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Abstract— The effects of input hard nonlinearities on probing
outputs are analyzed with respect to the pulse-compression
probing method. The pulse-compression probing method iden-
tifies a local, linear model around an operating point of a
nonlinear system by processing the system response to a probing
input. The outputs of probing systems with one of six common
input hard nonlinearities, including deadband, saturation, relay,
backlash, and rate limit are derived. Pulse-compression probing
is effective for the first five hard nonlinearities listed, where the
probing outputs retain the same waveforms as if the probing
inputs were scaled and offset. When probing an input with a
rate limit, pulse-compression probing is effective when the bit
duration of the probing input exceeds some threshold, which is
based on the rate limit. As long as the probing input is properly
designed with respect to the input nonlinearities present, the
shape of the probing output is preserved. As a numerical
example, pulse-compression probing method is applied to the
NASA generic transport aircraft model with nonlinearities at
the probing input.

I. INTRODUCTION

The pulse-compression probing method identifies small-
signal characteristics of a system at the probing output by
processing the system’s response to a probing input around
an operating point. Thus, it provides a means for real-time
health monitoring of nonlinear dynamic systems operating
in the neighborhood of smooth nonlinearities. When input
hard nonlinearities apply to the probing inputs, the identified
small-signal characteristics change. The extent to which
hard input nonlinearities affect probing outputs is discussed.
Effects of six common nonlinearities are examined, and
numerical examples of the method applied to an aircraft with
input nonlinearities are discussed.

Previous applications of pulse-compression probing to lin-
ear time-invariant (LTI) systems include seismic exploration
[1] and a linear hydraulic system [2]. Pulse-compression
probing has also been applied to monitoring nonlinear
dynamics of aerospace vehicles [3] by extracting from
them small-signal characteristics at fixed operating points.
Recently the pulse-compression probing method has been
successfully applied to systems under dynamic operating
conditions by monitoring the incremental output of the
system [4], though the investigation in this paper does not
consider this incremental implementation. Successful pulse
compression probing relies on the design of a probing signal
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that effectively detects the change in a system without
noticeable effects on the system operation. When a pseudo
random binary sequence is used as the probing signal, the
design amounts to selecting its magnitude, length (or order),
and bit duration.

Much effort has been placed on the identification of
nonlinear systems [5]. The majority of work concerning
input hard nonlinearities provides methods for identifying the
hard nonlinearity itself. The intention is often an adaptive
mechanism that allows the controller to compensate for
the nonlinearity [6]. Input nonlinearities pose a different
challenge to the pulse-compression probing method which
intends to encapsulate the system dynamics through the
identified small-signal characteristics. Model-based fault di-
agnosis methods often compensate for known input nonlin-
earities by simulating them and processing their data using
the altered input signal [7], and the concept extends readily
to identifying linear systems with input nonlinearities.

Unlike these traditional methods, the pulse-compression
probing method requires a specific probing input to be in-
jected into the system. The presence of an input nonlinearity
alters the system response to the small-signal probing input
in ways determined by the particular nonlinearity involved.
The six specific hard nonlinearities that are considered in
this paper belong to ranges of neutral signal input/output
relationship, input rate limit saturations, and hysteresis [8].
The effects of each hard nonlinearity on pulse-compression
probing is derived, and proper design of the probing sequence
is discussed for each scenario.

Numerical results of pulse-compression probing for mon-
itoring the longitudinal dynamics of the NASA generic
transport aircraft model (GTM) are reported. Examples of
each nonlinearity are presented individually at the probing
input, and the effects on the probing outputs are discussed.
The GTM is a high fidelity, nonlinear Simulink model of a
dynamically scaled small unmanned aerial vehicle developed
by NASA to investigate modeling and control of large
transport vehicles in upset conditions [9]. Pulse-compression
probing is used to monitor the GTM by detecting changes
of the probing output in real-time. Reliable change detection
of vehicle dynamics in real-time is crucial to the safety of
flight.

