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Toward a Stability Monitoring System of an Asset-Communications
Network Exposed to Malicious Attacks

N. Léchevin, C.A. Rabbath, and P. Maupin

Abstract — This paper proposes stability conditions for a network
of assets. The assets are connected to a communications network, thus
constituting a two-layered (or two-tier) network. The effectiveness of
the network, and even its stability, can be indirectly affected by
malicious attacks targeting the communications. The particular case of
virus propagation on the assets is considered. The network of assets is
modeled as a discrete-time, jump, linear system whose transitions are
governed by nonlinear discrete-time dynamics representing a class of
virus diffusion. The state-space variables of the latter represent the
probabilities of each node receiving the virus and being infected. The
stability analysis is obtained by means of a stochastic Lyapunov
function argument and yields a sufficient condition expressed as a
linear matrix inequality (LMI). This LMI involves the asset state-space
matrices and the positive limit set of the probabilistic model of the
virus propagation dynamics, which exhibits the attraction property
provided a sufficient condition is satisfied. The proposed condition
involves the adjacency matrix of the communications network and the
parameters characterizing virus propagation. An approximation to the
sufficient condition is proposed so that convergence of the system
trajectories could be monitored online. The analysis is extended to a
class of jump systems, which are affinely excited by some disturbance,
yielding an almost-sure boundedness of the trajectories.

I. INTRODUCTION

Despite local and global failure detection and recovery
mechanisms, networks are prone to large, although
infrequent, outages. The robust-yet-fragile paradigm [1]
about network, which is thoroughly documented by the
multidimensional description of networked infrastructures
proposed in [15], can be illustrated by the following two
facts that may help grasp the vulnerabilities: (i) the
likelihood of uncontrolled and unexpected propagation of an
isolated problem tends to increase as the network operates
close to its safety margin; (i7) coordinated attacks, whether
physical or cybernetical, may successfully leverage
vulnerabilities of a network, particularly under stressed
operating conditions.

Malicious cyberattacks on the supervisory control and
data acquisition systems managing critical public
infrastructures can indeed bring about disruption of service.
Instances of reported cyberattacks towards power electric
utilities include, (i) the SQL Slammer worm that infected and
disabled internal systems at a nuclear plant in Ohio in 2003
[16], (i) hackers who attacked the California Independent
System Operator which manages the electricity supply of
California [16], and (iii) the Aurora vulnerability, illustrated
by a Homeland Security video showing a small electric
generator being disabled remotely from the internet [11].
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Further examples of cyberattacks targeting water supply and
waste water system can also be found in [11], where it is
reported that a disgruntled employee hacked a sewage
treatment system from a laptop, causing significant
environmental damages. In a military context, network-
centric assets, whether it be weapons or unmanned vehicles,
are prone to attacks at the physical layer, data-link layer, and
network layer through enemy actions including jamming,
deception, destruction, and information overloading [14].
Other critical applications that necessitate accounting for
potential mishaps of the communications networks include
vehicle networked control pertaining to the automated
highway [18] and cooperative mobile sensor coverage [19].
We propose, in this paper, to derive stability and
boundedness conditions that are expected to be implemented
online for the health monitoring of a network of assets (NA).
By asset we mean a stable dynamic system (infrastructure,
vehicles, weapons, etc). A healthy asset indicates operation
under nominal conditions. The network of assets is subject to
disturbances resulting from the prevalence and propagation
of viruses through a communications network (CN), which is
connected to the assets. The problem considered in this
paper is related to the stability analysis of networked control
systems whose operating conditions are subject to imperfect
communications. Such imperfections may be caused by
packet dropouts. However, our model does not explicitly
take packet dropouts into account. The closed-loop systems
that are typically dealt with, when analyzing the effect of
packet dropouts, include asynchronous dynamic systems,
switching systems, and jump linear systems with Markov
chain. Typically, the dropouts occur in the sensor-to-
controller or the controller-to-actuator path. See [8], [20],
and references therein for further details. The state of the
communications network, which is potentially affected by
the propagation of viruses, could be modeled with a Markov
chain. This approach, when applied to the two-layered
network at hand (NA and CN) is characterized by a jump
system whose switching mechanism would be a function of
the state of the Markov chain. In that case, convergence in
the mean square sense of the jump system can be verified by
direct application of the sufficient condition derived in [2].
However, such an approach is likely to be intractable since a
communications network with m nodes leads to a Markov
chain with 2" states, with each node being either infective or
susceptible. The nonlinear, discrete-time, state-space model
proposed in [1] is thus preferred. Each component of the
state-space vector represents either the probability that a
node of the communication network is infected or the
probability that a node will not receive the infection between
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two successive time instants. The network of assets
considered here includes, but is not restricted to, a class of
networked control systems. The possible application pertains
to the infrastructures that are physically connected and that
require remote information obtained from communications
network in order to perform inter-area oscillation
stabilization. For example, large-scale power grids are likely
to behave abnormally or even to be part of cascading
failures, should the operation condition deviate from its
nominal value and approach safety limits. Similarly, the
networked control system could pertain to the control of a
network of mobile assets (e.g., drone aircraft) with its
stability under cyberattacks.

