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Abstract— In this paper, an event-based dynamic gain-
scheduling controller was designed by employing a standard
control structure of observer-based state feedback with integral
control. The dynamic gain-scheduling controller was applied to
an LPV system representing the air-to-fuel ratio control of a
port-fuel-injection process. The system parameters used in the
engine fuel system model are engine speed, temperature, and
load. The static gains of the dynamic gain-scheduling controller
for the obtained LPV system were then designed based on the
numerically efficient convex optimization (or LMI) technique.
The simulation results demonstrate the effectiveness of the
proposed scheme.

I. INTRODUCTION

Increasing concerns about global climate change and

ever-increasing demands on fossil fuel capacity call for

reduced emissions and improved fuel economy of internal

combustion (IC) engines. The control of air-to-fuel ratio in

vehicles with a three-way catalyst is an extremely important

control problem. Spark-ignited internal combustion engines

are operated at a desired air-to-fuel ratio since the highest

conversion efficiency of a three-way catalyst occurs around

stoichiometric air-to-fuel ratio.

There have been several fuel control strategies developed

for internal combustion engines to improve the efficiency and

exhaust emissions. A key development in the evolution was

the introduction of a closed-loop fuel injection control algo-

rithm [1], followed by the linear quadratic control method

[2], and an optimal control and Kalman filtering design [3].

Specific applications of A/F ratio control based on observer

measurements in the intake manifold were developed by [4].

Another approach was based on measurements of exhaust

gases A/F ratio measured by the oxygen sensor and the

mass air flow rate close to the throttle position [5]. Ref. [6]

also developed a nonlinear sliding mode control of A/F ratio

based upon the oxygen sensor feedback. Continuing research

efforts of A/F ratio control include adaptive approaches

[7], [8], observer-based controllers [9], H∞ controllers [10],

model predictive controllers [11], sliding mode controllers

[12], and linear parameter-varying controllers [13], [14],

[15], [16], [17]. Conventional A/F ratio control for automo-

biles uses both closed-loop feedback and feedforward control

to have good steady state and fast transient responses.

For a spark-ignited engine equipped with a port-fuel-

injection system, the wall-wetting dynamics is commonly

used to model the fuel injection process; and the wall-

wetting effects are compensated on the basis of simple time-
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invariant linear models that are tuned and calibrated through

engine dynamometer and vehicle tests. These models are

quite effective for an engine operated at steady state or

slow transition conditions but they are difficult to be used

at fast transient and other special operational conditions, for

instance, during engine cold start. One of the approaches to

model the wall-wetting dynamics during engine cold start is

to describe it using a family of linear models to approxi-

mate the system dynamics at different engine cylinder head

temperature, speed and load conditions, that is, to translate

the fuel system model into a linear parameter varying (LPV)

system.

As stated earlier, the use of LPV modeling to control the

A/F ratio of a port-fuel-injection system has been reported

by [13], [14], [15], [16] and [17]. In [15], a continuous-time,

LPV model is developed considering only engine speed as a

time-varying parameter. Due to the simplicity of the model

used, the issue of engine cold start is not addressed. Fur-

thermore, the control synthesis method used in [15] relies on

gridding the parameter space at a finite number of grid points.

In [14], a large variable time delay is present in the air-fuel

ratio control loop for a lean burn spark ignition engine. LPV

control methods are used to compensate for the variable time

delay. In [13], a discrete-time, LPV model is developed with

manifold absolute pressure, exhaust valve closing, and inlet

valve opening as the time-varying parameters. However, only

manifold absolute pressure is used as a scheduling parameter

in the gain-scheduling control that is synthesized. Also, [13]

does not address the issue of engine cold start. Additionally,

all LPV control synthesis methods used by [13] are based in

continuous time, relying on Tustin’s (bilinear) transformation

to convert the discrete-time system to a continuous-time

system, thus fixing the engine speed and sampling rate

of the discrete-time system. In [16] and [17], event-based

gain-scheduling proportional-integral (PI) and proportional-

integral-derivative (PID) controllers are developed. The con-

trol structure and design process for the event-based gain-

scheduling PI controller is covered in [16]. The addition of

derivative control to obtain gain-scheduling PID controllers

is covered in [17]. Although the gain-scheduling PI and PID

controllers designed and simulated in [16] and [17] show

good steady-state and transient response, we believe that

the performance can be further improved using a dynamic

controller.

