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Abstract— This paper describes the biological principles un-
derlying a recently proposed optimization technique, Selective
Evolutionary Generation Systems (SEGS), and concludes a
novel, fundamental result about the process of evolution in
Nature. A systems-theoretic framework from the emerging field
of self-reproducing systems is utilized in this work to illustrate
the parallels between biological processes and SEGS. The SEGS
technique is useful for tackling a generalization of the standard
global optimization problem; the generalization depends on a
parameter referred to as the level of selectivity, which restores
traditional optimization when the parameter equals infinity. The
SEGS technique has been shown to produce responsiveness
efficiently, and to also be a generalization of both the canonical
genetic algorithm with fitness proportional selection and the
(1+1) evolutionary strategy. This paper explains how the SEGS
technique models biological responsiveness and search, and
the result is a Markov chain Monte Carlo method that has
connections with statistical mechanics. The implication of the
analysis is that natural evolution is an optimally efficient search
process under certain technical conditions, which are often
satisfied in Nature.

I. INTRODUCTION

A. Background and Motivation

THE technique of Selective Evolutionary Generation

Systems (SEGS) [1] was proposed in response to the

problem of efficiently designing an agent’s behavior from

a search space of possible actions such that the designed

behavior is “good” and also responsive to changes in what

constitutes good behavior. The concepts of behavior design,

efficiency, goodness and responsiveness are defined precisely

in the following section. Reference [1] emphasized an opti-

mization version of this problem.

An alternative biological formulation of this problem is

the efficient determination of a viable species from a search

space of possible organisms such that the species is fit and

adapts to variations in its fitness landscape. This problem

interpretation suggests evolution; however, ‘Darwinian evo-

lution may appear inefficient’ [2]. For optimization, Nature-

based approaches may involve reinforcement learning [3] and

simulated annealing [4], both of which are off-line and non-

responsive. Techniques inspired by evolution (e.g., genetic

algorithms [5], evolutionary strategies [6], and variations

of these two) have the following features: 1) [7] notes

that the use of ‘the Darwinian principle does not guarantee

successful optimization,’ 2) [8] states that evolution opti-

mization theories (on which these techniques are based)

are an attempt to understand the diversity of life rather
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than demonstrate that organisms optimize, 3) [9] opines that

‘searching for peaks depicts evolution as a slowly advancing,

tedious, uncertain process,’ and 4) evolutionary computation

for dynamic fitness landscapes is a relatively new area of

study (for an overview, see [10]).

This paper shows that one possible rationale for evolution

in Nature is to solve exactly the biological problem above.

The purpose of this paper is to emphasize the biological

parallels of SEGS and describe the process using a systems-

theoretic abstraction, rather than fully detail the SEGS opti-

mization technique; full proofs and comparative performance

results are available in [1]. Since the canonical genetic

algorithm with fitness proportional selection and the (1+1)

evolutionary strategy are particular cases [1] of the SEGS

technique, these approaches share some biological parallels.

SEGS is linked [1] to a Markov chain Monte Carlo (MCMC)

[11] method with known connections to statistical mechanics;

here, it is indicated that this MCMC method is optimal

with respect to an efficient search criterion. The implication

and chief novel claim of this paper is that evolution is an

optimally efficient search process under certain technical

conditions.

B. Problem Definition

Let X be a search space, the set of genotypes [12]. The

problem of behavior design seeks 1) a probability density

function (referred to as the behavior) φX : X → R
+ that

accomplishes specified objectives, and 2) dynamic transition

laws that cause the variable x to be distributed according to

φX , i.e., to exhibit the behavior specified by φX .

Let z : X → Z be an unknown, computable, and possibly

changing function that we are interested in. Here, Z is a

metric space, the set of phenotypes [12]. Suppose that we are

given an element zdes in the image of z, and we wish to find

x∈X such that z(x) = zdes, or such that ||z(x)−zdes|| is small.

Formally, we want to design a behavior φX that achieves a

known expected value Y , i.e., E φX
[||z(x)− zdes||] = Y, and

we refer to this expectation as goodness. Let y(x) = ||z(x)−
zdes||.

We also desire the behavior φX to be responsive to

perturbations in z, i.e.,
∂φX

∂ z
6= 0.

