of this term at specific samples reduces the
model correction only at this part of the signal, which can
avoid local instabilities of the ILC algorithm. Sα 6= 0N×N

introduces a memory in the learning dynamics, similar to
higher order ILC algorithms, and reduces the sensitivity of
α to measurement noise. Knowledge of the model quality
can be incorporated through the application of inequality
constraints.

The second step of the two step approach is then to
calculate the optimal next iteration input signal ui+1. The
second step can be formally written as:

ui+1 = arg min
u
‖yr − P̂c(u,αi)‖2Qu

+ ‖u‖2Ru
+ ‖δu‖2Rδu

s.t. (4)
gu(u) ≤ 0,

with Qu an N × N positive-definite diagonal matrix, and
Ru and Rδu N×N positive-semidefinite diagonal matrices.
The vector δu is defined as δu = [δu0, δu1, . . . , δuN−1]T ,
with δuk = uk+1 − uk. Regularization with Ru 6= 0N×N

can be necessary to apply the algorithm to non-minimum
phase systems [10]. Through the regularization on δu, it is
possible to smooth the input ui+1, while gu(u) ≤ 0 can
be used to impose input constraints. The initial input signal
that is applied to the system, u0, is the solution of the model
inversion for the nominal model P̂ , using α = 0.

The nominal model P̂ can be linear or nonlinear. Fur-
thermore, P̂ is not necessarily a fixed model along the data
record. E.g. if the system dynamics suddenly change at the
discrete time instant k = kc, P̂ can be of the following form:

P̂ (u) =

{
P̂1(u) for k < kc

P̂2(u) for k ≥ kc,
(5)

with P̂1(u) and P̂2(u) two different models.
The optimization problems of both step one and two

are nonlinear least squares problems, which can be large
if long data and model correction vectors are considered.
Service load simulation for durability tests in automotive
applications is an example of such a large ILC problem [11].
However, both problems have a favorable sparse structure,
and hence can be solved efficiently using e.g. IPOPT [9].
This is discussed in the following section.

III. PRACTICAL IMPLEMENTATION
This section discusses the practical implementation of the

presented algorithm. The solution of the second step (4) will
be described in detail. The solution of the first step (3) is
similar.

The optimization problem (4) can be solved efficiently if
the matrices that are used in the calculation of the optimal
solution have a sparse, banded structure that is exploited by
solvers such as IPOPT to speed up the calculations. In order
to obtain this favorable structure, it is assumed that the model
P̂ is a nonlinear discrete-time state space model:

xk+1 = f [xk, uk]

yk = h[xk, uk],
(6)

with xk ∈ Rn the state vector at time instant k and n the
model order. Another important step to introduce sparsity and
structure in the optimization problem is to use an augmented
variable vector w, that contains the state vectors xk at all
considered time instances k, the input u, and the input
difference vector, δu. Simultaneously optimizing on both
inputs and states increases the problem size, since in this case
w contains (n+ 2) ∗N elements, but also increases sparsity
and provides more degrees of freedom to the optimization
algorithm. This makes this simultaneous approach more
robust compared to the conventional sequential approach
to dynamic optimization. This in particular allows to much
better treat unstable or even chaotic systems [12].

In this case equation (4) can be written as the standard
nonlinear program (NLP):

min
w

f(w) s.t.

g(w) ≤ 0 (7)
h(w) = 0

with f(w) the objective function, g(w) the inequality con-
straints and h(w) the equality constraints. The inequality
constraint function g(w) is used to constrain the input signal
and contains the following elements:

g(w) =

{
umin − uk
uk − umax

for k = 0, . . . , N − 1 (8)

3036

with umin and umax the minimum and maximum input.
The equality constraint function h(w) forces the states to

correspond to the model dynamics, and imposes the defini-
tion of δu, and therefore contains the following elements:

h(w) =


xk+1 − f [xk, uk] for k = 0, . . . , N − 2

δuk − uk+1 + uk for k = 0, . . . , N − 2

x0 − f [xN−1, uN−1]

δuN−1 − u0 + uN−1.

(9)

The last two equations are included to force the input
signal to be periodic, which is a requirement for some appli-
cations [11]. An alternative implementation of the algorithm
replaces these equations by initial and end state constraints.

