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Abstract— In this paper we provide sufficient conditions
to ensure that solutions to the time varying Riccati partial
differential equations are Bochner integrable with range in
the space of trace class operators. The fact that Bochner
integrals can be uniformly approximated by simple functions
provides a basis for obtaining bounds on integration errors.
These bounds can then be used for rigorous numerical analysis
and to ensure the convergence of algorithms used to compute
approximate solutions. We demonstrate how this result can
be employed to develop convergent computational methods
for a sensor placement problem based on optimal filtering.
Theoretical results are presented and numerical examples are
given to illustrate the ideas.

I. INTRODUCTION AND PROBLEM FORMULATION

Let Ω ⊂ Rn, n = 1, 2, 3, be an open bounded domain
with boundary ∂Ω of Lipschitz class (for example the open
unit cube in Rn has Lipschitz class boundary). Consider a
advection-diffusion process in the region Ω with boundary
∂Ω described by the partial differential equation with distur-
bance given by

∂

∂t
T (t, ~x) = ε2∆T (t, ~x) + [κ(~x) · ∇T (t, ~x)] (1)

+
m∑
k=1

gk(~x)ηk(t), (2)

with boundary and initial conditions

T (t, ~x) |∂Ω= 0, T (0, ~x) = T0(~x) ∈ L2(Ω).

Here, the functions gk(·) are given and ηk(·) represents a
time varying disturbance so that

g(t, x) =
m∑
k=1

gk(~x)ηk(t) (3)

is a spatially distributed disturbance.
We assume that there is a single “mobile sensor platform”

that produces a local spatial average of the state T (t, ~x).
The extension to several sensors is straightforward. Thus,
we assume that h(·) is a given weighting function and
a sensor is moving along the path described by ~γ(t) =
[x(t), y(t), z(t)]T ∈ Ω which produces an spatially averaged
signal on a ball of radius δ about the trajectory ~γ(t).
Consequently, the measured output has the form

y(t) =
∫∫∫

Bδ(~γ(t))∩Ω

h(~x)T (t, ~x)d~x+ v(t), (4)

where v(t) is the sensor noise and Bδ(~γ(t)) is the open ball
about the curve ~γ(t) of radius δ.

For the mobile sensor defined by ~γ(t), we define the output
map C(t) : L2(Ω) −→ R1 by

C(t)ϕ(·) =
∫∫∫

Bδ(~γ(t))

h(~x)ϕ(~x)d~x (5)

and hence the measured output defined by (4) has the abstract
form

y(t) = C(t)T (t, ·) + Ev(t), (6)

where in this one sensor case E = 1.
The standard formulation of the abstract (infinite dimen-

sional) model for the convection-diffusion system (2) with
output (6) leads to the a distributed parameter system in the
Hilbert space H = L2(Ω) given by

ż(t) = Az(t) +G~η(t) ∈H , (7)

with output
y(t) = C(t)z(t) + Ev(t), (8)

where the state of the distributed parameter system is
z(t)(·) = T (t, ·) ∈ H = L2(Ω) and A is the usual
convection-diffusion operator (see [1], [2]).

We focus here on a version of the optimal sensor man-
agement problem first formulated by Bensoussan and Curtain
(see [4], [5], [8], [9]). In particular, the problem is formulated
as an optimal estimation problem based on the observation
that the variance equation for the Kalman filter satisfies an
infinite dimensional Riccati (partial) differential equation of
the form

Σ̇(t) = AΣ(t) + Σ(t)A∗ (9)
+GG∗ − Σ(t)C∗(t)C(t)Σ(t),

with initial data
Σ(t0) = Σ0. (10)

The optimal sensor management problem becomes a dis-
tributed parameter optimal control problem with the “state”
Σ(·) defined by the Riccati system (9)-(10) and the cost
functional is defined in terms of the trace of Σ(·). In
particular, we fix a time interval 0 ≤ t ≤ tf and assume
Q(·) = Q(·)∗ ∈ L∞([0, tf ]; L (H)) is a given self-adjoint
weighting operator. The optimal mobile sensor problem can
be stated as the following optimal control problem (see [6]):
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Problem A: Find Copt(·) of the form (5) so that

J
(
C(·)

)
=
∫ tf

t0

Tr(Q(t)Σ(t))dt (11)

is minimized, where Σ(·) is a solution of the system (9)-
(10) and C(·) is of the form (5).