The article is structured as follows. The model of the
two-layered network and the analysis objectives are
presented in Section II. The stability conditions used by such
system are derived in Section III. Boundedness of the
trajectories is analyzed in Section IV, in case the jump
system is excited by some exogenous disturbance.

II. TwO-LAYERED NETWORK MODEL AND PROBLEM
FORMULATION

We consider a two-layered (or two-tier) networks (Fig.
1(a)) composed of (i) assets such as infrastructures and
unmanned vehicles equipped with protection, local self-
healing, and control systems and of (ii) a communications
network (CN). The types of interconnections linking the
assets include physical interconnections and information
exchanges by means of remote sensors such as cameras,
sonar, and lasers. Other types of information are
communicated through CN. Regarding possible impact of
faults and failures, unidirectional dependency between the
networks is considered; i.e., malfunctioning of the
communications network may adversely affect the network
of assets (NA), whereas the reverse situation is not
considered. The unidirectional constraint characterizing the
fault tree does not prevent the communications network to
interact bidirectionally. This issue is left for future
investigations. No particular assumptions are made about the
topology of NA. CN is assumed connected and undirected.
Its topology is reflected in the contraction analysis of its

dynamics through the use of its adjacency matrix.
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Fig. 1. Two-layered networks. (a) The network of assets (red) is connected to the
information network (green). (b) Transition diagram of a node of CN [3]. A susceptible
(S) node is healthy at #; but can receive the virus from a neighbor with probability 1-¢ .
An infected (I) node can be cured over [#, f+1) With probability J.

Definition 1 (CN model): Let p;y, i, B, and O denote the
probability that node i is infected at time instant #,€ R, ke N,
the probability that node i will not receive infections from its
neighbors over [#, #,1), the probability that a node tries to

Networked
Assets

infect its neighbors, and the probability that i gets rid of the
virus over [#.;, %), respectively. The virus propagation is
represented by a stochastic susceptible-infected-susceptible
model that integrates the topology of CN. Its transition
diagram for a single node of CN is shown in Fig. 1(b).

The probability &, depends on the virus birth rate 5, CN
topology, and on the fact that every neighbor is either
uninfected or infected but fails with probability 1-/ to spread
the virus, leading to [3]

Sik = HjeN;- (Pjxa (=L +A=pj ).

The probability 1-p;, that node i is healthy at #, depends
on the following two facts: (i) node i was not infected by its
neighbor at #, and was healthy at 7,1, or (ii) was infected at
1.1 and has been cured over [#;., #;), yielding

1=pix =6k (=Pi 1)+ 06 i P k1

The virus propagation through the communications
networks is thus given, for i=Il,...,m, by the following
discrete-time model,

gi,k = HjEN," a _ﬁpj,k—l)’
Pix =1=6i (0= p; 1) =6 ik Di k1> (D
where m and ~; stand for the number of nodes of CN, and

the neighboring set of node i, respectively.

