
  

  

Abstract — This paper proposes stability conditions for a network 

of assets. The assets are connected to a communications network, thus 

constituting a two-layered (or two-tier) network. The effectiveness of 

the network, and even its stability, can be indirectly affected by 

malicious attacks targeting the communications. The particular case of 

virus propagation on the assets is considered. The network of assets is 

modeled as a discrete-time, jump, linear system whose transitions are 

governed by nonlinear discrete-time dynamics representing a class of 

virus diffusion. The state-space variables of the latter represent the 

probabilities of each node receiving the virus and being infected. The 

stability analysis is obtained by means of a stochastic Lyapunov 

function argument and yields a sufficient condition expressed as a 

linear matrix inequality (LMI). This LMI involves the asset state-space 

matrices and the positive limit set of the probabilistic model of the 

virus propagation dynamics, which exhibits the attraction property 

provided a sufficient condition is satisfied. The proposed condition 

involves the adjacency matrix of the communications network and the 

parameters characterizing virus propagation. An approximation to the 

sufficient condition is proposed so that convergence of the system 

trajectories could be monitored online. The analysis is extended to a 

class of jump systems, which are affinely excited by some disturbance, 

yielding an almost-sure boundedness of the trajectories.    

I. INTRODUCTION 

Despite local and global failure detection and recovery 
mechanisms, networks are prone to large, although 
infrequent, outages. The robust-yet-fragile paradigm [1] 
about network, which is thoroughly documented by the 
multidimensional description of networked  infrastructures 
proposed in [15], can be illustrated by the following two 
facts that may help grasp the vulnerabilities: (i) the 
likelihood of uncontrolled and unexpected propagation of an 
isolated problem tends to increase as the network operates 
close to its safety margin; (ii) coordinated attacks, whether 
physical or cybernetical, may successfully leverage 
vulnerabilities of a network, particularly under stressed 
operating conditions.  

Malicious cyberattacks on the supervisory control and 
data acquisition systems managing critical public 
infrastructures can indeed bring about disruption of service. 
Instances of reported cyberattacks towards power electric 
utilities include, (i) the SQL Slammer worm that infected and 
disabled internal systems at a nuclear plant in Ohio in 2003  
[16], (ii) hackers who attacked the California Independent 
System Operator which manages the electricity supply of 
California [16], and (iii) the Aurora vulnerability, illustrated 
by a Homeland Security video showing a small electric 
generator being disabled remotely from the internet [11]. 
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Further examples of cyberattacks targeting water supply and 
waste water system can also be found in [11], where it is 
reported that a disgruntled employee hacked a sewage 
treatment system from a laptop, causing significant 
environmental damages. In a military context, network-
centric assets, whether it be weapons or unmanned vehicles, 
are prone to attacks at the physical layer, data-link layer, and 
network layer through enemy actions including jamming, 
deception, destruction, and information overloading [14]. 
Other critical applications that necessitate accounting for 
potential mishaps of the communications networks include 
vehicle networked control pertaining to the automated 
highway [18] and cooperative mobile sensor coverage [19].  