Remark A. Note that this problem could have been
stated in terms of finding the optimal trajectory ~γopt(t) =
[x(t), y(t), z(t)]T . In practice, the trajectories are defined
(limited) by the dynamics of the platform. Also, the way one
defines what is meant by a solution to the Riccati differential
equation (9)-(10) can dramatically effect the choice of a
numerical approximation, the convergence and convergence
rates. We turn to the integral equation form of (9)-(10).

II. THE RICCATI INTEGRAL EQUATION

In much of the literature, solutions of (9)-(10) are defined
in terms of mild forms of the integral equation

Σ(t) = S∗(t)Σ0S(t) +
∫ t

0

S∗(t− s)

× (G(s)G∗(s)− Σ(s)(C∗(s)C(s))Σ(s)) (12)
× S(t− s)ds.

Under the assumptions considered here, we have shown that
(9)-(10) can be interpreted as a Bochner integral equation
with operator-valued integrand. Since Bochner integrable
functions can be uniformly approximated by simple functions
(e.g. step functions), one can obtain (uniform) bounds on
numerical integration and thus control the integration errors
to ensure convergence of the integral in (11) and for the
corresponding approximating solutions. It is shown in [16]
that controlling these tolerances is the key to obtaining
correct numerical approximations of the cost function (11).

Let H be a separable complex Hilbert space. The spaces
I1 and I2 denote the space of trace class and Hilbert-
Schmidt operators on H , respectively. The following result
is a special case of Proposition 11 in [16].

Theorem 1. Let I = [0, tf ] and assume

(i) S(t) is a C0-semigroup over H ;
(ii) Σ0 ∈ I1;
(iii) F (·) = G(·)G∗(·) ∈ L1(I; I1);
(iv) D(·) = C(·)∗C(·) ∈ L∞(I; L (H));

hold. If Σ(·) ∈ L2(I; I2), then for all t ∈ I the mapping

s 7→ S(t− s)(F (s)− Σ(s)D(s)Σ(s))S∗(t− s)

is Bochner integrable and Υ(Σ)(·) defined by

Υ(Σ(·))(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)

× (F (s)− Σ(s)D(s)Σ(s))
× S∗(t− s)ds,

is a well defined function Υ : L2(I; I2) 7→ C (I; I1).
Moreover, since

Υ
(
L2(I; I2)

)
⊂ C (I; I1),

it follows that C (I; I1) is an Υ-invariant subspace of
L2(I; I2).

If in addition, D(·) satisfies the stronger condition
(iv’) D(·) ∈ L∞(I; I1),

and Σ(·) ∈ L2(I; L (H )), then Υ(Σ)(·) ∈ C (I; Ip). In
this case,

Υ
(
L2(I; L (H ))

)
⊂ C (I; I1),

and C (I; I1) is a Υ-invariant subspace of L2(I; L (H )).

Remark B. The benefit of using a Bochner integral is clearly
demonstrated in Chapter 5 of the thesis [16] where it is
shown that numerically incorrect answers can be obtained
unless one can set specific tolerances on these Bochner
integrals. These issues are discussed in detail in the thesis
[16] and will appear in a future longer paper.

In the next section we show that under reasonable as-
sumptions, Galerkin and spectral type numerical methods
produce convergence in the trace norm and these schemes
provide a practical algorithm for solving the optimal sensor
management problem.

III. APPROXIMATION

One of the main issues that needs to be addressed in order
to develop practical numerical schemes is the approximating
the operator C(·). Here, C(·) is assumed to vary continuously
with respect to the Hilbert-Schmidt norm. This implies that
C∗(·)C(·) varies continuously with respect to the trace norm,
and this provides the foundation that allows us to work
with trace class solutions of the Riccati equation. We will
make use of known results on existence and approximations
developed by [10], [11] and [12]. These references deal with
convergence in the space of Hilbert-Schmidt operators I2.
We will extend these results to convergence in the space I1

of trace class operators.

A. Assumptions and Basic Results

Let, for each n ∈ N let Pn be the projection from the
Hilbert space H onto a finite dimensional Hilbert space Vn
such that Vn ⊂ H and Vn ⊂ D(A), where the sequence
P ∗nPn converges strongly to the identity and [N (Pn)]⊥ ⊂
D(A) for each n ∈ N . SinceP ∗nPn converges strongly to
the identity and Vn ⊂ H , the sequence ‖Pn‖ is uniformly
bounded.