The purpose of this paper is to develop an event-

based, dynamic gain-scheduling controller for an event-

based, discrete-time LPV system with wall-wetting parame-

ters and engine speed as time-varying parameters. To design
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Fig. 1. The block diagram of the port-fuel-injection process and sensor
dynamics.

the dynamic gain-scheduling controller, a standard control

structure of observer-based state feedback with integral

control was employed. To cope with practical situations,

the discrete-time LPV control synthesis method given by

[18] is used to develop the event-based, gain-scheduling

state-feedback, integral, and observer gains. An affine LPV

model including the dynamics of the system, the feedforward

controller, and the observer is obtained. Gain-scheduling

controllers have been synthesized to guarantee the robust

stability and performance of the affine LPV model.

The paper is organized as follows. The dynamics of the

port-fuel-injection process and oxygen sensor are reviewed in

Section II. In Section III the LPV gain-scheduling controller

design method is provided. Simulation results of the dynamic

gain-scheduling controller are provided in Section IV. Con-

cluding remarks are in the final section.

Standard notation is used throughout the paper. Let R and

Z≥0 denote the set of real and non-negative integer numbers.

The positive definiteness of a matrix A is denoted by A ≻ 0.

The maximum (respectively, minimum) of α is denoted by α

(respectively, α). The abbreviation LFT is used to denote a

linear fractional transformation. Furthermore, an upper LFT

is denoted by Fu. An identity matrix of size n is denoted

by In. Other notation will be explained in due course.

II. PLANT DYNAMICS

In this section, the dynamics of the plant (Fig. 1), which

are covered in full detail by [16], will be briefly reviewed.

A. Dynamics of the port-fuel-injection process

The discrete-time linear system is obtained by event-

based sampling of the port-fuel-injection process; hence the

sampling time of this discrete-time system is the period of

an engine cycle,

ts =
1

v

min.

rev.

(
60 sec.

1 min.

)(
2 rev.

1 cycle

)

=
120

v

sec.

cycle
, (1)

where v represents the engine speed in revolutions per minute

(rpm) (see general engine modeling techniques in [19]).

The wall-wetting dynamics can be described as follows:

mw(k) = (1 − βk)mi(k) + (1− αk)mw(k − 1),

mc(k) = βkmi(k) + αkmw(k − 1),
(2)

where k ∈ Z≥0, and mi, mw, and mc denote the amount of

fuel, injected, on the wall, and in the cylinder respectively.

The coefficients α ∈ [0, 1], and β ∈ [0, 1], are the ratios of

the fuel delivered from the wall to the cylinder, and of the

fuel entering the cylinder from injection, respectively. These

values can be estimated online through an available set of

engine sensors, which allows us to apply gain-scheduling

control to the plant. Using the discrete-time dynamics in

Eq. (2), we obtain the transfer function G(q) from mi to

mc

G(q) :=
mc(k)

mi(k)
=

βk + (αk − βk)q
−1

1− (1 − αk)q−1
, (3)

where q is the forward shift operator that satisfies

qu(k) = u(k + 1).

The dotted box in the block diagram in Fig. 1 illustrates the

fuel-injection process. The output of G(q) is the input to the

gain block of 1
m0

A

, which is the nominal value of the inverse

of the air amount mA. The signal w1 represents the deviation(
mc

mA
− mc

m0

A

)

, which will be treated as a disturbance in this

paper. Another constant gain factor c = 14.6 in Fig. 1 is

the value for the air-to-fuel-ratio at stoichiometric. After the

combustion delay block the equivalence ratio y is generated.