From the knowledge of p;,, the infected population size
at time instant # is given by 22, pi;. Let pi=[pii---s Puks
Dt Lo pm,k]T, where the first n entries correspond to the
nodes of CN that are connected to that of NA.

Definition 2 (NA model): NA is comprised of n nodes,
where n<m, each of which is an asset equipped with its
control system and modeled by the following discrete-time,
jump, linear system

Xir1 = Ay (0 )% 4 + ZjeN;' By k(@)% 2)

where N, x;;,€ R" , and @, are the set of neighbors of node
i, the state-space vector of asset i at f;, and the random
variable that expresses the asset i’s health status at #,
respectively.

The health state of a node depends on its possible
infection by the virus, which may affect the asset through its
control system as further explained in Remarks 2 and 3.

The random matrix A;(a@;) is defined as follows.
A, (@,=0)=A4; when the corresponding node i in CN is
infected, which occurs with probability p;, (=P(@,=0)), and
ﬂl,;k(a),kZI):A,- with probablllty 1_pi,k (:P(a;)y,;l)), when
node i is healthy. Similarly, B;; (@ =0)= Elj with probability

Dik and Bij,k( a)‘k:O):B,‘j with probablhty 1_pi,k- >
Remark 1: The interconnection matrix B; (@) in (2)

represents the dependency of i on j. Bidirectional
dependency (not at the fault-tree level) between i and j is

thus characterized by the matrix pair (B;(@y),
B @))€ {B;.B;}*x{B;.B;}, which is determined as a
function of the state (infective or

corresponding nodes, i on j, in CN.
Remark 2: As already mentioned, stressed operating

susceptible) of
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conditions tend to make the time trajectories of NA approach
its safety limits, defined for instance by the boundary of the
attraction basin of NA. Being characterized with reduced
stability margin, the assets are sensitive to malfunctioning of
CN, causing NA’s node i to transit from the nominal stable
system (A, By, je N, to the potentially unstable
system(Zi, l_iij), jeN{. Improvement in such tradeoff as

performance versus robustness of large interconnected power
systems, which are operated in deregulated contexts, can be
obtained with advanced Supervisory Control and Data
Acquisition Systems (SCADA) and possibly coupled with
satellite technologies [5] by leveraging wide-area
measurements, rapid communications, advanced stabilizer
and optimal power flow systems, and monitoring and energy
management systems. However, the overall system is
vulnerable to cyberattacks targeting key components of the
feedback system shown in Fig. 2. In particular, the SCADA
system is connected to local area networks in command-and-
control (CC) centers, which can be accessed by malicious
intruders, taking actions that have detrimental effects on the
power systems. Such actions include injecting undesirable
control signals by corrupting or disabling stabilizers of the
Automatic Generation Control (AGC) and deceptive effects
entailed by false data injection that are undetectable by the
monitoring system, thus preventing operators from making
appropriate decisions in a timely manner [6].

Matrix A; (@) in (2) thus arises when asset i of the
network switches from a feedback-stabilized dynamics, with
state-space matrix A=A+ BUK,*Ci, to a possible unstable
dynamics with matrix A=A; + f_iul?fl and vice versa.
Matrices f_iij
elements of the data acquisition system and RTUs, whereas

anda may result from the corruption of

I?i represents the impacts of cyberattacks on the AGC. It

should be noted, however, that this interpretation stands for
the linearization of node i’s dynamics, dx/dt=f{(x;x;,u;),
JeN, and that, contrary to the implementation of the AGC,
the control signal u; corrupted by cyberattacker’s actions
may no longer be expressed as a function of the state x;.
From (2), the overall dynamics of the network of assets is
given by the jump linear system
X1 = A (@) x, 3)

where X =[x14. .. X 1" and @=[@ ..., @) €{0,1}".
X, and @, are given in (2). Matrix Al@) is
straightforwardly obtained from A, (@) and B;; (@) in (2)
for all ie {1,...,n} and je N/, and is characterized by a graph-
Laplacian-like structure [4].