Also, An = PnAP
∗
n is a bounded linear operator on

Vn ⊂ H and is an infinitesimal generator of the uniformly
continuous semigroup Tn(t) = eAnt on H . Let T (t) denote
the semigroup with infinitesimal generator A and assume the
following conditions hold.

H1) There exist M ≥ 1 and ω ∈ R such that ‖Tn(t)‖ ≤
Meωt.

H2) There is a dense subset D ⊂ H such that D ⊂
D(A) and such that if x ∈ D, then Anx→ Ax as
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n→∞. Moreover, there is a complex number λ0,
with Re λ0 > ω such that (λ0 −A)D = H .

If H1 and H2 are satisfied, then the Trotter-Kato Theorem
(see [2] and [15]) implies that as as n→∞

‖T (t)x− Tn(t)x‖ → 0, (13)

for each x ∈H and the convergence is uniform on compact
time intervals. When Pn is an orthogonal projection, (P ∗n =
Pn) and Pn → I strongly the following result holds.

Proposition 1. Let {Pn}∞n=1 be a sequence of orthogonal
projectors over a complex separable Hilbert space H that
converge strongly to the identity, 0 ≤ Σ0 ∈ I1, F (·) ∈
L1(I; I1) and D(·) ∈ C (I; I1). If I = [0, tf ], then

i. PnΣ0Pn ∈ I1 and ‖Σ0 − PnΣ0Pn‖1 → 0
as n→∞.

ii. The map t 7→ PnF (t)Pn belongs to L1(I; I1) and∫
I

‖(F − PnFPn)(s)‖1 ds→ 0,

as n→∞.
iii. The map t 7→ PnD(t)Pn belong to C (I; I1) and

sup
t∈I
‖(D − PnDPn)(t)‖1 → 0,

as n→∞.

Proof:
i. Let Σ0 ≥ 0 be of rank one, so Σ0x = 〈ϕ, x〉ϕ

and PnΣ0Pnx = 〈Pnϕ, x〉Pnϕ since P ∗n = Pn,
for all x ∈ H . Define ϕn = Pnϕ. It follows
that (Σ0 − PnΣ0Pn)x = 〈ϕ, x〉ϕ − 〈ϕn, x〉ϕn =
〈ϕ− ϕn, x〉ϕ+ 〈ϕn, x〉 (ϕ− ϕn) and

|Tr(D(Σ0 − PnΣ0Pn)| ≤
∞∑
k=1

|< ϕ− ϕn, ϕk >|

× |< ϕk, Dϕ >|

+
∞∑
k=1

|< ϕn, ϕk >|

× |< ϕk, D(ϕ− ϕn) >|
≤ ‖ϕ− ϕn‖ ‖Dϕ‖
+ ‖ϕn‖ ‖D(ϕ− ϕn)‖
≤ ‖Dϕ‖ ‖ϕ− ϕn‖ ‖ϕ‖
+ ‖Dϕ‖ ‖ϕn‖ ‖ϕ− ϕn‖ .

Therefore,

‖Σ0 − PnΣ0Pn‖1 =

sup
D

|Tr (D(Σ0 − PnΣ0Pn)) |
‖D‖

≤ ‖ϕ− ϕn‖‖ϕ‖
+ ‖ϕn‖‖ϕ− ϕn‖,

where the sup is over all finite rank D. This implies
that ‖Σ0 − PnΣ0Pn‖1 → 0 since ϕn → ϕ. If Σ0

is of finite rank, the same result follows easily. If
0 ≤ Σ0 ∈ I1, then there is a sequence of finite rank
operators {Σn0}

∞
n=1 such that ‖Σ0 − Σn0‖1 → 0 as

n→∞. This yields

‖Σ0 − PnΣ0Pn‖1 ≤ ‖Σ0 − Σm0 ‖1
+ ‖Σm0 − PnΣm0 Pn‖1
+ ‖Pn(Σ0 − Σm0 )Pn‖1
≤ 2 ‖Σ0 − Σm0 ‖1

+ ‖Σm0 − PnΣm0 P1‖1 ,

and hence lim supn→∞ ‖Σ0 − PnΣ0P1‖1 ≤
2 ‖Σ0 − Σm0 ‖1. Consequently, it now follows
that ‖Σ0 − PnΣ0Pn‖1 → 0 as n → ∞ since
‖Σ0 − Σm0 ‖1 → 0 as m→∞.