The remaining sections are organized in the following
manner. Section II reviews the pulse-compression probing
method applied to identification of small-signal character-
istics of a nonlinear system around an operating point.
Examples of input hard nonlinearities are introduced in
Section III, and their effects on the probing outputs are
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Fig. 1. Signal flow diagram with injection and pickup points of probing
input p and output z with probing reference s for monitoring the NASA
GTM, where r is the command input and y is the measured output. NL is
a block containing one of the hard nonlinearities to be discussed in Section
III.

analyzed. Requirements on the probing input for effective
system monitoring are discussed. In Section IV, numerical
examples of the pulse-compression probing method with a
probing input subject to hard nonlinearities are discussed
using the NASA GTM as a test bed. Section V concludes
the paper.

II. REVIEW OF PULSE-COMPRESSION PROBING METHOD

The pulse-compression probing method can be and has
been applied to identify pulse responses, or Markov parame-
ters, of linear time-invariant systems online without the need
for a parametric model [2]. The method applies equally well
to extract small-signal pulse responses of nonlinear systems
at fixed operating conditions [10], [11]. In this section, the
probing output for small-signal pulse response using pulse-
compression probing is reviewed in the discrete-time domain.
The material in this section draws significantly from the
derivation for linear time-varying systems in [4].

A. Overview of the pulse-compression principle

The pulse-compression probing method is intended to
recover a system’s pulse response at the probing output
z(t) in response to an injected probing input p(t) around
a set point, as shown in Fig. 1. Consider a causal time-
invariant system with a small-signal pulse response h(i)
around an operating point, where i is the ith tap of the
response sequence. Assume that the memory length of the
pulse response is bounded by M , i.e., h(i) = 0, i ≥M − 1.
This imposes a stability requirement on the system, which
is discussed in [4].

Define the probing output in discrete time as

z(k) = h(k) ∗ p(k)⊗ s(k) = y(k)⊗ s(k) (1)

where ∗ represents convolution, ⊗ represents correlation,
s(k) is a reference signal, and y(k) is the system output
of the LTI system. The pulse response is shift-invariant, thus

z(k) = [h(k) ∗ p(k)]⊗ s(k)

= h(k) ∗ [p(k)⊗ s(k)] (2)
= h(k −M)

provided that s(k) and p(k) are specially designed so that

p(k)⊗ s(k) = δ(k −M) (3)

Fig. 2. An impulsive PRBS σ(t) of order n = 6, and a continuous-time
probing signal p(t) generated by convolving it with a narrow rectangular
wavelet of with t0 equal to the bit duration.

where δ(i) is the Kronecker delta function.
The goal of probing signal design is to minimize both the

noise at system output y(k), caused by probing input p(k),
and the noise at probing output z(k), caused by control signal
u(k). It can be achieved by ensuring p(k)⊗s(k) ≈ δ(k−M)
as close as possible. p(k) and s(k) are designed from σ(k).
σ(k) can be selected as a single period of a pseudo-random
binary sequence (PRBS) of order n satisfying M = 2n − 1,
bit duration t0, and unit amplitude.

The injected probing signal, p(k), can be selected to be a
digital, cyclically repeating copy of σ(k) with magnitude a.
The reference signal, s(k), can be selected to be a cyclic
repetition of σ(k) with unit magnitude. Fig. 2 shows an
example of continuous-time versions of σ(k) and p(k) for
n = 6. The PRBS period T = Mt0 = (2n − 1)t0
corresponds to the memory length of impulse response h(t)
which vanishes when t ≥ T . The specifics on the design of
σ(k) including equations to calculate n, t0, and a for an LTI
system can be found, for example, in [2].