Let f : Z → R
+. We allow the behavior design method

to employ a real-valued, positive fitness function F : X →
R

+ : x 7→ F(x) = ( f ◦ z)(x) = f (z(x)). The scheme to find

φX should be efficient in that it trades off prior information

about X for search effort savings as quickly as possible.
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C. Related Literature

The SEGS technique arose out of studies of biologically-

inspired self-reproducing systems, a field resulting from the

work of John von Neumann [13]. A comprehensive overview

of self-replication is documented in [14]–[16].

Biological responsiveness was first examined as resilience

in the seminal work [17], and a recent survey of the many

definitions of resilience in the literature is available in [18].

There are numerous instances of autonomous robustness as

well as resilience to small and large environment fluctuations

in complex natural systems. Examples include physiological

regulation in multi-cellular organisms [19], [20]; group regu-

lation in colonies of social insects [21]–[23]; the evolution of

species through adaptation and natural selection [24]–[26];

and the rebounding of complex systems from earthquakes,

tsunamis, hurricanes, asteroid strikes, etc. [27], [28].

Reference [29] on rational behavior, an important SEGS

principle, sought to explain a remarkable property of the

collectives that appeared in nature. These collectives, which

had different fractions of professions (as in beehives for

example), maintained an appropriate fractional distribution

among the various social functions even if one of the castes

was removed. Using fractional interactions, the theory exam-

ines the behavior of a collective and identifies the properties

of systems of many elements. This is still an important topic;

recent articles on the subject now incorporate evolution and

natural selection [30], [31].

D. Paper Outline

The remainder of this paper is as follows. Section II

explains the biological relationships that are embodied in

the theoretical framework of SEGS. Section III describes the

physical and biological processes contained in the theory that

SEGS is based on. Section IV highlights the biology connec-

tions of the SEGS scheme itself. Section V highlights the

physics connections of the MCMC method that is equivalent

to the SEGS scheme. Section VI describes the final result on

evolution that is implied using a SEGS model.

II. THE BIOLOGICAL PARALLELS IN SEGS DEFINITIONS

In behavior design, a cell is any element of the domain of

a reward function, and a resource is any input that facilitates

a transition between cells. Cells may also be referred to as

states or candidate optimizers. A cell utilizes a resource to

reproduce and generate an offspring, i.e., transition to another

cell. Furthermore, it is possible that resources are chosen

probabilistically.

Definition 1: An evolutionary generation system is a

quadruple E = (X ,R,P,G), where

• X is a set of n cells, X = {x1,x2, . . . ,xn};

• R is a set of m resources, R = {r1,r2, . . . ,rm}, that can

be utilized for cell reproduction;

• P : R → (0,1] is a probability mass function on R, given

by P(ri) = Pr[R = ri] = pi,
m

∑
k=1

pk = 1; and

• G : X × R → X is a generation function that maps a

parent cell and a resource into a descendant cell.

Use of the adjective evolutionary here is consistent with biol-

ogy [12], where evolution is defined as the genetic changes

in a biological population that occur every generation due to

genetic changes from parent to descendant.

Let
(

rµ

)

=
(

r1,r2, . . . ,rµ

)

be a sequence of µ resources

from R. SEGS theory defines the notation

G
(

x,
(

rµ

))

:= G(. . .G(G(x,r1),r2) . . . ,rµ) (1)

to denote the cell produced by x using sequence
(

rµ

)

.

Definition 2: The set of cells, X , of the evolutionary

generation system E = (X ,R,P,G) is reachable through G

and R if, for all pairs (x1,x2) ∈ X2, there exists k ∈ N and a

sequence (rk) ∈ R such that x2 = G(x1,(rk)).
In Definition 1, the restriction that the offspring of a cell

be itself a cell implies that the set of cells is closed [32],

since there is no feasible transition to any element outside

X . If the set of cells is also reachable, then X is said to be

irreducible [32].

SEGS theory associates each cell with a non-zero, positive

performance index that is a measure of the fitness of the cell,

F : X → R
+. The notion of fitness facilitates the following

novel mathematical definition of selection.

Definition 3: Given a cell set, X , and a fitness function

F : X →R
+, let Select : X ×X ×N→X be a random function

such that if x1 ∈ X and x2 ∈ X are any two cells, and N ∈ N

is the level of selectivity, then

Select(x1,x2,N) =







x1 with probability
F(x1)N

F(x1)N+F(x2)N ,

x2 with probability
F(x2)N

F(x1)N+F(x2)N .