A necessary condition for optimality of an optimizer w∗ to
problem (7) is the following Karush-Kuhn-Tucker equation
[13]:

∇f(w∗)− JTg (w∗)λg − JTh (w∗)λh = 0, (10)

with ∇f(w) the gradient of f(w), Jg and Jh the Jacobian
matrices of g(w) and h(w) respectively, and λg, λh ∈ RN
the corresponding Lagrange multipliers. Applying Newton’s
method to (10) provides search directions ∆w, ∆λg and
∆λh, using the solution of the following equation:

∇2
wwL∆w−JTg (w)∆λg − JTh (w)∆λh = (11)

∇f(w)− JTg (w)λg − JTh (w)λh

with ∇2
wwL the Hessian of the Lagrangian function, defined

as L = f(w) − λTg g(w) − λThh(w). For nonlinear least
squares problems this term can be approximated by JTf Jf ,
with Jf the Jacobian of the gradient of the objective function
∇f(w) [13]. The solution ∆w of (11) is used to make
iterative steps towards an optimizer w∗ of (7).

The number of elements of the functions ∇f(w), g(w)
and h(w), and of the variable vector w depends linearly on
N , so the dimensions of the Jacobians Jf , Jg and Jh depend
quadratically on N . However, each of these matrices has a
block diagonal structure, with a limited number of nonzero
elements per block, and one block per sample. Therefore
the number of nonzero elements only increases linearly with
increasing N . The number of elements and the number of
nonzeros in JTf Jf , Jg and Jh is given in table I.

Nr. of elements Nr. of nonzeros

JT
f Jf (n + 2)2N2

[
1 +

(n+1)(n+2)
2

]
N

Jg 2(n + 2)N2 2N

Jh (n + 1)(n + 2)N2 (n2 + 2n + 3)N

TABLE I
TOTAL NUMBER OF ELEMENTS AND NUMBER OF NONZEROS OF THE

JACOBIAN MATRICES

Due to this structure and sparsity, equation (11) and hence
the NLP (7) can be efficiently solved by a specialized solver
such as IPOPT [9], an open source implementation of an
interior point algorithm for large scale sparse NLPs, in which

case the calculation time to solve problem (11) increases
linearly with increasing N .

IV. NUMERICAL VALIDATION

This section discusses the numerical validation of the
developed two step ILC algorithm, which is another con-
tribution of this work compared to [8]. The considered case
is a robot arm with one rotational degree of freedom which is
schematically represented in figure 1. The robot arm moves
in the vertical plane. The input is the torque T applied to the
arm at the joint, which is limited to the range of ±12 Nm.
The output is the angle θ of the arm measured as shown in
figure 1. Joint viscous friction is considered. The dynamics

m

L

T
c

θ

0 1 2 3 4 5
20

10

0

10

20

30

40

50

60

Time [s]

An
gl

e
[d

eg
]

Fig. 1. Schematic drawing of the considered application (left), and desired
output signal (right)

of this system can be described by a second order nonlinear
state space model with state variables x1 = θ, x2 = θ̇, u = T
and y = θ:

ẋ1 = x2

ẋ2 = − g
L

sin(x1)− c

mL2
x2 +

1

mL2
u

y = x1,

(12)

with length L = 1.0m, mass m = 1.0kg and viscous friction
coefficient c = 2.0Nms/rad, assumed to be known, and g =
9.81m/s2 the gravitational acceleration. m is the equivalent
mass of the arm at its end, assuming a massless rod, so the
arm’s inertia is mL2. The desired motion of the robot arm
is shown in figure 1 on the right, and consists of a smooth
forward and backward motion of 45 degrees.

It is now assumed that the robot arm is carrying an object
of which the mass is not known exactly, introducing a model-
plant mismatch. Furthermore it is assumed that during each
repetition of the motion, the mass is suddenly released, so the
dynamics of the plant change instantaneously. The equivalent
mass m is assumed to be 1.5kg when the object is attached
to the arm. Zero mean Gaussian noise with a variance of
4.8× 10−6 rad2/s2 is added to the angular position data θ.