We propose, in this paper, to derive stability and 
boundedness conditions that are expected to be implemented 
online for the health monitoring of a network of assets (NA). 
By asset we mean a stable dynamic system (infrastructure, 
vehicles, weapons, etc). A healthy asset indicates operation 
under nominal conditions. The network of assets is subject to 
disturbances resulting from the prevalence and propagation 
of viruses through a communications network (CN), which is 
connected to the assets. The problem considered in this 
paper is related to the stability analysis of networked control 
systems whose operating conditions are subject to imperfect 
communications. Such imperfections may be caused by 
packet dropouts. However, our model does not explicitly 
take packet dropouts into account. The closed-loop systems 
that are typically dealt with, when analyzing the effect of 
packet dropouts, include asynchronous dynamic systems, 
switching systems, and jump linear systems with Markov 
chain. Typically, the dropouts occur in the sensor-to-
controller or the controller-to-actuator path. See [8], [20], 
and references therein for further details. The state of the 
communications network, which is potentially affected by 
the propagation of viruses, could be modeled with a Markov 
chain. This approach, when applied to the two-layered 
network at hand (NA and CN) is characterized by a jump 
system whose switching mechanism would be a function of 
the state of the Markov chain. In that case, convergence in 
the mean square sense of the jump system can be verified by 
direct application of the sufficient condition derived in [2]. 
However, such an approach is likely to be intractable since a 
communications network with m nodes leads to a Markov 
chain with 2m states, with each node being either infective or 
susceptible. The nonlinear, discrete-time, state-space model 
proposed in [1] is thus preferred. Each component of the 
state-space vector represents either the probability that a 
node of the communication network is infected or the 
probability that a node will not receive the infection between 
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two successive time instants. The network of assets 
considered here includes, but is not restricted to, a class of 
networked control systems. The possible application pertains 
to the infrastructures that are physically connected and that 
require remote information obtained from communications 
network in order to perform inter-area oscillation 
stabilization. For example, large-scale power grids are likely 
to behave abnormally or even to be part of cascading 
failures, should the operation condition deviate from its 
nominal value and approach safety limits. Similarly, the 
networked control system could pertain to the control of a 
network of mobile assets (e.g., drone aircraft) with its 
stability under cyberattacks. 

The article is structured as follows. The model of the 
two-layered network and the analysis objectives are 
presented in Section II. The stability conditions used by such 
system are derived in Section III. Boundedness of the 
trajectories is analyzed in Section IV, in case the jump 
system is excited by some exogenous disturbance.  

II. TWO-LAYERED NETWORK MODEL AND PROBLEM 

FORMULATION 

We consider a two-layered (or two-tier) networks (Fig. 
1(a)) composed of (i) assets such as infrastructures and 
unmanned vehicles equipped with protection, local self-
healing, and control systems and of (ii) a communications 
network (CN). The types of interconnections linking the 
assets include physical interconnections and information 
exchanges by means of remote sensors such as cameras, 
sonar, and lasers. Other types of information are 
communicated through CN. Regarding possible impact of 
faults and failures, unidirectional dependency between the 
networks is considered; i.e., malfunctioning of the 
communications network may adversely affect the network 
of assets (NA), whereas the reverse situation is not 
considered. The unidirectional constraint characterizing the 
fault tree does not prevent the communications network to 
interact bidirectionally. This issue is left for future 
investigations. No particular assumptions are made about the 
topology of NA. CN is assumed connected and undirected. 
Its topology is reflected in the contraction analysis of its 
dynamics through the use of its adjacency matrix. 
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Fig. 1. Two-layered networks. (a) The network of assets (red) is connected to the 
information network (green). (b) Transition diagram of a node of CN [3]. A susceptible 
(S) node is healthy at tk but can receive the virus from a neighbor with probability 1-ζi,k. 
An infected (I) node can be cured over [tk, tk+1) with probability δ. 

Definition 1 (CN model): Let pi,k, ζi,k, β, and δ denote the 
probability that node i is infected at time instant tk∈ℝ, k∈ℕ, 
the probability that node i will not receive infections from its 
neighbors over [tk, tk+1), the probability that a node tries to 

infect its neighbors, and the probability that i gets rid of the 
virus over  [tk-1, tk), respectively. The virus propagation is 
represented by a stochastic susceptible-infected-susceptible 
model that integrates the topology of CN. Its transition 
diagram for a single node of CN is shown in Fig. 1(b). 