B. Oxygen sensor

To measure y, we use an oxygen sensor placed down-

stream from the exhaust valve. The transport delay of the

exhaust gas mixture is modeled as a function of engine speed,

TD = 80
v

, where v denotes the engine speed in revolutions

per minute (rpm). The combined transfer function in the

continuous time domain is

ys(s) =
exp (−TDs)

TO2
s+ 1

y(s), (4)

where ys is the equivalence ratio measured by the sensor and

TO2
is the time constant of the oxygen sensor. The details

regarding the discretization and parameterization of Eq. (4)

are covered in [16].

C. An LPV system

The state-space representation of the port-fuel-injection

dynamics combined with the oxygen sensor dynamics is

given by

xp(k + 1) = Ap(Θ)xp(k) +Bww1(k) +Bp(Θ)mi(k)

ys(k) = Cpxp(k)
(5)

where xp(k) ∈ R
s is the state of the plant at time k and Θ is

the compact notation used to denote the time varying wall-

wetting parameters and engine speed. The specific structure

of Θ is given in the next section.

403



P (Θ)

uf
P̂ (Θ)

ufb

Kf (Θ)

[KS(Θ) KI(Θ)]

z
w̃1

w̃2

w̃3

−

−

eI

L(Θ)

I(q)

w1 w2W1(q)
W2(q)

mi

ey

x̂p

ys

ŷs
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Fig. 2. The proposed control strategy for the fuel injection process
(without the weighting functions W1(q) and W2(q), which are used only
for controller synthesis). The LPV controller synthesis is applied to the first-
order Taylor series expansion of the systems inside of the box to obtain the
controller gains KS(Θ), KI(Θ), and L(Θ).

III. LPV GAIN-SCHEDULING CONTROLLER DESIGN

A. Control Strategy

The objective of the control system is to regulate the equiv-

alence ratio y to a reference input w2 using feed-forward

and feedback control against the disturbance signal w1 and

the time-varying wall-wetting dynamics and engine speed. In

particular, we want to guarantee the stability of the closed-

loop system and also minimize the effect of the disturbances

for any combination of the wall-wetting dynamics and engine

speed variations. The proposed control strategy is illustrated

in Fig. 2. This scheme has six components, that is a feed-

forward controller Kf (Θ), a state observer P̂ (Θ), observer

gains L(Θ), a state feedback controller KS(Θ), an integrator

I(q), and an integral error feedback controller KI(Θ).

As shown in Fig. 2, the feedback controllers KS(Θ) and

KI(Θ) and observer gains L(Θ) are designed for the the

feed-forward controller Kf (Θ) compensated plant P (Θ).
The feed-forward controller Kf(Θ) is designed using the

inverse of cG(q)

Kf (Θ) =
G−1(q)

c
=

1

c

(
1− (1− αk)q

−1

βk + (αk − βk)q−1

)

.

Also as depicted in Fig. 2, the LPV system P (Θ) is aug-

mented with a state observer P̂ (Θ) to obtain the estimated

states x̂p of the plant. The observer P̂ (Θ) has the standard

state space representation

x̂p(k + 1) = Ap(Θ)x̂p(k) +Bww1(k) +Bp(Θ)mi(k)

+ L(Θ)(ys(k)− ŷs(k))

ŷs(k) = Cpx̂p(k).

(6)

Notice also in Fig. 2, the error between the output of the

plant ys and the equivalence ratio set point w2 is integrated

p(k)

u(k)

u(k)
K(Θ)

K(Θ)

z(k)

z(k)

e(k)

e(k)

M

Θ(k) w̃(k)

w̃(k)

l(k)

x(k + 1) x(k)
q−1In

≈

H(Θ)

Ĥ(Θ)

Fig. 3. The discrete-time LPV system H(Θ) with LFT parameter
dependency displayed in the standard LFT configuration as shown in Eq. (8).
The first-order Taylor series expansion of H(Θ) is computed to obtain

Ĥ(Θ), which has affine functions in Θ. The LPV controller synthesis is

applied to the affine LPV system Ĥ(Θ) to obtain the controller K(Θ) in
Eq. (7).

by the numerical summation

I(q) =
1

q − 1

to obtain zero steady-state error.