The applied ILC algorithm uses a discrete-time state space
model of this system which is obtained by discretizing eq.
(12) using the Euler discretization method ẋ = x(t+1)−x(t)

Ts

3037

with a sampling period Ts = 0.002s. The resulting discrete-
time model has the following structure:

x1(t+ 1) = x1(t) + Tsx2(t)

x2(t+ 1) = − gTs
L

sin(x1(t)) +
[
1− cTs

mmL2

]
x2(t)

+
Ts

mmL2
u(t)

y(t) = x1(t),

(13)

with mm the modeled mass. Two different models are used
by the ILC algorithm in the experiments described below, for
the two distinct configurations of the robot arm: model M1
describes the robot arm with the object, while model M2
is valid after the object is released. For M1, the modeled
mass mm is assumed to be 1.4kg, to introduce a model-
plant mismatch. Model M2 is assumed to be exact, using
mm = 1.0kg.

Four different experiments are simulated, as summarized
in table II. During the first experiment the object is not

Nr. Plant Model
1 object not released M1
2 release at 3s M2
3 release at 3s M1 → M2, ∆t = 0s
4 release at 3s M1 → M2, ∆t = 0.4s

TABLE II
OVERVIEW OF SIMULATION EXPERIMENTS

released, so there is no change in the dynamics of the system.
Only model M1 is used, so this experiment serves as a
benchmark for the other experiments. During experiment two
the object is released but the ILC algorithm uses only model
M2, that is, the change in dynamics is not modeled. In exper-
iments three and four both models are used. For experiment
three the load release time is assumed to be known exactly,
while experiment four examines the performance of the ILC
algorithm in case there is a difference in the modeled and
actual load release time. For each experiment, 10 iterations
are considered.

The applied ILC algorithm uses the first alternative model
correction of eq. (2), that is, P̂c(u,α) = P̂ (u) + α. No
regularization or inequality constraints are used in the first
step. In the second step a regularization on δu is used, with
Rδu = 0.001 I , and the input is constrained to the interval
±12 Nm. The reference signal contains 3000 samples. This
means that the optimization variable vector contains 9000
elements for the first step, and 12000 elements for the second
step. However, due to the efficient implementation, the ILC
algorithm needs only 1 second per iteration, running on a
2.4 GHz Intel Core 2 Duo.

Figure 2 shows the results of the first experiment. The
introduced model plant mismatch leads to a tracking error in
the first iteration, as seen from the bottom left graph. On the
right of the figure, it is clear that the tracking error quickly
decreases from iteration to iteration, and the ILC algorithm
needs four iterations to converge. The tracking error remain-
ing after convergence corresponds to the measurement noise

0 2 4 6
5

0

5

10

15

Time [s]

In
pu

t [
Nm

]

0 2 4 6
20

0

20

40

60

Time [s]

O
ut

pu
t [

de
g]

0 2 4 6
5

0

5

0 2 4 6
1

0

1

Tr
ac

kin
g

er
ro

r [
de

g]

0 2 4 6
1

0

1

0 2 4 6
1

0

1

Time [s]

Fig. 2. Experiment 1. TOP LEFT: initial input signal (gray) and converged
input signal (black), BOTTOM LEFT: initial output signal (gray) and
converged output signal (black), RIGHT (top to bottom): tracking error of
the first, second, third and tenth iteration

level except during the forward motion, where the input hits
the 12 Nm input constraint, as can be seen on the top left
graph.

0 2 4 6
5

0

5

10

15

Time [s]

In
pu

t [
Nm

]

0 2 4 6
20

0

20

40

60

Time [s]

O
ut

pu
t [

de
g]

0 2 4 6
20

0

20

0 2 4 6
20

0

20

Tr
ac

kin
g

er
ro

r [
de

g]

0 2 4 6
10

0

10

0 2 4 6
1

0

1

Time [s]

Fig. 3. Experiment 2. TOP LEFT: initial input signal (gray) and converged
input signal (black), BOTTOM LEFT: initial output signal (gray) and
converged output signal (black), RIGHT (top to bottom): tracking error of
the first, second, third and tenth iteration

Figure 3 shows the results of the second experiment. The
initial input signal deviates much from the converged input
signal during the forward motion, because the model used
in the ILC algorithm does not take the extra mass of the
object into account: the torque required to accelerate the arm
is too small yielding a large initial tracking error. The ILC
algorithm has nearly converged after 10 iterations, so the
convergence speed is much slower than during the first ex-
periment. After convergence, the input signal during forward

3038

motion is similar to that of the first experiment. During the
backward motion a smaller input signal is obtained because
of the reduced load.