Problem Objective: In case where NA is operating under
stressed condition (e.g. shrunk basin of attraction, reduced
capacity limits), the disturbed system(Zi, l_iij), 1<i<n, je N{,

which occurs with probability p;,, is potentially unstable. We
aim to derive conditions under which the trajectories of
system (1), (3) converge to zero with probability 1.
Approximations should be derived to conduct online
monitoring of the convergence condition of NA. P
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Fig. 2. Power systems in closed loop with information acquisition and CC systems.
Remote terminal units (RTUs) transmit (i) telemetry data to the SCADA systems or (ii)
commands to control effectors such as protective relays or automatic generation control
by means of various communications links (radio, optic fiber, microwave, etc).

III. STABILITY CONDITIONS

A. Preliminaries

In section III.C, a stability condition is provided in the
form of a LMI expressed as a function of the positive limit
set of the virus propagation model in (1).

To see this, select the following positive definite function

Vix,) = xixk . “)
V is instrumental in the definition of the stochastic Lyapunov
function candidate used for the stability analysis. Then

E[V(x,,) | F,1= E[x" Al (w) A (@0,)x; ] )

n
_ T= 4T TAT
=X A A+ 2 e Hlpi,kxx A (@A (@) x,
iz
where F stands for a sequence of nonincreasing c-algebras

lsn}’ A=~ﬂk(a)<=ln)’ ;)i,kE {Pi,k,l_Pi,k},
1;;={0,1}, I = I, ;X...XI,;, 1, is the 1Xn unitary vector, and
Pe =T (= piy). Letting p,, = p; s + P » where piy
and p,;, correspond to some trajectory (equilibrium,

measuring  {x;,

periodic orbit) in the limit set of (1) and to the deviation
signal of the actual trajectory of (1) with respect to p,;k*,

respectively, and p, = 1_7: + l:7/< , where the definition
of 1_7; and ]:?k is similar to that of p;k and p, ., (5) can be
expressed as

ELV (x,1) IF, 1= ] (5 ATA

n (6)
+2men IlpikAi(wk)Ak(wk))xk Vi
In (6), \7k is defined as follows
Ve =xl Cper, My (P P ivic 1 je ) -

X AL (@)A(@) x;,
where Ic{1,...,n} and Jc{1,....,n}\L.
M, in (7) is the sum of all products expressed as

I, pl* ¢ Iljc; Py »therefore lim M, =0, implying that

P —0
lim V, =0. ®)
P —0

As depicted in Fig. 3, the stability analysis will thus
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consist in deriving a stochastic Lyapunov function candidate
V., to be determined in Section III.C. V, is based on V and

on a perturbation term, 0V, that compensates for \7k in (7)

and that approaches zero as k goes to infinity by exploiting
the fact that the trajectory of system (1) approaches the limit
set of (1), if any.

v,
[ System in p,-p,” ]_k'EE[ Vi (Xkd)lxkl'E[Vk(Xk)q

Fig. 3. Cascade structure of the system arising in the stability analysis. Vj is
the Lyapunov function candidate expressed as a function of V in (4) and
V. Vi aims to compensate for(/“k , whereby (1) and (3) are linked.

B. Contraction of virus propagation dynamics

Computing the limit set of (1) for general values of S
and O is intricate. It is shown in [3] that the epidemic
threshold 7is equal to 1/4, 4, where A, 4 stands for the largest
eigenvalue of the adjacency matrix A of the communications
network. Therefore, the virus outbreak dies out, i.e., Vik,
pii=0, when f/d<7, and survives otherwise. However, when
/5>, the trajectories of (1) exponentially converge to some
trajectory of its limit set, defined by a positive probability of
infection, p;;. This means that the virus remains prevalent
throughout the network, causing system (2) to switch from
(K,Eij) to (A;,Bj), 1<i<n, je N{, and vice versa.