B. Probing output in discrete time

The pulse-compression probing algorithm is carried out
in discrete time. With M = 2n − 1, the number of non-
zero taps in an nth order PRBS [12], [13], the system output
y(k) = h(k) ∗ p(k) is the convolution of the probing signal,
p(k), with the small-signal pulse response h(k). This can
be computed by summing the system’s response to each
individual pulse of p at the time instance k,

y(k) =

M−1∑
j=0

h(j)p(k − j) (4)

where p(k) = p(k +M) is assumed as it cyclically repeats.
A single period of y(k) is correlated with the reference

s(k) to observe a complete M -tap probing output, which is
given by

z(k) = y(k)⊗ s(k) =

M−1∑
i=0

y(k − i)s(M − 1− i). (5)
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Substituting (4) into (5) yields

z(k) =

M−1∑
i=0

M−1∑
j=0

[p(k − i− j)h(j)] s(M − 1− i)

 . (6)

The term p(k − i − j)s(M − 1 − i) = a when (k − j
mod M) = M−1 based on the probing signal and reference
signal design. Therefore, aMh(k mod M) can be extracted
from the two summations of (6). The remaining terms sum
to −a as the coefficient for all remaining taps of the pulse
response, and

z(k) = a

(M)h(k mod M)−
M−1∑

j=0,j 6=k mod M

h(j)

 . (7)

The negative terms of (7) result in a small error when
identifying the (k mod M)th tap. (7) can be rewritten to
remove the exclusion from the summation,

z(k) = a

(M + 1)h(k mod M)−
M−1∑
j=0

h(j)

 . (8)

In (8), it is apparent that for a system with zero DC
component,

∑
i

h(i) = 0, the errors cancel themselves.

Alternatively, the errors can be corrected by modifying the
probing output,

ζ(k) = z(k)+

M−1∑
j=0

z(k− j) = a(M +1)h(k mod M). (9)

III. PULSE-COMPRESSION PROBING WITH HARD
NONLINEARITIES AT THE INPUT

The usefulness of the probing output to change detection
is investigated when the probing input signal, p(t), is subject
to various hard nonlinearities. This is accomplished through
comparison, using the same probing input, of the probing
output without hard nonlinearities present to probing output
with an input nonlinearity present. Previous work on pulse-
compression probing has always assumed a non-empty open
set around the operating point, over which the nonlinearity
has a smooth first derivative. Six hard nonlinearities are
reviewed, and the individual effects of each nonlinearity on
the probing output are analyzed. Five of six nonlinearities
only affect the scaling and offset of the probing signal.
Analysis of the last nonlinearity is limited by the assumption
of discrete, sampled calculations.

A. Scaling and Offset of the Probing Signal

The scaling and shifting effects of nonlinearities on the
probing signal are investigated along with the corresponding
effects on probing output. In Fig. 1, the probing signal, p(t),
is modified by the nonlinearity block, NL. For simplicity
and clarity of presentation, it is assumed that the system is
trimmed to an equilibrium position such that small signal

analysis is conducted around a steady-state value of control
u(t) resulting in a steady-state measured output. In [3], the
small-signal characteristics are extracted by subtracting the
trim condition from the measured outputs using a reference
model. Then it can be assumed that u(t) = 0 for small-signal
analysis, and q(t) is the direct result of the nonlinearity in
block NL applied to p(t).

For five of the considered nonlinearities, the probing input
appears to be scaled and shifted to a new apparent amplitude,
ã, and an apparent offset, b̃. Analytically,

q(t) =
ã

a
p(t) + b̃. (10)

To quantify the effects of nonlinearity on the probing output,
(10) replaces p(k) in (4). The resulting probing output is

z̄(k) = ã

(M + 1)h(k mod M)−
M−1∑
j=0

h(j)


+ b̃

M−1∑
j=0

h(j). (11)

After compensating for the errors introduced by a possible
non-zero DC component,

ζ̄(k) = z̄(k) +

M−1∑
j=0

z̄(k − j) = ã(M + 1)h(k mod M)

+ b̃

M−1∑
j=0

h(j). (12)

In both cases, the primary source of error is the last term
related to offset b̃ for systems with a DC component.