The probability ζi,k depends on the virus birth rate β, CN 
topology, and on the fact that every neighbor is either 
uninfected or infected but fails with probability 1-β to spread 
the virus, leading to [3]  
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The probability 1-pi,k that node i is healthy at tk depends 
on the following two facts: (i) node i was not infected by its 
neighbor at tk and was healthy at tk-1, or (ii) was infected at   
tk-1 and has been cured over [tk-1, tk), yielding  

.)1(1 1,,1,,, −− +−=− kikikikiki ppp δςς  

The virus propagation through the communications 
networks is thus given, for i=1,…,m, by the following 
discrete-time model,  
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(1) 

where m and c

i
N  stand for the number of nodes of CN, and 

the neighboring set of node i, respectively. ⋈ 
From the knowledge of pi,k, the infected population size 

at time instant tk is given by ∑ m
i 1= pi,k. Let pk=[p1,k,…, pn,k, 

pn+1,k,…, pm,k]
T, where the first n entries correspond to the 

nodes of CN that are connected to that of NA.  
Definition 2 (NA model): NA is comprised of n nodes, 

where n≤m, each of which is an asset equipped with its 
control system and modeled by the following discrete-time, 
jump, linear system 

,)()( ,,,,,,1, kjkikijNjkikikiki xxx a
i

ωω BA
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where Ni
a, xi,k∈ℝ in , and ωi,k  are the set of neighbors of node 

i, the state-space vector of asset i at tk, and the random 
variable that expresses the asset i’s health status at tk, 
respectively.  

The health state of a node depends on its possible 
infection by the virus, which may affect the asset through its 
control system as further explained in Remarks 2 and 3.  

The random matrix Ai,k(ωi,k) is defined as follows. 

Ai,k(ωi,k=0)=Āi when the corresponding node i in CN is 
infected, which occurs with probability pi,k (=P(ωi,k=0)), and 
Ai,k(ωi,k=1)=Ai with probability 1−pi,k (=P(ωi,k=1)), when 

node i is healthy. Similarly, Bij,k(ωi,k=0)= ijB with probability 

pi,k and Bij,k(ωi,k=0)=Bij with probability 1−pi,k. ⋈ 

Remark 1: The interconnection matrix Bij,k(ωi,k) in (2) 
represents the dependency of i on j. Bidirectional 
dependency (not at the fault-tree level) between i and j is 
thus characterized by the matrix pair (Bij,k(ωi,k), 

Bji,k(ωj,k)) }{×}{∈ jijiijij BBBB ,, , which is determined as a 

function of the state (infective or susceptible) of 
corresponding nodes, i on j, in CN.   

Remark 2: As already mentioned, stressed operating 
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conditions tend to make the time trajectories of NA approach 
its safety limits, defined for instance by the boundary of the 
attraction basin of NA. Being characterized with reduced 
stability margin, the assets are sensitive to malfunctioning of 
CN, causing NA’s node i to transit from the nominal stable 
system (Ai, Bij), j∈Ni

a, to the potentially unstable 
system ),( iji BA , j∈Ni

a. Improvement in such tradeoff as 

performance versus robustness of large interconnected power 
systems, which are operated in deregulated contexts, can be 
obtained with advanced Supervisory Control and Data 
Acquisition Systems (SCADA) and possibly coupled with 
satellite technologies [5] by leveraging wide-area 
measurements, rapid communications, advanced stabilizer 
and optimal power flow systems, and monitoring and energy 
management systems. However, the overall system is 
vulnerable to cyberattacks targeting key components of the 
feedback system shown in Fig. 2. In particular, the SCADA 
system is connected to local area networks in command-and-
control (CC) centers, which can be accessed by malicious 
intruders, taking actions that have detrimental effects on the 
power systems. Such actions include injecting undesirable 
control signals by corrupting or disabling stabilizers of the 
Automatic Generation Control (AGC)  and deceptive effects 
entailed by false data injection that are undetectable by the 
monitoring system, thus preventing operators from making 
appropriate decisions in a timely manner [6].  

Matrix Ai,k(ωi,k) in (2) thus arises when asset i of the 
network switches from a feedback-stabilized dynamics, with 
state-space matrix Ai=Ai

*+ BijKi
*
Ci, to a possible unstable 

dynamics with matrix Āi=Ai
*+ iiij CKB  and vice versa.  