The sufficient condition of convergence to the limit set
is derived by applying results from contraction theory [9],
whose discrete-time version provides a sufficient condition

Vi), ), =1 <=pl, B>0, ©

for pra=vi(py) to converge exponentially to a single
trajectory, which is an element of the limit set of the
dynamics. I stands for the identity matrix. The Jacobian
matrix in (9) is valued at p, for all ke N.

Substituting (1) for & in (2) yields the following ith
component of fi(py)

Pix =1=(A=0)piy =D I1 A=fp; i), (10)
JEN;
from which the Jacobian matrix is derived
(Ve)p, = BU +(8-Ddiag(p;))A an

+(1-96) II a=/Ap; DI
JeN;
A and diag(p,) denote the adjacency matrix of CN and the
matrix diagonal whose ith entry is p;, respectively.
Inequality (9) with the Jacobian matrix valued at p; =0 is
consistent with the condition
Blo< 1A a, 12)
corresponding to the case where the virus outbreak dies out
[3]; i.e., the equilibrium p;, =0 1is locally asymptotically
stable. Should this inequality not be satisfied, system in (10)
approaches other trajectories lying in its limit set, also called
an endemic state, provided (9) is satisfied. In that case,
viruses remain prevalent throughout the network. The
endemic state usually corresponds to a steady state or to a
periodic orbit [17].

Monitoring of the contraction property of (9). The way
online monitoring is carried out depends on the type of
information that is available to the CC center.

Case 1: When the number of infected hosts, 3 i-| Diks 18

known, exploiting regression techniques allow to estimate
parameters f and J in (1); see [12], [13], and references
therein. The local stability condition in (12) can thus be used
to infer that p; =0 is locally asymptotically stable whenever
(12) is satisfied. It should be noted that approaches based on
statistical inference techniques could also be used to predict
virus propagation. Such approaches make use of specific
classes of stochastic processes such as the nonhomogeneous
Poisson process [13].

Case 2: When the identity of infected hosts is known over
a period of time [#-T, t;), the empirical frequency f; is
computed at #, to approximate the state p; in (1). Online
monitoring of the sufficient condition (9) for contraction of
(1) to its positive limit set, whether endemic or not, is then
carried out by verifying whether

ALY, ), ) <1,

where A(P) denotes the largest eigenvalue of P, v is given

13)

in (11), and parameters £ and J are computed as in Case 1.

T should not be too large so that p; could be considered
as a quasi-stationary process. Assume, in doing so, that 7T is
such that the [ realizations { @ 1,..., @y} of the health status
of node i€ {1,...,m} of CN are independent and identically
distributed over [#-T, t,). First, statistical learning techniques
based on Monte Carlo simulations and Chernoff inequality
allow to estimate with accuracy &0 and confidence 1-%
70, the IL(eP=lfiom  framlXx... X
Tkl DS so--of i), 1if any, over which inequality (13)
obtained by replacing p, with f; is satisfied. Then, applying
the central limit theorem allows to compute the probability
that p;, which is approximated by f;, lies within I;(gp); i.e.,
the probability that the virus dynamics is contracting at #;
with confidence 1-¥

interval

m,k,m>

C. Stability analysis of NA

We assume that (10) is contracting toward its limit set.
Letting

Z(ﬁk)=supj e, Mk(pik Pipsiel, jel)
x A () A, (0))),

where A4(P) denotes the jth eigenvalue of matrix P, \7k in
(7) can be bounded as
Vi AP x 17 (15)

|1xIl stands for the Euclidean norm of vector x. It should be

(14)

noted that limj _, A(P,) =0 since limz M, =0.