B. Hard Nonlinearities and the Effects on Probing Output

This section reviews six hard nonlinearities to each of
which the probing input (10) is applied as demonstrated
in Fig. 1. The first five nonlinearities can be interpreted in
terms of the apparent probing signal in Section III-A. The
remaining nonlinearity has more complicated effects, which
are simulated and discussed.

1) Deadband: A deadband is a range of input signal
where no output signal occurs. Deadbands can result from
both electrical and mechanical effects, i.e. friction [14]. They
are sometimes introduced purposefully to reduce oscillation
of feedback control [15]. A deadband is defined by d− ≤ 0
to d+ ≥ 0 such that input p to the nonlinearity results in the
following output q:

q =

 p+ d− when p < d−,
0 when d− ≤ p ≤ d+,
p− d+ when p > d+.

(13)

A visualization of this relationship is presented in Fig. 3a.
Given a deadband from d− to d+ in block NL of Fig. 1,

the effects can vary depending on the limits of the deadband.
Consider that the probing input is centered around zero, then
the six following scenarios are possible:
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(a) A visualization of the input-output relation-
ship for a deadband nonlinearity.

(b) A visualization of the input-output relation-
ship for saturation nonlinearities.

(c) A visualization of the input-output relation-
ship for a relay nonlinearity.

(d) The input-output relationship for a relay with
hysteresis. Arrows indicate separate paths based
on the direction of the input signal.

(e) An example of the input-output relationship
for hysteresis defined by bl. The arrows indicate
the output path as the input changes from A’ to
B’ to C’ to D’ back to A’.

(f) Plot of an example input signal, p(t), and the
effects of a slow rate limit, rl = 0.5 a

t0
.

Fig. 3. Input-output relationships or input-output examples for each of the six hard nonlinearities considered.

a. If d+ < −a or d− > a, then the deadband has no
effect on the probing output.

b. If d+ = −d− < a, then the apparent probing output
in (10) is defined by ã = a− d+ and b̃ = 0.

c. If d+ 6= d−, d+ < a and d− > −a, then the apparent
probing output in (10) is defined by

ã =
a− d+ + d− + a

2
= a− d+

2
+
d−
2
, (14)

b̃ = a− d+ − ã = −d+
2
− d−

2
. (15)

d. If d+ 6= d−, d+ > a and d− > −a, then the effective
probing output in (10) is defined by ã = d−+a

2 =
a
2 + d−

2 and b̃ = 0− ã = −d−
2 −

a
2 .

e. If d+ 6= d−, d+ < a and d− < −a, then the effective
probing output in (10) is defined by ã = a−d+

2 =
a
2 −

d+

2 and b̃ = a− d+ − ã = a
2 −

d+

2 .
f. If d+ > a and d− < −a, then the apparent probing

input in (10) has ã = 0 and b̃ = 0. The probing output
will be zero. The amplitude of the probing input must
be increased for any identification to occur.

If the limits of the deadband are known, then the effects
could be compensated for as long as d− > −a or d+ < a.

2) Input saturation: An input saturation point is a bound
on either the upper or lower value of an input. Saturation
points often represent limits on the output of electrical
systems, i.e. amplifiers, or mechanical systems, i.e. fluid
powered cylinders, [8]. An input saturation defined by two
points, U− and U+ where U− < U+, has the following

output q for input p:

q =

 U− when p ≤ U−,
p when U− < p < U+,
U+ when p ≥ U+.