Matrices ijB  and iC may result from the corruption of 

elements of the data acquisition system and RTUs, whereas 

iK  represents the impacts of cyberattacks on the AGC. It 

should be noted, however, that this interpretation stands for 
the linearization of node i’s dynamics, dxi/dt=fi(xi,xij,ui), 
j∈Ni

a, and that, contrary to the implementation of the AGC, 
the control signal ui corrupted by cyberattacker’s actions 
may no longer be expressed as a function of the state xi.  

From (2), the overall dynamics of the network of assets is 
given by the jump linear system 

,)(1 kkkk xx ωAAAA=+  (3) 

where xk+1=[x1,k
T,…, xn,k

T]T and ωk=[ω1,k,…, ωn,k]
T∈{0,1}n. 

xi,k, and ωi,k are given in (2). Matrix Ak(ωk) is 

straightforwardly obtained from Ai,k(ωi,k) and Bij,k(ωi,k) in (2) 
for all i∈{1,…,n} and j∈Ni

a, and is characterized by a graph-
Laplacian-like structure [4].        

Problem Objective: In case where NA is operating under 
stressed condition (e.g. shrunk basin of attraction, reduced 
capacity limits), the disturbed system ),( iji BA , 1≤i≤n, j∈Ni

a, 

which occurs with probability pi,k, is potentially unstable. We 
aim to derive conditions under which the trajectories of 
system (1), (3) converge to zero with probability 1. 
Approximations should be derived to conduct online 
monitoring of the convergence condition of NA. ⋈ 
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Fig. 2. Power systems in closed loop with information acquisition and CC systems. 
Remote terminal units (RTUs) transmit (i) telemetry data to the SCADA systems or (ii) 
commands to control effectors such as protective relays or automatic generation control 
by means of various communications links (radio, optic fiber, microwave, etc). 

III. STABILITY CONDITIONS 

A. Preliminaries 

In section III.C, a stability condition is provided in the 
form of a LMI expressed as a function of the positive limit 
set of the virus propagation model in (1). 

To see this, select the following positive definite function 

k
T
xk xxxV =)( . (4) 

V is instrumental in the definition of the stochastic Lyapunov 
function candidate used for the stability analysis. Then 
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(5) 

where FFFF  stands for a sequence of nonincreasing σ-algebras 

measuring {xi, i≤n}, A=Ak(ωk=1n), ρi,k∈{pi,k,1−pi,k}, 

Ii,k={0,1}, Ii = I1,k×…×In,k, 1n is the 1×n unitary vector, and 

)1( ,1 ki
n
ik pp −Π= = . Letting kikiki ,

*
,,

~ρρρ += , where *
,kiρ  

and ki,
~ρ  correspond to some trajectory (equilibrium, 

periodic orbit) in the limit set of (1) and to the deviation 
signal of the actual trajectory of (1) with respect to ρi,k

*, 

respectively, and kkk ppp
~* += , where the definition 

of *
kp and kp

~
 is similar to that of *

,kiρ  and ki,
~ρ , (5) can be 

expressed as   
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In (6), kV
~

is defined as follows 
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where I⊂{1,…,n} and J⊂{1,…,n}\I .  
Mk in (7) is the sum of all products expressed as 

kjJjkiIi ,
*
,

~ρρ ∈∈ ∏∏  , therefore 0lim
0~

=
→

kM
kρ

, implying that  

0
~

lim
0~

=
→

kV
kρ

. (8) 

 As depicted in Fig. 3, the stability analysis will thus 
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consist in deriving a stochastic Lyapunov function candidate 
Vk, to be determined in Section III.C. Vk is based on V  and 

on a perturbation term, δVk, that compensates for kV
~

 in (7) 

and that approaches zero as k goes to infinity by exploiting 
the fact that the trajectory of system (1) approaches the limit 
set of (1), if any. 

E[Vk+1(xk+1)|xk]-E[Vk(xk)]System in pk-pk
*

Vk

∼

E[Vk+1(xk+1)|xk]-E[Vk(xk)]System in pk-pk
*

Vk

∼

 
Fig. 3. Cascade structure of the system arising in the stability analysis. Vk is 
the Lyapunov function candidate expressed as a function of V in (4) and 
δVk. δVk aims to compensate for

kV
~ , whereby (1) and (3) are linked.   