(2)

Definition 4: A selective evolutionary generation system

is a quintuple

Γ = (X ,R,P,G,F), where

• (X ,R,P,G) is an evolutionary generation system;

• F : X → R
+ is a function that evaluates cell fitness;

• the set of cells, X , is reachable through G and R; and

• the dynamics of the system are given by

X (t +1) = Select(X (t),G(X (t),R(t)),N). (3)

In (3), X (t) denotes the realization of a random cell variable

at time t, R(t) denotes the realization of a random resource

variable at time t, G(X (t),R(t)) denotes the offspring of the

realized random cell utilizing the realized random resource

at time t, and X (0) has a known probability mass function.

Also in (3), the probability of a cell realization at some

future time given the present cell realization is conditionally

independent of the past time history of cell realizations. Thus,

the dynamics of a SEGS form a discrete-time homogeneous

Markov chain [11]. This property is useful for the SEGS

analysis conducted in [1].

The two central tenets of Darwin’s theory of evolution

[12] are embodied in Definition 4.

1) Undirected variation via the generation function.

2) Natural selection via the Select function.

The Select function has a number of interesting properties

[1], including:
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• For all N,

Pr[Select(x1,x2,N) = x1]

Pr[Select(x1,x2,N) = x2]
=

(

F(x1)

F(x2)

)N

. (4)

That is, the ratio of the probabilities of selecting any two

cells is equal to the ratio of their respective fitnesses

raised to the power N. This property is called local

rationality.

The level of selectivity, N, has a biological interpretation

as well. Suppose that the fitness of a cell is measured by the

total number of descendants produced over k generations, k≥
1. This prolificity is typically called future reproductive value

or fecundity [12]. When a colony is initiated by two self-

reproducing progenitors x1 and x2, the ratio of the descendant

population fractions after k generations equals the ratio of the

respective future reproductive values,
(

F(x1)

F(x2)

)

. (5)

After k generations, the ratio of the probability of choosing,

by random sampling, a descendant of x1 to the probability

of choosing a descendant of x2 is equal to the ratio of

the descendant population fractions (5). Correspondingly, the

ratio of the probability of selecting x1 at the initial time to the

probability of selecting x2 at the initial time, (4), is identical

to the ratio of the respective prolificities, (5), with N = 1.

Now consider the following sequence of operations.

1) Initiate a colony with two self-reproducing progenitors

x1 and x2, and let descendants be produced for k

generations.

2) Extract a sample from the resulting population. Use the

sample to initiate a second colony, and let descendants

be produced for k generations.

3) Iterate the sample and colony initiation procedure until

an Nth colony is produced.

Then, the ratio of the probability of selecting a descendant

of x1 to the probability of selecting a descendant of x2 using

this multi-step process becomes

(

F(x1)

F(x2)

)(

F(x1)

F(x2)

)

. . .

(

F(x1)

F(x2)

)

=

(

F(x1)

F(x2)

)N

, (6)

and it is now clear that N represents the number of se-

lections that are made, assuming a k-generation fecundity

interpretation of fitness. A recent, well-publicized, biological

experiment that fits this multi-selection model is [33].

III. THE PHYSICAL AND BIOLOGICAL PARALLELS

UNDERLYING SEGS EFFICIENCY AND RESPONSIVENESS

A. Efficiency

Let (X ,P) be a time-homogeneous, irreducible, ergodic

Markov chain, where X = {x1,x2, . . . ,xn} is the set of states

of a Markov process, P ∈ R
n×n is the matrix of transition

probabilities for these states, and n < ∞ is the number of

states. Assume that the initial probability distribution over

the states is known, i.e., we are given an n-vector p(0)
having elements pi(0) = Pr[X (0) = xi] for all xi ∈ X , where

X (0) denotes the state realization at time 0, and we have
n

∑
i=1

pi(0) = 1. Since we have assumed that the states in X are

ergodic and irreducible, they admit a unique stationary prob-

ability distribution [11], [32]. Let π =
[

π1 π2 . . . πn

]

be

the row vector of these stationary probabilities, satisfying the

constraints πi > 0 ∀i, and
n

∑
i=1

πi = 1. Let F : X → R
+ be a

positive fitness function. Let N ∈ N be a natural number.