ii. Since Pn is not time dependent, it is easy to show
that PnF (·)Pn ∈ L1(I; I1). If F (t) is the step
function given by F (t) =

∑q
k=1 fkχIk (t), then∫

I

‖(F − PnFPn)(t)‖1dt

≤
q∑

k=1

‖fk − PnfkPn‖1m(Ik),

and from the previous result we have that
∫
I
‖(F −

PnFPn)(t)‖1 → 0 as n → ∞. Since, step func-
tions are dense in L1(I; I1) the result will follow
for any F (·) ∈ L1(I; I1).

iii. Since I is compact, then step functions are dense
in C (I; I1) and this implies that the result holds
in all C (I; I1) and this completes the proof.

B. The Convection-Diffusion Operator case

As above, let Ω ⊂ Rn be an open bounded domain with
boundary ∂Ω of Lipschitz class and consider the differential
operator of order 2

A(x,D) = −ε2∆ +
∑
|α|≤1

aα(x)Dα,

with ε > 0 and where ∆ is the Laplacian operator on Ω
and the functions x 7→ aα(x) are smooth complex valued
functions on Ω. Since ε2 > 0 then A(x,D) is strongly elliptic
of order 2 (see [15]) and the operator −A = −A(x,D)
with domain D(−A(x,D)) = H2(Ω) ∩H1

0 (Ω) generates a
C0−semigroup T (t) = e−At on H = L2(Ω). The unique
solution to

∂u(t, x)
∂t

+A(x,D)u(t, x) = 0, for t > 0 and x ∈ Ω

u(t, x) = 0, for t ≥ 0 and x ∈ ∂Ω

u(0, x) = u0(x), for u0(·) ∈ L2(Ω),

is given by
u(t, x) = (T (t)u0)(x).

It is a well know fact that the Laplacian defined as

∆ : H2(Ω) ∩H1
0 (Ω) 7→ L2(Ω),
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has eigenvalues {λk}∞k=1 that can be arranged in decreasing
order 0 ≥ λ1 ≥ λ2 ≥ · · · such λk → −∞ as k → ∞
and the eigenspaces are finite-dimensional. We can choose
the eigenfunctionss {φk(·)}∞k=1 to be an orthonormal basis
of L2(Ω). Moreover, {φk(·)} are of class C∞(Ω).

Define the subspaces

Vn = span {φ1, φ2, . . . , φn} ,

and let Pn be the orthogonal projector from L2(Ω) to Vn.
Clearly, Vn ∈ D(−A) and P ∗nPn = P 2

n = Pn → I strongly
as n→∞ since

‖(I − Pn)ψ‖2 =
∞∑

k=n+1

| 〈φk, ψ〉 |2 → 0, as n→∞,

and (
N (Pn)

)⊥ =
(
span {φn+1, φn+2, . . .}

)⊥
= span {φ1, φ2, . . . , φn}
= Vn
⊂ D(−A).

We show that these Galerkin approximations satisfy the
conditions required by the Trotter-Kato Theorem. First, it
follows from Garding’s inequality that there is a λ̂0 ≥ 0
such that −Aλ̂0

= −(A+ λ̂0I) is the infinitesimal generator
of a C0−semigroup of contractions in L2(Ω) (see [15]). In
particular, −Aλ̂0

∈ G(1, 0). Moreover, −A = −Aλ̂0
+ λ̂0I

and since λ̂0I is bounded with ‖λ̂0I‖ = λ̂0, it follows that
−A ∈ G(1, λ̂0). Since Vn ∈ D(A), then it follows that
An = PnAPn satisfies −An ∈ G(1, λ̂0) (see [2] for a
detailed proof). This observation implies that hypothesis H1
is satisfied, since

‖Tn(t)‖ ≤ eλ̂0t for all n ∈ N and all t ≥ 0,

where Tn(t) is the uniformly continuous semigroup gener-
ated by −An. In addition ‖T (t)‖ ≤ eλ̂0t for all t ≥ 0 where
T (t) is the semigroup generated by −A.

We now show that Hypothesis H2 is also satisfied. Let
D be the space spanned by finite linear combinations of the
{φk}∞k=1 given by

D = span{φ1, φ2, . . .}.