The stochastic Lyapunov function candidate is now
selected as follows
Vi) = V(x)+6V,,
where V(xy) is defined in (4) and

(16)
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T 2 2 2 7

oV, =/1(pk)ZII x5 117 T 17 <l g, 117 +K)

i=k
for some K>0.
OV, is positive and can be bounded by

_ oo
OV, <sup(A(P)) Xl x; I* +K) .

i=k

ik

(18)
Sk

The supremum in (18) exits from the definition of A Py
in (14) and from the fact that (10) is contracting.

Since S =Sy = —K-Ixd* < 0 and S is positive, Sy is
convergent which, in turn, implies that dV; is convergent.
Owing to the convergence of A (p,) to zero as P,
approaches zero, i.e., as k goes to infinity (the contraction
condition in (12) is satisfied.), we can conclude that

el \ , i=1

lim 6V, =0. (19)
k—+oo0
Employing (5), (15), (16), and the fact that
N =V, ==A(P) Il x, II? (20)
yields the difference
E[Vi o) 1E, 1=V () = x)f (ﬁZATA
+ X HpjkA{(wk)Ak(wk)—IjkaZ{ 2D

AP x 117
Provided that there exists a symmetric, positive definite
matrix L such that

pATA+ X lp AL(@)A (@) +L<I,

@el;\ , i=1 (22)
equation (21) is simplified as
EWV, o DV 1=V () < =kl x, 17, (23)

where x>0 is the smallest eigenvalue of L.
We now state the main result of this section.

Proposition 1: Assuming a contracting virus propagation
dynamics, obtained when (12) is satisfied and monitored by
following Case 1 or 2 in Section III.B, and assuming that
the limit set pk* is such that LMI in (22) is satisfied for all
ke N, then the state x; of CN in (3) converges to zero with
probability one. >

Proof: The result follows by applying Th. 4.2 in [7] (p.
81) to (16), whose time difference is expressed in (23), and
from the convergence property of 0V, established in (19). >4

Monitoring the convergence condition of (3): Similar to
CN, the following two cases arise for stability monitoring.

Case 1: When the identity of infected hosts is known,
empirical frequency f; is substituted for p,” in (22), recalling
that p,; € {pi,k*,l—pi,k*}. The stability condition is monitored
by direct inspection of the eigenvalues of the left-hand side
of LMI in (3).

Case 2: Should the estimate of the limit set p, of (1) be
unavailable, the left-hand side of (3) can be approximated by
leveraging the state x; of (3), which is assumed known either
from measurement or from state estimation. Noting that

E[Al (w)A =p.ATA
[A; (@) A (@)]= p; 24)

+Zoer, [IlpikAﬂwk)Ak(wk),

and selecting NeN
approximation is used

1 N
E[AL (@)A (@] = ~ j:kz_N AlHA»

sufficiently large, the following

(25)
where A, denotes the realization of A j(@;) att;.

A least-square estimate of the average of A(Tj)A( jin (25)
can be computed by concatenating x5+1xj+1 = xJT-A(Tj)A(j)xj ,

for all je [k, k+N-1], N> size(x;), which yields

Xin =Y navee,(By y) + &, (26)
where
T T T
X -1 = [ X Xr N1 X vt b
YkT,N—l = [vec; (g )ews Ve (X y 1 X1
| kN1 - r 27)
Biv=y &Aoo Ei=ApA) ~Buy

&l =€ 1o Ep by € =X E X}
veci(E) denotes the column vector formed by concatenating
the rows of the upper triangular block of matrix E. vec,(E)=
vec(F), where entries f; and e; of F and E, respectively, are
such that f;;=e; for all i and f;=2e; for all i#j. N is such that
E(A (@) A(@))=E,y. The least-square estimate of Ejy,
which is a symmetric matrix, is given by

VeCZ(Ek,N) = (YkT,N—lYk,N—l)_lYkT,N—1Xk,N’

The approximate in (27) can thus be expressed as follows

(28)

E[A] (@) A (@) =E] . 29)
The online monitoring thus consists in verifying that
sup; /li(];?k,,\,)<1, (30)

where E «.v is obtained from Vec(l::k’ ) in (28).