Definition 5: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) is said to behave rationally with respect

to fitness F with level N if

πi

π j

=

(

F (xi)

F (x j)

)N

, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (7)

This is a definition of global rationality.

Each stationary probability can also be explicitly charac-

terized to ensure Markov chain rational behavior.

Theorem 1: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) behaves rationally with respect to

fitness F with level N if and only if

πi =
F (xi)

N

n

∑
k=1

F (xk)
N

, 1 ≤ i ≤ n. (8)

Proof: See [1].

Here, we have a more general, probabilistic version of the

optimization of an objective function. A Markov chain that

behaves rationally selects the state of maximum fitness with

the highest stationary probability, and, in the limit as N

approaches ∞, this probability is 1. The problem and solution

then revert to one of standard optimization. Remarkably, ra-

tional behavior in Markov chains is the result of a subsidiary

optimization.

Theorem 2: The stationary distribution π of the time-

homogeneous, irreducible, ergodic Markov chain (X ,P) that

behaves rationally with respect to fitness F with level N

solves the optimization problem

min
π1,...,πn

U(π) = −
n

∑
i=1

ϕi ln(πi), (9)

subject to the constraints
n

∑
i=1

πi = 1, and πi > 0, ∀i, utilizing

the fitness distribution

ϕi =
F (xi)

N

n

∑
k=1

F (xk)
N

, 1 ≤ i ≤ n. (10)

Proof: See [1].

Furthermore, Theorem 2 states that at the optimum, the

stationary distribution agrees with the fitness distribution, i.e.,

π = ϕ .

Using the notion of entropy, we can interpret (9) as follows.

First, we recognize the term − ln(πi) as the information

content of state xi [34]. Hence, the right hand side of (9)

represents the “fitness-expectation of information.” Moreover,

we have the following.

Corollary 1: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) behaves rationally with respect to

fitness F with level N if and only if its stationary probability
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distribution minimizes the fitness-expectation of information.

At the optimum, this fitness-expectation of information is the

entropy of the fitness distribution, i.e.,

U∗ = H(ϕ) = −
n

∑
i=1

ϕi ln(ϕi). (11)

Entropy maximization is important for search: ‘in making

inferences on the basis of partial information, the maximum

entropy probability distribution subject to whatever is known

is the only unbiased assignment we can make; to use any

other would amount to arbitrary assumption of information

which by hypothesis we do not have’ [35]. The relationship

between entropy maximization and optimal search is clarified

in [36]. The optimal search policy for cells with exponential

“sizes” ‘appears very much like an irreversible process in

thermodynamics, in which an initially non-equilibrium state

relaxes in the the equilibrium state of maximum entropy. But

now it is only our state of knowledge that relaxes to the

“equilibrium” condition of maximum uncertainty’ [36].

Applying the results from [36] and [35], an exponential

normalized fitness function relates rational behavior, entropy

and optimal search through the following theorem.

Theorem 3: Let y : X → R be an unknown function for

which an expected value, E [y(x)], is a known number Y . The

normalized fitness

ϕi = αe−βy(xi), 1 ≤ i ≤ n, (12)

and the stationary distribution π of the time-homogeneous,

irreducible, ergodic Markov chain (X ,P) that behaves ra-

tionally with respect to fitness F with level N solves the

optimization problem

max
ϕ∈Dn

min
π∈Dn

U(ϕ,π) = −
n

∑
i=1

ϕi ln(πi), (13)

subject to the constraint

E [y(x)] = Y. (14)

Proof: See [1].

Hence, a scheme with underlying Markov chain dynamics

that behave rationally also maximizes the entropy of the

fitness distribution when the fitness function is exponential.

The implication is that a fitness function like

F(xi) = e−((z(xi)−zdes)
2) (15)

together with a scheme that makes use of rational behavior

(e.g., SEGS, see Section IV) guarantees “good” behaviors

efficiently.

Exponential fitness functions arise in nature if one consid-

ers fecundity as the measure of fitness (recall that population

growth is an exponential function). Other examples include

the beak depth of the Galapagos finches [37] and instances

when directional selection [12] is prevalent.