To use L2 gain [20] for the performance criterion for

shaping the frequency response of the closed-loop system,

weighing functions (which can be considered as design

parameters) are also introduced in Fig. 2. The weighting

functions W1(q) and W2(q) are selected as follows:

W1(q) =
0.1411

q − 0.9986
,

W2(q) =
0.0003982q+ 0.0003979

q2 − 1.997178q+ 0.997180
,

where W2 was chosen as a second-order low-pass filter with

a high DC gain to provide more weight on the low frequency

signals since w2 is the step input of the desired equivalence

ratio.

From Fig. 2, the control input u(k) and observer correction

uL(k) are designed to be

[
ufb(k)
uL(k)

]

︸ ︷︷ ︸

u(k)

=

[
KS(Θ) KI(Θ) 0

0 0 L(Θ)

]

︸ ︷︷ ︸

K(Θ)





x̂p(k)
eI(k)
ey(k)





︸ ︷︷ ︸

e(k)

(7)

where x̂p ∈ R
s, eI ∈ R, ey ∈ R, ufb ∈ R, and uL ∈ R

s,

such that the gain-scheduling controller that will be designed

using [18] is K(Θ).

B. Generalized Plant

With the variation of the wall-wetting parameters α and β

represented by αδ and βδ and the engine speed, v, normalized

to γ as shown in [16], the generalized plant of all of the

systems connected together inside the box of Fig. 2 is
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written as a discrete-time LPV system with LFT parameter

dependency,






l(k)
x(k + 1)
z(k)
e(k)






=






D00 C0 D01 D02

B0 A B1 B2

0 C1 0 0
0 C2 0 0






︸ ︷︷ ︸

=:M







p(k)
x(k)
w̃(k)
u(k)






,

p(k) = Θ(k)l(k),

(8)

where x(k) ∈ R
n is the state at time k, w̃(k) ∈ R

r is

the unweighted disturbance, z(k) ∈ R
p is the error output,

p(k), l(k) ∈ R
np are the pseudo-input and output connected

by Θ(k), u(k) ∈ R
m is the control input, and e ∈ R

m is

the measurement for control. The generalized plant H(Θ) is

displayed in the standard LFT configuration on the right hand

side of Fig. 3. As depicted in Fig. 3, the generalized plant

H(Θ) is represented by the LFT interconnections inside the

dashed box. The time-varying parameter Θ in Eq. (8) follows

the structure

Θ ∈ Θ ={diag(βδI4, αδI3, γI18) :

|αδ| ≤ δ1, |βδ| ≤ δ2, |γ| ≤ 1},
(9)

where δ1 = α−α

2 and δ2 =
β−β

2 .

The ℓ2 gain of the LPV system in Eq. (8) with a gain-

scheduling feedback controller is defined as

max
Θ∈Θ,‖w‖2 6=0

‖z‖ℓ2
‖w̃‖ℓ2

. (10)

Now we formally state the gain-scheduling control design

problem.

Problem : The goal is to design a static gain-scheduling

control u(k) = K(Θ)e(k) that stabilizes the closed-loop

system and minimizes the worst-case ℓ2 gain (H∞ norm) of

the closed-loop LPV system in Eq. (8) for any trajectories

of Θ(k) ∈ Θ.

The gain-scheduling method provided by [18] can be

applied for discrete-time polytopic time-varying systems. A

polytopic system requires that the system matrices for any set

of time-varying parameters can be represented as a convex

combination of the vertex system matrices of the parameter

space polytope. This implies that the parameter variation

must be affine. However, since D00 of the LPV system in

in Eq. (8) is a non-zero matrix, the system matrices are not

affine functions of the time-varying parameters. Therefore,

in the next section, we will compute the first-order Taylor

series expansion of the generalized plant to obtain systems

matrices with affine parameter variation.