B. Contraction of virus propagation dynamics 

 Computing the limit set of (1) for general values of β 
and δ is intricate. It is shown in [3] that the epidemic 
threshold τ is equal to 1/λ1,A, where λ1,A stands for the largest 
eigenvalue of the adjacency matrix A of the communications 
network. Therefore, the virus outbreak dies out, i.e., ∀i,k, 
pi,k≡0, when β/δ<τ, and survives otherwise. However, when 
β/δ>τ, the trajectories of (1) exponentially converge to some 
trajectory of its limit set, defined by a positive probability of 
infection, pi,k. This means that the virus remains prevalent 
throughout the network, causing system (2) to switch from 

),( iji BA  to (Ai,Bij), 1≤i≤n, j∈Ni
a, and vice versa.  

   The sufficient condition of convergence to the limit set 
is derived by applying results from contraction theory [9], 
whose discrete-time version provides a sufficient condition 

,0,)()( >−≤−′′ ββIIvv
kk pkp

T
k  (9) 

for pk+1=vk(pk) to converge exponentially to a single 
trajectory, which is an element of the limit set of the 
dynamics. I stands for the identity matrix. The Jacobian 
matrix in (9) is valued at pk for all k∈ℕ.   

Substituting (1) for ζi,k in (2) yields the following ith 
component of fk(pk)   
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from which the Jacobian matrix is derived 
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A and diag(pk) denote the adjacency matrix of CN and the 
matrix diagonal whose ith entry is pi,k, respectively.  

Inequality (9) with the Jacobian matrix valued at pk ≡0 is 
consistent with the condition  

β/δ < 1/λ1,A, (12) 
corresponding to the case where the virus outbreak dies out 
[3]; i.e., the equilibrium pk ≡0  is locally asymptotically 
stable. Should this inequality not be satisfied, system in (10) 
approaches other trajectories lying in its limit set, also called 
an endemic state, provided (9) is satisfied. In that case, 
viruses remain prevalent throughout the network. The 
endemic state usually corresponds to a steady state or to a 
periodic orbit [17].  

Monitoring of the contraction property of (9). The way 
online monitoring is carried out depends on the type of 
information that is available to the CC center. 

Case 1:  When the number of infected hosts, ∑
m
i 1= pi,k, is 

known, exploiting regression techniques allow to estimate 
parameters β and δ in (1); see [12], [13], and references 
therein. The local stability condition in (12) can thus be used 
to infer that pk ≡0 is locally asymptotically stable whenever 
(12) is satisfied. It should be noted that approaches based on 
statistical inference techniques could also be used to predict 
virus propagation. Such approaches make use of specific 
classes of stochastic processes such as the nonhomogeneous 
Poisson process [13]. 

Case 2: When the identity of infected hosts is known over 
a period of time [tk-T, tk), the empirical frequency fk is 
computed at tk to approximate the state pk in (1). Online 
monitoring of the sufficient condition (9) for contraction of 
(1) to its positive limit set, whether endemic or not, is then 
carried out by verifying whether  

1))()(( <′′
kk pkp

T
k vvλ , (13) 

where )(Pλ  denotes the largest eigenvalue of P, vk is given 

in (11), and parameters β  and δ are computed as in Case 1.  
T should not be too large so that pk could be considered 

as a quasi-stationary process. Assume, in doing so, that T is 
such that the l realizations {ωi,k,1,…, ωi,k,l} of the health status 
of  node i∈{1,…,m} of CN are independent and identically 
distributed over [tk-T, tk). First, statistical learning techniques 
based on Monte Carlo simulations and Chernoff inequality 
allow to estimate with accuracy ε>0 and confidence 1−γ, 
γ>0, the interval Ik(ε,γ)=[f1,k,m, f1,k,M]×… ×[fm,k,m, 
fm,k,M]∋(f1,k,...,fm,k), if any, over which inequality (13) 
obtained by replacing pk with fk is satisfied. Then, applying 
the central limit theorem allows to compute the probability 
that pk, which is approximated by fk, lies within Ik(ε,γ); i.e., 
the probability that the virus dynamics is contracting at tk 
with confidence 1-γ.                 