Since {φk}∞k=1 is an orthonormal basis of L2(Ω), it fol-
lows that D is dense in L2(Ω). If x ∈ D, then x =∑N
k=1 〈φk, x〉φk for some N <∞, Thus, if n ≥ N , then

‖Ax−Anx‖ ≤
N∑
k=1

| 〈φk, x〉 |‖Aφk −Anφk‖

≤
N∑
k=1

| 〈φk, x〉 |‖Aφk − PnAφk‖ → 0

as n→∞ since Pn → I strongly as n→∞ and N <∞.
Finally, we must show that there is a complex number

λ0 with Re λ0 > λ̂0 such that (λ0 +A)D = L2(Ω). This
can be done exactly as in Pazy’s book (see [15]) where
Pazy discusses Parabolic Equations and will not repeated

here. Consequently, we have shown that H1 and H2 are
satisfied when we used the Galerkin scheme defined by the
approximations generated by Pn(−A)Pn for n = 1, 2, . . ..
Hence it follows that

‖T (t)x− Tn(t)x‖ → 0,

as n→∞, for each x ∈ L2(Ω).
Since A(x,D) = −ε2∆ +

∑
|α|≤1 aα(x)Dα its formal

adjoint A∗(x,D) is defined by (see [15])

A∗(x,D)u = −ε2∆u+
∑
|α|≤1

Dα
(
aα(x)u

)
,

and it is also strongly elliptic of order 2. Since the in-
finitesimal generator −A is defined by Ax = A(x,D)x
for each x ∈ H1

0 (Ω) ∩ H2(Ω), its adjoint is given by
A∗x = A∗(x,D)x for each x ∈ H1

0 (Ω) ∩ H2(Ω) (for a
proof see Pazy’s book [15]). Therefore, it is straight forward
to show that for each x ∈ L2(Ω)

‖T ∗(t)x− T ∗n(t)x‖ → 0,

as n → ∞, where T ∗(t) is the C0−semigroup generated
by −A∗ and T ∗n(t) are the uniformly continuous semigroup
generated by Pn(−A∗)Pn. This established conditions H1
and H2 are valid for the Galerkin approximations above.

We note that a a general abstract approximation framework
was first developed by Banks and Kunisch in [1] for a
much wider class of parabolic systems using a similar
approach. Finally, we have the following theorem for trace
norm convergence of the approximate solutions to the Riccati
equation (9)-(10).

Theorem 2 (BASIC APPROXIMATION THEOREM). Let X
be a complex separable Hilbert space and let Y be a
complex finite dimensional Hilbert space. Let T (t) be the
C0−semigroup on H = L2(Ω) generated by the strongly
elliptic operator −A and let Tn(t) be the sequence generated
by −An = Pn(−A)Pn. Suppose also that

i. 0 ≤ Σ0 ∈ I1(H ).
ii. G(·) ∈ L2([0, tf ]; I2(X,H )).
iii. C(·) ∈ C ([0, tf ]; L (H , Y )).

Then , Σ(·) ∈ C ([0, tf ]; I1(H )), is the unique solution of
Bochner integral equation

Σ(t) = T ∗(t)Σ0T (t)

+
∫ t

0

T ∗(t− s)(GG∗

− Σ(s)(C∗C)(s)Σ(s))T (t− s)ds,

and the sequence of solutions Σn(·) ∈ C ([0, tf ]; I1(H )) of

Σn(t) = T ∗n(t)
(
PnΣ0Pn

)
Tn(t)

+
∫ t

0

T ∗n(t− s)
((
PnGG

∗Pn
)

− Σn
(
PnC

∗CPn
)
Σn
)

(s)Tn(t− s)ds,

satisfies
sup

t∈[0,tf ]

‖Σ(t)− Σn(t)‖1 → 0, (14)
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as n→∞.

A detailed proof of this result is too long for this short
paper, but can be found in the thesis [16]. Finally, we
have to address the problem of convergence of the integrals∫ tf

0
Tr (QΣn) (t)dt to

∫ tf
0

Tr (QΣ) (t)dt. This is a conse-
quence of the following Corollary.

Corollary III.1. Assume the hypothesis of the previous The-
orem 2 hold and suppose that Q(·) ∈ L∞([0, tf ]; L (H)).
Then the sequence Σn(·) and Σ(·) defined above satisfies∫ tf

0

Tr (QΣn) (t) dt→
∫ tf

0

Tr (QΣ) (t) dt.

Proof: The proof follows immediately from the inequality

|
∫
Q(Σ−Σn)(t)dt| ≤

sup
t∈[0,tf ]

‖(Σ− Σn)(t)‖1
∫ tf

0

‖Q(t)‖dt.