C. First-order Taylor Series Expansion of the Generalized

Plant

To utilize the control synthesis technique in [18], we

calculate the first-order Taylor series approximation of the

system matrices to obtain affine functions in Θ. Notice that

Eq. (8) is an upper LFT, i.e.,

H(Θ) := Fu(M,Θ). (11)

V1

V2

V3

V4

V5

V6

V7

V8

αδ

βδ

γ

Fig. 4. Parameter space polytope.

Using the Taylor series expansion at Θ = 0, the system can

be approximated as

Ĥ(Θ) = H(0)+βδ [▽H(0)]1+αδ [▽H(0)]2+γ [▽H(0)]3 ,
(12)

where [▽H(0)]i is the partial derivative of the LFT system

H(Θ) in Eq. (11) with respect to the i-th parameter, which

can be calculated as shown in [21]. The approximation of the

generalized plant H(Θ) to Ĥ(Θ) is depicted in Fig. 3. Using

the affine system matrices Ĥ(Θ), the polytopic system can

be computed and the controller synthesis, which is covered

in the next section, can be performed.

D. Control Synthesis for polytopic linear time-varying sys-

tem

The gain-scheduling method provided by [18] is designed
for discrete-time polytopic time-varying systems. The affine

system matrices Ĥ(Θ) in Eq. (12) can be converted into
the discrete-time polytopic time-varying system (Eq. (13))
by solving for the state-space matrices at vertices {Vi}
of the parameter space polytope displayed in Fig. 4. Any
system inside of the convex parameter set is represented by
a convex combination of the vertex systems. The discrete-
time polytopic linear time-varying system is given by








x(k + 1)

z(k)

e(k)









=







Ā[λ(k)] B̄1[λ(k)] B̄2[λ(k)]

C̄1[λ(k)] D̄11[λ(k)] D̄12[λ(k)]

C̄2 0 0















x(k)

w(k)

u(k)









,

(13)

where, for all k ∈ Z≥0, λ(k) is the vector of time-varying

barycentric coordinates that belong to the unit simplex

ΛN =

{

ζ ∈ R
N :

N∑

i=1

ζi = 1, ζi ≥ 0, i = 1, · · · , N

}

.

A way to compute the barycentric coordinate vector λ(k) for

a given αδ(k), βδ(k), and γ(k) is provided by [22]. For all

k ∈ Z≥0, the rate of variation of the weights

∆λi(k) = λi(k + 1)− λi(k), i = 1, · · · , N

is limited by the calculated bound b such that

−bλi(k) ≤ ∆λi(k) ≤ b(1− λi(k)), i = 1, · · · , N (14)

where b ∈ [0, 1].
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The system matrices Ā[λ(k)] ∈ R
n×n, B̄1[λ(k)] ∈ R

n×r,

B̄2[λ(k)] ∈ R
n×m, C̄1[λ(k)] ∈ R

p×n, D̄11[λ(k)] ∈ R
p×r,

D̄12[λ(k)] ∈ R
p×m belong to the polytope

D = {(Ā, B̄1, B̄2, C̄1, D̄11, D̄12)(λ(k)) :

(Ā, B̄1, B̄2, C̄1, D̄11, D̄12)(λ(k))

=

N∑

i=1

λi(k)(Ā, B̄1, B̄2, C̄1, D̄11, D̄12)i, λ(k) ∈ ΛN}.