C. Stability analysis of NA 

We assume that (10) is contracting toward its limit set. 
Letting 

),,~,((sup)~( ,
*
,

JjIiM kjkIjjk kikk
∈∈∑= ∈ ρρλρλ ω  

|,))()( kkk
T

k ωω AA×  
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where λj(P) denotes the jth eigenvalue of matrix P, kV
~

  in 

(7) can be bounded as  
2||||)~(

~
kkk xV ρλ≤ . (15) 

||x|| stands for the Euclidean norm of vector x. It should be 

noted that 0)~(lim 0~ =→ kk
ρλρ  since 0lim 0~ =→ kM

kρ . 

The stochastic Lyapunov function candidate is now 
selected as follows 

Vk(xk) = V(xk)+δVk, (16) 
where V(xk) is defined in (4) and  
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for some K>0.  
δVk is positive and can be bounded by   
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The supremum in (18) exits from the definition of )~( kρλ  

in (14) and from the fact that (10) is contracting. 
Since Sk+1−Sk = −K−||xk||

2 < 0 and Sk is positive, Sk is 
convergent which, in turn, implies that δVk is convergent. 

Owing to the convergence of )~( kρλ  to zero as kρ~  

approaches zero, i.e., as k goes to infinity (the contraction 
condition in (12) is satisfied.), we can conclude that  
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Provided that there exists a symmetric, positive definite 
matrix L such that  
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equation (21) is simplified as 

,||||)(]|)([ 2
11 kkknkk xxVxVE κ−≤−++ FFFF  (23) 

where κ>0 is the smallest eigenvalue of L. 
We now state the main result of this section.   

Proposition 1: Assuming a contracting virus propagation 
dynamics, obtained when (12) is satisfied and monitored by 
following Case 1 or 2 in Section III.B, and  assuming that 
the limit set pk

* is such that LMI in (22) is satisfied for all 
k∈ℕ,  then the state xk of CN in (3) converges to zero with 
probability one. ⋈ 

Proof: The result follows by applying Th. 4.2 in [7] (p. 
81) to (16), whose time difference is expressed in (23), and 
from the convergence property of δVk established in (19). ⋈ 

Monitoring the convergence condition of (3): Similar to 
CN, the following two cases arise for stability monitoring.  

Case 1: When the identity of infected hosts is known, 
empirical frequency fk

* is substituted for pk
* in (22), recalling 

that ρi,k
*∈{pi,k

*,1−pi,k
*}. The stability condition is monitored 

by direct inspection of the eigenvalues of the left-hand side 
of LMI in (3).  

Case 2: Should the estimate of the limit set pk
* of (1) be 

unavailable, the left-hand side of (3) can be approximated by 
leveraging the state xk of (3), which is assumed known either 
from measurement or from state estimation. Noting that 
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and selecting N∈ℕ sufficiently large, the following 
approximation is used  
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where A(j) denotes the realization of )( jj ωAAAA  at tj. 

A least-square estimate of the average of )()( j
T
j AA in (25) 

can be computed by concatenating jj
T
j

T
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T
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for all j∈[k, k+N-1], N≫size(xk), which yields 
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vec1(E) denotes the column vector formed by concatenating 
the rows of the upper triangular block of matrix E. vec2(E)= 
vec1(F), where entries fii and eii of F and E, respectively, are 
such that fii=eii for all i and fij=2eij for all i≠j. N is such that 
E(A T(ωi) A(ωi))≅Ek,N. The least-square estimate of Ek,N, 
which is a symmetric matrix, is given by  

,)()Ê(vec ,1,
1

1,1,,2 Nk
T

NkNk
T

NkNk XYYY −
−

−−=  (28) 

The approximate in (27) can thus be expressed as follows 
T

Nkkkk
T
kE ,Ê)]()([ ≅ωω AAAAAAAA . (29) 

The online monitoring thus consists in verifying that  

1)Ê(sup , <Nkii λ , (30) 

where Nk ,Ê is obtained from )Êvec( ,Nk in (28).  