IV. NUMERICAL RESULTS FOR THE GALERKIN
APPROXIMATION SCHEME: STATIONARY CASE

We present some typical numerical results for a 2D
problem on the unit square. In particular, we consider

∂T

∂t
= ε2∆T +

(
ax
∂T

∂x
+ ay

∂T

∂y

)
+ g(x, y)η(t),

with a fixed sensor is at position (x0, y0). The output is given
by

y(t) =
∫

Ω

h(x− x0, y − y0)T (t, x, y) dx dy + ν(t),

where the kernel h(x, y) is given by

h(x, y) = e−20(x2+y2) (15)

and ε2 = 0.01. The functional to minimize is defined by

J(x0, y0) =
∫ 1

0

Tr (Σ(x0,y0)(t)) dt,

where Σ(x0,y0) is the solution of the Riccati equation and the
output map is determined by the sensor in position (x0, y0).

Integration of the finite dimensional approximating Riccati
equation was computed by an implicit Euler’s method and
the integral of the trace was computed using trapezoidal
integration (see [3]). In all cases presented here, the Galerkin
method converged with 16 basis elements. Also, to check the
numerical results we compared the Galerkin scheme to the
standard finite element method. In both cases, the algorithms
produced the same optimal sensor location. However, the
finite element method required many more basis elements
before convergence was observed.

The figures below contain plots and contour plots of the
cost function

J(x, y) =
∫ 1

0

Tr (Σx,y(t)) dt.

for (x, y) ∈ Ω.

Uniform Noise and Zero Convective Term
In this run we set g(x, y) = g1(x, y) = 50 and ax =

ay = 0. In Figure 1 we plot the cost function J(x, y) =∫ 1

0
Tr (Σx,y(t)) dt. As expected, we observe that the mini-

mum is obtained by placing the sensor in the center of the
unit square.

(a) J(x, y) =
∫ 1
0 Tr (Σx,y(t)) dt

(b) J(x, y) =
∫ 1
0 Tr (Σx,y(t)) dt Top view

Fig. 1. J(x, y) for noise g1(x, y) = 50 and ax = ay = 0.

Non-uniform Noise and Zero Convective Term
Here we set the noise term to be g(x, y) = g2(x, y) =

10 + 40exp[−5
(
(x−0.1)2 + (y−0.1)2

)
] and again consider

the zero convection ax = ay = 0 case. Here we observe that
the minimum is now located at a point that lies between
the center of the square and the point with the highest
concentration of noise located at (0.1, 0.1). Figure 2 contains
the plots for this case.

Uniform Noise and Non-zero Convective Term
Again we assume a uniform noise and set g(x, y, z) =

g3(x, y) = 50. However, we allow for convection in the x-
direction so that ax = 10 and ay = 0. Observe that this
means that the field is convecting from right to left. This is
the most interesting case in that the optimal location now
moves to the right from the center point to an “up stream”
point closer to the y = 1 boundary. Figure 3 contains the
plots for this case.

V. CONCLUSIONS

We have provided a proof that Galerkin type approxima-
tions yield trace norm convergence of the approximating
Riccati operators. As noted in [13], this type of strong
convergence is required if one hopes to use numerical
approximations for the optimal sensor placement problem
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(a) J(x, y) =
∫ 1
0 Tr (Σx,y(t)) dt

(b) J(x, y) =
∫ 1
0 Tr (Σx,y(t)) dt Top view

Fig. 2. J(x, y) for noise g(x, y) = g2(x, y) and ax = ay = 0.

based on the optimal filtering formulation. A standard finite
element scheme produced the same optimal sensor location
as the Galerkin algorithm, but required more elements. Note
that the standard finite element scheme fails to satisfy the
conditions in the approximation theorem above and hence we
do not have a complete trace norm convergence theory for
the finite element method. However, since the finite element
scheme produced the same optimal location we conjecture
there may be other conditions to ensure convergence suf-
ficient for the sensor placement problem. This remains an
open question.

The third numerical example seems to suggest that the
optimal sensor location is consistent with the “intuitive
answer” that the sensor should be placed up stream to
deal with “lag” due to the convection. This behavior occurs
because the goal here is to estimate the entire state T (t, ~x)
over the entire spatial domain Ω. Previous results (see [6]
and [7]) indicate that this intuitive solution no longer remains
valid if one restricts the spatial domain to a subset of Ω.
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