0 2 4 6
5

0

5

10

15

Time [s]

In
pu

t [
Nm

]

0 2 4 6
20

0

20

40

60

Time [s]

O
ut

pu
t [

de
g]

0 2 4 6
5

0

5

0 2 4 6
1

0

1

Tr
ac

kin
g

er
ro

r [
de

g]

0 2 4 6
1

0

1

0 2 4 6
1

0

1

Time [s]

Fig. 4. Experiment 3. TOP LEFT: initial input signal (gray) and converged
input signal (black), BOTTOM LEFT: initial output signal (gray) and
converged output signal (black), RIGHT (top to bottom): tracking error of
the first, second, third and tenth iteration

Figure 4 shows the results of the third experiment. It
is clear from the graph of the initial input signal that the
ILC algorithm immediately takes the changing dynamics
into account. The initial tracking error during the forward
motion of this experiment is comparable to that of the first
experiment. During the backward motion the initial tracking
error is much smaller in this experiment because the applied
model M2 is exact. The convergence of the ILC algorithm
is comparable to the convergence in the first experiment,
so the sudden change in dynamics does not influence the
convergence of the ILC algorithm.

The results of the fourth experiment are shown in figure
5. It is clear that the initial input signal is reduced too
early, since the time of the release is not modeled accurately.
This leads to an initial tracking error that is higher than for
experiment three, where the release time is known exactly,
but not as high as for experiment two, where no change
in dynamics is taken into account by the ILC algorithm.
However, the algorithm converges after five iterations. The
conclusion is that an error in the estimation of the load
release time only results in slower convergence, so the ILC
algorithm is robust with respect to this estimation.

Figure 6 shows the evolution of the relative tracking error
for all the experiments. It is clear that the converged tracking
error is similar during all experiments, at 1%. However, the
number of iterations to reach convergence and the initial
tracking errors are different for the four experiments. For the
first experiment, the initial tracking error is the smallest since
the dynamics do not change. The RMS value of the tracking
error starts at 8 % and the algorithm converges in three
iterations. A similar initial tracking error and convergence

0 2 4 6
5

0

5

10

15

Time [s]

In
pu

t [
Nm

]

0 2 4 6
20

0

20

40

60

Time [s]

O
ut

pu
t [

de
g]

0 2 4 6
20

0

20

0 2 4 6
10

0

10

Tr
ac

kin
g

er
ro

r [
de

g]

0 2 4 6
5

0

5

0 2 4 6
1

0

1

Time [s]

Fig. 5. Experiment 4. TOP LEFT: initial input signal (gray) and converged
input signal (black), BOTTOM LEFT: initial output signal (gray) and
converged output signal (black), RIGHT (top to bottom): tracking error of
the first, second, third and tenth iteration

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Iteration number []

R
el

at
iv

e
tra

ck
in

g
er

ro
r R

M
S

[%
]

Experiment 1: no release
Experiment 2: release unmodeled
Experiment 3: t = 0s
Experiment 4: t = 0.4s

Fig. 6. Evolution of the relative tracking error of the ILC algorithm for
all experiments over 10 iterations

speed are obtained during the third experiment. This means
that the ILC algorithm can effectively deal with the changing
dynamics, without a decrease in convergence speed, if the
time of dynamic change is known exactly. An error in the
time estimation leads to slower convergence of the ILC
algorithm, as can be seen from the graph in figure 6.

Figure 7 shows the model correction vector α for the
first three iterations, during both the third and the fourth
experiment. It is clear that during the fourth experiment,
the model correction vector is larger than during the third
experiment, because α must compensate for the error in the
load release time estimation. It is also clear that the algorithm
needs more iterations to reach the optimal value of α during
the fourth experiment, compared to the third experiment.