(16)

A visualization of this relationship is presented in Fig. 3b
Given input saturation points U− and U+ where U− < U+

in block NL of Fig. 1, the effects can be summarized by the
following five situations using the apparent probing input in
(10):

a. If U− < −a and a < U+, then ã = a and b̃ = 0. The
saturation points have no effect on probing output.

b. If U− > −a and U+ < a, then ã = U+−U−
2 and

b̃ = U+ − ã = U++U−
2 .

c. If U− > −a and U+ > a, then ã = a−U−
2 and b̃ =

a− ã = a+U−
2 .

d. If U− < −a and U+ < a, then ã = U++a
2 and b̃ =

U+ − ã = U+−a
2 .

e. If U− > a or U+ < −a, then ã = a and b̃ = 0.
Probing output is zero.

The most obvious solution is to avoid any known satura-
tion points, U− < −a and a < U+. If saturation points are
known, the probing output can be adjust accordingly as long
as U− < a and U+ > −a.

3) Ideal relay: An ideal relay is described by the follow-
ing switching function that is also presented in Fig. 3c:

f(u) =


l+, if u > S
l+−l−

2 , if u = S
l−, if u < S.

(17)
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The relay characteristic models switching devices, i.e elec-
tromechanical relays and thyristor circuits [16]. l− and l+
can also represent two levels of quantization to provide some
understanding of the effects of quantization on a relatively
small probing input.

Given that the NL block of Fig. 1 is an ideal relay
described by (17), the apparent probing input of (10) is
described by ã = l+−l−

2 and b̃ = l++l−
2 if −a < S < a. If

S < −a or S > a, then there is no probing output, ã = 0,
b̃ = l− or ã = 0, b̃ = l+, respectively.

4) Relay with hysteresis: Some non-ideal relays do not
switch at the same point in both directions. These relays must
overcome some hysteresis, or delay dependent on memory
within the system, S+ > S before switching to l+ and S− <
S before switching to l−. A visual description of the delay
is presented in Fig. 3d using arrows to indicate the path of
the output as the input changes in either direction.

With this nonlinearity, the apparent probing input is the
same as the ideal relay if S− > −a and S+ < a. If these
conditions are not meant, then there is not probing output,
ã = 0 and the value of b̃ depends on the value of the system’s
memory.

5) Backlash: The backlash characteristic models clear-
ance between mating components. For example, gears must
overcome a small clearance between teeth [17]. Eliminating
this slack runs the risk of jamming gears. Backlash is a
specific example of hysteresis [8]. For example, backlash in a
gear can be described by the gap between meshing teeth, bl.
If input p reverses direction, then the touching teeth separate,
and a deadband of width d+ − d− = bl must be overcome
before the teeth are touch again.

For example, examine the input-output path in Fig. 3e. As
the input changes from A’ to B’, it must overcome backlash
bl representing the gap between meshing teeth. When B’
is reached, the gear teeth touch until the gear direction is
reversed at C’. The gap is overcome from C’ to D’, and the
process repeats when it reverses directions again at A’.

Backlash with magnitude bl is introduced into NL of Fig.
1. This results in the apparent probing input of (10) described
by ã = max(0, a − bl

2 ) and b̃ = 0. If the magnitude of the
backlash in known and 2a > bl, then the effects are easily
compensated for.

6) Input rate saturation: To simplify analysis, it is often
assumed that values can change instantaneously. The reality
is that these changes are all subject to some rate limit. Input
rate saturation is defined by a value rl. The nonlinearity
results in an output signal q that follows input p where
dq
dt ≤ rl is enforced. Often this limit is so high that it
can be ignored without consequence. However, the pulse-
compression probing method relies on fast sampling and a
quickly changing probing input, which may test the bound
on input rate saturation.

The effects of input rate saturation cannot be equated to
(10). Instead, an intuitive analysis is presented. Observations
indicate that probing output becomes corrupted when the rate

limit is low enough that peeks of single bit duration changes
in the probing signal are truncated corrupting the probing
input and resulting in transients. This is exemplified in Fig.
3f. A limit on the input rate saturation can be derived from
0 < dq

dt ≤ rl by integrating over a single bit duration:∫
dq ≤

∫ t0

0

rldt, (18)

q(t0)− q(0) ≤ rl(t0 − 0). (19)

For a positive transition from q(0) = −a to q(t0) = a over
a single bit duration, the bound on rate limit is derived as

2a ≤ rlt0 (20)

rl ≥ 2
a

t0
. (21)

Observations indicate that as rl << 2 a
t0

, the probing output
becomes noisier.