IV. EXTENSION TO JUMP SYSTEMS WITH DISTURBANCE 

The convergence of trajectories is now analyzed by 
replacing model (3) with the following jump affine system  

),()(1 kkkkkk Gxx ωω +=+ AAAA  (31) 

where  Gk(ωk) ∈{0, Gk} and Gk∈ℝ
n. In this model the ith 

component of vector Gk is zero with probability pi,k, and 
nonzero with probability 1−pi,k. The class of system (31) is 
justified as follows. Considering the system 

kkkkk bxx +=+ )(1 ωAAAA  (32) 

which corresponds to (3) disturbed by some deterministic 
bias bk, one can select a new operating condition, xo,k=(I−A)-1 

×bk, and adopt the change of variable, kokk xxx ,
~ −= , such 

that (32) can be expressed as  
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yielding kk xAx ~~
1 =+ when system (32) is deterministic; i.e., 

when Ak≡A. However, when Ak switches from the nominal 
matrix A, assumed stable, to one of its potentially unstable 
realization A(k), one obtains system (31) where Gk(ωk) is 
given in (32). System (32) is interesting when analyzing the 
robustness of a linear system or a linearized system subject 
to parameter uncertainty; e.g., a feedback controller in closed 
loop with a parameter-varying model may give rise to an 
error system excited with a time-varying bias.  

Proposition 2: Assuming a contracting virus propagation 
dynamics obtained when (12) is satisfied and monitored by 
following Case 1 or 2 in Section III.B, and  assuming that 
the limit set pk

* is such that LMI (22) is satisfied for all k∈ℕ,  
then the state xk of CN in (31) is almost-surely bounded. ⋈ 

Proof: Letting  

,)( k
T
xk xxxW =  (34) 

the time difference of W along the trajectories of (31) is 
given by 
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where h(xk) corresponds to the right-hand side of (5), which 
is now expressed as a function of the trajectory of (31).  

Selecting Wk(xk)=W(xk)+δWk, where δWk is defined 
similarly to δVk in (17), and following the stability analysis 
in III.C yields, by application of Cauchy’s inequality,  
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κ is defined in (23) and    

)]()(2[ kkk
T
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where ||P|| stands for the spectral norm of matrix P.  
Inequality (36) is expressed as 

.)]()([
4

)2/||(||)(]|)([

0

2

2
111

4444 34444 21
>

+++

++

−−≤−

kkk
T
k

kkknkk

GGE

xxWxWE

ωω
κ

ρ

κρκFFFF

 

 
 

(38) 

Following the results on boundedness properties in [10], 
inequality (38) implies that the trajectory of (31) is both 
mean square and almost-surely bounded.  ⋈  

V. SIMULATION RESULTS 

Simulations are performed with the system in Fig. 4, where 
two out of four assets, whose physical dependences are 
expressed through matrices B12, B24, B31, and B43, are 
connected to CN; namely, Asset 1 and Asset 4. Two classes 
of virus dynamics’ parameters are considered, leading to 
limit sets characterized by p k*=0.1 and p k*=0.4, and, in turn, 
to stable and unstable NA equilibrium, respectively (Fig. 5). 
The initial condition is 18×1. The stability condition (30) is 
monitored in Fig. 6, where the number of samples used at 
step k to compute Êk,N is 500(=N). The condition is no longer 
met after k=1020 leading to growing oscillations in the state 

of NA after k=1090 (close-up in Fig. 5).  
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Fig. 4. The network of assets used in simulations.   
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Fig. 5. Time trajectory of one of the states of NA. LTI and switching system 
obtained when p k*=0.1 (left). Switching system with pk*=0.4 (right).  

  
Fig. 6. Largest eigenvalues of Êk,N when pk*=0.4, with close-up (right).  
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