IV. EXTENSION TO JUMP SYSTEMS WITH DISTURBANCE
The convergence of trajectories is now analyzed by
replacing model (3) with the following jump affine system
Xps1 = A (@)X + G (@), (3D
where Gy @) €{0, G;} and Ge R". In this model the ith
component of vector Gy is zero with probability p;,, and
nonzero with probability 1-p;,. The class of system (31) is
justified as follows. Considering the system
Xpp = Ap (@ )x, +by, (32)
which corresponds to (3) disturbed by some deterministic
bias by, one can select a new operating condition, x, ;=(I-A)"'
Xby, and adopt the change of variable, X, = x; —x,, , such

that (32) can be expressed as
Bt = A%+ = (A (@) - DU =AYby,
Gy (@)

(33)
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yielding X, = AX, when system (32) is deterministic; i.e.,
when A,=A. However, when A, switches from the nominal
matrix A, assumed stable, to one of its potentially unstable
realization Ay, one obtains system (31) where G(a@,) is
given in (32). System (32) is interesting when analyzing the
robustness of a linear system or a linearized system subject
to parameter uncertainty; e.g., a feedback controller in closed
loop with a parameter-varying model may give rise to an
error system excited with a time-varying bias.

Proposition 2: Assuming a contracting virus propagation
dynamics obtained when (12) is satisfied and monitored by
following Case I or 2 in Section III.B, and assuming that
the limit set pk* is such that LMI (22) is satisfied for all ke N,
then the state x; of CN in (31) is almost-surely bounded. P

Proof: Letting

W(x,)= xzxk, (34)
the time difference of W along the trajectories of (31) is
given by

E[W(xk+1) | .Tn] _W(xk) = h(xk)

+E2G] (0,) A, (@)]x, + E[G] (®,)G, (@,)],
where h(x;) corresponds to the right-hand side of (5), which
is now expressed as a function of the trajectory of (31).

Selecting  Wi(x )=W(x)+W,, where oW, is defined
similarly to oV, in (17), and following the stability analysis
in III.C yields, by application of Cauchy’s inequality,

+ E[G] (0)G, (@,)].
xis defined in (23) and
p=|E26] @) A @,

where |IPIl stands for the spectral norm of matrix P.
Inequality (36) is expressed as

EW, . )V F =W (x) < —x(ll x, 1 =p /1 25)*

(35)

(36)
(37)

2
+2_ 4 EBGT (0,)G, (@) (38)

4K

>0
Following the results on boundedness properties in [10],
inequality (38) implies that the trajectory of (31) is both
mean square and almost-surely bounded. <

V. SIMULATION RESULTS

Simulations are performed with the system in Fig. 4, where
two out of four assets, whose physical dependences are
expressed through matrices By, By, Bz, and By, are
connected to CN; namely, Asset 1 and Asset 4. Two classes
of virus dynamics’ parameters are considered, leading to
limit sets characterized by p ;*=0.1 and p ;*=0.4, and, in turn,
to stable and unstable NA equilibrium, respectively (Fig. 5).
The initial condition is 1gy;. The stability condition (30) is
monitored in Fig. 6, where the number of samples used at
step k to compute ]AE,(,N is 500(=N). The condition is no longer
met after k=1020 leading to growing oscillations in the state

of NA after k=1090 (close-up in Fig. 5).
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Fig. 4. The network of assets used in simulations.
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Fig. 5. Time trajectory of one of the states of NA. LTI and switching system
obtained when p (*=0.1 (left). Switching system with p;*=0.4 (right).
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Fig. 6. Largest eigenvalues of By y when p*=0.4, with close-up (right).
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