IV. RESULTS OF ON-LINE PROBING WITH HARD
NONLINEARITIES APPLIED TO THE PROBING INPUT

The results of probing the elevators of the NASA GTM
[18] are plotted with various individual hard nonlinearities
applied to the probing input. The NASA GTM is a high-
fidelity nonlinear model, but the nonlinearities are primarily
smooth with the exception of an extremely high rate limit in
the actuators. This rate limit has been insignificant in previ-
ous investigations. Probing of the GTM has been investigated
at both fixed [3] and dynamic [4] operating conditions. This
section expands on previous works by investigating hard
nonlinearities within an open-loop GTM simulation.

A block diagram of the open-loop GTM simulation with
pulse-compression probing implemented is provided in Fig.
1. The GTM is simulated on a trimmed, straight and level
flightpath. The probing signal is injected into the elevator
control. For clarity of presentation, the probing output is
monitored at only one output channel, the aircraft pitch θ,
because the effects of elevator control on this channel are
significant. Although, the probing output could be monitored
at any system output. The probing input is designed with bit
duration n = 9, memory length T = 5.110sec, bit duration
t0 = 0.010sec, and probing signal amplitude a = 0.005deg,
which is not modified to compensate for hard nonlinearities.

The results of probing various nonlinearities are summa-
rized in Fig. 4, which compares the probing outputs when
hard input nonlinearities are present to previous results with-
out hard nonlinearities. The deadband applied to the example
in Fig. 4a causes the probing input to appear as ã = 2

3a and
b̃ = 0. A corresponding drop in the magnitude of the probing
output by 1

3 is correctly observed. The input saturation
applied in Fig. 4b causes the probing input to appear as
ã = a

2 and b̃ = −a
2 . A drop in magnitude of the probing

output is observed, but the offset is not observed because
the elevator to pitch channel of the GTM has small DC
component. Likewise, the relay and backlash demonstrate
similar results in Fig. 4c and Fig. 4d, respectively.

The effects of input rate saturation are investigated in Fig.
4e and Fig. 4f. In Fig. 4e the rate limit only slightly violates
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(a) Probing with input deadband defined by:
d− = −a

3
, d+ = a

3
.

(b) Probing with input saturation defined by:
U− = −a, U+ = 0.

(c) Probing with input relay defined by: l− =
−a

2
, l+ = a

2
.

(d) Probing with backlash defined by: bl = a
2

. (e) Probing with low input rate limit rl = 1.8a
t0

. (f) Probing with high input rate limit rl = 2a
t0

.

Fig. 4. Results of probing elevators of the GTM with various nonlinearities present at the input. Probing output is processed at the measured pitch angle,
θ, in radians. Details about the nonlinearity implemented in each example are given in the subplot titles.

rl ≥ 2 a
t0

, and the observed probing output is slightly noisy in
the tail. The noise can be resolved by probing with a slower
PRBS bit duration, if acceptable. In Fig. 4f rl = 2 a

t0
, and

the probing output is very accurate.

V. CONCLUSIONS
The pulse-compression probing method is shown to be

resilient to six hard input nonlinearities. A simple analysis
of five nonlinearities shows that the nonlinearities scale and
offset the probing output, but they do not alter the basic shape
of the probing output. Furthermore, the effects of these five
input nonlinearities can be compensated for at the probing
output if the parameters of the nonlinearities are known. The
sixth nonlinearity, input rate saturation, causes noisy probing
outputs in simulations if the rate limit is slower than some
bound, which is defined in by the rate limit.
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