It can be noted that the change in dynamics for the

3039

0 1 2 3 4 5 6
10

5

0

5

Time [s]

 [d
eg

]

iteration 1 iteration 2 iteration 3

0 1 2 3 4 5 6
20

10

0

10

Time [s]

 [d
eg

]

Fig. 7. Model correction vector α for 3 iterations during the third
experiment (TOP) and the fourth experiment (BOTTOM)

presented example does not lead to a divergence of the ILC
algorithm, even if the change in dynamics is not modeled,
such as in the second experiment. However, if the difference
between the load mass and arm mass is larger, the change
in dynamics becomes larger and the ILC algorithm fails
to converge if only model M2 is used. This is clear from
figure 8, which shows the evolution of the RMS value of

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Iteration number []

R
el

at
iv

e
tra

ck
in

g
er

ro
r R

M
S

[%
]

Exp. 2, Arm mass: 1.0 kg
Exp. 2, Arm mass: 0.9 kg
Exp. 2, Arm mass: 0.85 kg
Exp. 2, Arm mass: 0.8 kg
Exp. 4, Arm mass: 0.8 kg

Fig. 8. Evolution of the relative tracking error of the ILC algorithm for
different values of the robot arm mass, under the conditions of experiments
two and four

the tracking error for different values of the arm mass and
a fixed load mass of 1.5kg, under the same conditions as
during experiments two and four. For the case when the arm
mass is 0.8kg the ILC algorithm diverges if the change in

dynamics is not modeled. This means that the ability of the
model correction vector to correct this kind of modeling error
is limited. However, under the conditions of experiment four,
that is, if two models are used, the algorithm converges in
seven iterations, even though the load release time is not
known accurately.

V. CONCLUSIONS
This paper shows that the two step iterative learning

control algorithm presented by the authors in [8] can be
solved efficiently, e.g. using IPOPT [9], by formulating both
steps such that sparse, block structured NLPs are obtained.
Due to this implementation, high order systems and long data
sets can be efficiently processed. Numerical validation on
a nonlinear system with discontinuously changing dynamics
shows (i) that the algorithm can account for changing dynam-
ics by using one or several different models, and (ii) that the
convergence speed depends on the accuracy of the available
models and the accuracy of the estimated time instant at
which the change in dynamics occurs.

REFERENCES

[1] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of itera-
tive learning control: A learning-based method for high-performance
tracking control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96–114, 2006.

[2] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operations of
robots by learning,” Journal of Robotic Systems, vol. 1, pp. 123–140,
1984.

[3] M. Heertjes and T. Tso, “Nonlinear iterative learning control with
applications to lithographic machinery,” Control Eng Pract, vol. 15,
no. 12, pp. 1545–1555, Jan 2007.

[4] J.-X. Xu and Y. Tan, Linear and Nonlinear Iterative Learning Control.
Springer, 2003.

[5] W. B. J. Hakvoort, “Iterative learning control for ltv systems with
applications to an industrial robot,” Ph.D. dissertation, Universiteit
Twente, Enschede, May 2009.

[6] C. Chien, “A discrete iterative learning control for a class of nonlinear
time-varying systems,” Ieee T Automat Contr, vol. 43, no. 5, pp. 748–
752, Jan 1998.

[7] M. Arif, T. Ishihara, and H. Inooka, “A learning control for a class
of linear time varying systems using double differential of error,” J
Intell Robot Syst, vol. 36, no. 2, pp. 223–234, Jan 2003.

[8] M. Volckaert, J. Swevers, and M. Diehl, “A two step optimization
based iterative learning control algorithm,” ASME Dynamic Systems
and Control Conference, 2010.

[9] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large- scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–
57, 2006.

[10] S. Gunnarsson and M. Norrlof, “On the design of ilc algorithms using
optimization,” Automatica, vol. 37, no. 12, pp. 2011–2016, Jan 2001.

[11] J. D. Cuyper, M. Verhaegen, and J. Swevers, “Off-line feed-forward
and feedback control on a vibration rig,” Control Engineering Practice,
vol. 11, no. 2, pp. 129 – 140, 2003.

[12] E. Baake, M. Baake, H. Bock, and K. Briggs, “Fitting ordinary
differential equations to chaotic data,” Phys. Rev. A, vol. 45, pp. 5524–
5529, 1992.

[13] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., ser.
Springer Series in Operations Research and Financial Engineering.
Springer, 2006.

3040