A finite set of LMIs in [18] can be used to design the gain-

scheduling controller K(Θ) in Eq. (7). Due to Theorem 3

of [18], if there exists matrices Gi,2 ∈ R
(n−q)×q , Gi,3 ∈

R
(n−q)×(n−q), Gi,fb ∈ R

(s+1)×(s+1), Gi,L ∈ R, Zi,fb ∈
R

1×(s+1), and Zi,L ∈ R
s×1 such that

Gi,1 =

[
Gi,fb 0
0 Gi,L

]

, and Zi,1 =

[
Zi,fb 0
0 Zi,L

]

and symmetric matrices Pi ∈ R
n×n such that the LMI

conditions in [18] are satisfied, the gain-scheduling static

feedback control is then obtained as

K(λ(k)) = Ẑ(λ(k))Ĝ(λ(k))−1, (15)

where

Ẑ(λ(k)) =

N∑

i=1

λi(k)Zi,1 and Ĝ(λ(k)) =

N∑

i=1

λi(k)Gi,1.

This control is proved to stabilize affine parameter-dependent

systems such as (13) with a guaranteed H∞ performance

bounded by η for all λ ∈ ΛN and ∆λ that satisfies (14).

IV. SIMULATION RESULTS

The performance of the dynamic gain-scheduling con-

troller developed in this paper is demonstrated by comparing

its measured equivalence ratio response to the response of the

gain-scheduling PID controller developed in [17]. To ensure

that the comparison is fair, the weighting functions W1(q)
and W2(q) used to design the dynamic gain-scheduling

controller are the exact same as those used to design the

gain-scheduling PID controller in [17]. Each gain-scheduling

controller is simulated with the a crank resolved mean-value

engine model developed in [23].

A. Step Throttle Change

In this case we simulate an engine dynamometer exper-

iment for an engine operated at a temperature of 120◦C
with an engine speed of 1500 rpm. After the engine is

stably operated at this condition with a 32% throttle, the

load is increased by a step throttle position from 32%
to 46%. Note that in the dynamometer test, the engine

speed was maintained by the dynamometer through torque

regulation. This is similar to the driving condition that a

step throttle is applied to maintain the vehicle speed when

the vehicle is driven up a hill. Note that the step increment

of throttle position produces a slight change in the wall-

wetting parameter β as shown in Fig. 5C. The measured

equivalence ratio of the engine model with each controller

is given in Fig. 5A. The throttle step occurring at the 30th
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Fig. 5. Step Throttle Change Simulation

second results in a drop in the equivalence ratio due to the

step air mass flow. In the detail of Fig. 5A, we see that while

the measured equivalence ratio with both gain-scheduling

controllers drops to just under 0.85, the gain- scheduling PID

controller proceeds to overshoot 1.00 by about 0.01 while the

dynamic gain- scheduling controller never exceeds 1.00. We

also note that the dynamic gain-scheduling controller uses

less fuel than the gain-scheduling PID controller as shown

in Fig. 5B.

B. Engine Speed Change

In this simulation, an engine was operated on a dy-

namometer with its coolant temperature at 120◦C. To

demonstrate the capability for the gain scheduling controller

to handle engine speed variations, a smoothed step command

from 1500 rpm to 2500 rpm was applied to the engine

dynamometer to manipulate the engine speed as shown

in Fig. 6D. The resulting engine wall-wetting dynamics

parameters, shown in Fig. 6C, were used in the simulation.

Notice in Fig. 6A that while the gain-scheduling PID con-
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troller regulates the measured equivalence ratio within 4%
of the target value, the dynamic gain-scheduling controller

outperforms it by regulating the measured equivalence ratio

within 2% of the target value of 1.00. We also note that

while there is not too much difference in fueling as shown

in Fig 6B, in the detail we can see that the dynamic gain-

scheduling controller uses slightly less fuel than the gain-

scheduling PID controller.

V. CONCLUSION

In this paper, an event-based dynamic gain-scheduling

controller was designed by employing a standard control

structure of observer-based state feedback with integral con-

trol. The dynamic gain-scheduling controller was applied to

an LPV system representing the air-to-fuel ratio control of

a port-fuel-injection process. The system parameters used in

the engine fuel system model are engine speed, temperature,

and load. The static gains of the dynamic gain-scheduling

controller for the obtained LPV system were then designed

based on the numerically efficient convex optimization (or

LMI) technique. The simulation results demonstrate the

effectiveness of the proposed scheme.
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