B. Responsiveness

Responsiveness in Markov chain rational behavior theory

is defined as the sensitivity of the stationary distribution to

changes in fitness.

Definition 6: For any time-homogeneous, irreducible, er-

godic Markov chain (X ,P) with a positive fitness function

for all the states in X , the extrinsic resilience of state xi to

changes in the fitness of state x j, j 6= i, is defined as

ρi j =
∂πi

∂F(x j)
, (16)

and the intrinsic resilience of state xi to changes in its own

fitness is taken to be

ρii =
∂πi

∂F(xi)
. (17)

We say that the Markov chain (X ,P) is resilient if ρi j 6= 0

for all i and j.

The level of selectivity has the following asymptotic effect

on resilience.

Theorem 4: For the time-homogeneous, irreducible, er-

godic Markov chain (X ,P) that behaves rationally with

respect to fitness F with level N,

ρi j

∣

∣

∣N=0
j 6=i

= ρii

∣

∣

∣

N=0
= 0, (18)

and

lim
N→∞

j 6=i

ρi j = lim
N→∞

ρii = 0. (19)

Proof: See [1].

As a result of Theorem 4, we have quantification that stan-

dard optimization (N → ∞) is non-resilient. Moreover, recall

that if we assume a k-generation fecundity interpretation of

fitness as in Section II, then N →∞ also represents an infinite

number of selections made over k generations. There is

much biological evidence to confirm that prolonged selective

breeding yields non-resilient strains [38]–[42].

Resilience is a direct outcome of Markov chain rational

behavior, as stated below.

Theorem 5: The time-homogeneous, irreducible, ergodic

Markov chain (X ,P) is resilient if the chain behaves ratio-

nally.

Proof: See [1].

IV. THE BIOLOGICAL PARALLELS IN THE SEGS SCHEME

Definition 7: Let Γ = (X ,R,P,G,F) be a selective evolu-

tionary generation system. Let xi ∈ X and x j ∈ X be any two

cells, and rk ∈ R be a resource. The descendancy tensor, δ ,

has elements

δi jk =











1 if x j = G(xi,rk),

1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m,

0 otherwise.

(20)

Hence, the descendancy tensor indicates whether it is possi-

ble to produce cell x j in one step from cell xi, using resource

rk. We can use this tensor to create a matrix that represents

the conditional probability of generating x j given that the

progenitor is xi, by utilizing the probability of selecting each

available resource and summing over all m resources.
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Definition 8: For the SEGS Γ = (X ,R,P,G,F), the matrix

of generation probabilities, γ , also called the unselective

matrix of transition probabilities, has elements

γi j = Pr[offspring is x j | progenitor is xi], (21)

=
m

∑
k=1

δi jk pk, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (22)

This matrix is a stochastic matrix.

Recall that a SEGS follows the stochastic Markov process

described by (3). Therefore, we can find a matrix of transition

probabilities to describe the cell-to-cell transitions that occur

as a result of the selection dynamics. For the SEGS Γ =
(X ,R,P,G,F), the matrix of transition probabilities, P, has

elements

Pi j =Pr[X (t +1) = x j | X (t) = xi], (23)

=Pr[Select(xi,x j,N) = x j | X (t) = xi]×

Pr[offspring is x j | progenitor is xi] (24)

=























1

1+

(

F(xi)
F(x j)

)N γi j, ∀ j 6= i,

γii +
n

∑
j=1
j 6=i

1

1+

(

F(x j)

F(xi)

)N γi j, if j = i.
(25)

Note that the matrix of transition probabilities in (25) is also

a stochastic matrix.

In addition to irreducibility, if we assume that the selection

dynamics of the SEGS is ergodic, then a unique stationary

probability distribution over the set of cells exists.

Theorem 6: For the ergodic SEGS Γ = (X ,R,P,G,F),
assume that the matrix of generation probabilities, γ , is sym-

metric. Then the Markov chain representing the stochastic dy-

namics of the ergodic SEGS behaves rationally with fitness F

and level N. That is, the row vector π =
[

π1 π2 . . . πn

]

,

where πi satisfies (8), is a left eigenvector of P, the matrix

of transition probabilities for Γ, with corresponding eigen-

value 1 (i.e., πP = π). Hence, π is the vector of stationary

probabilities for the SEGS.

Proof: See [1].

As a result of Theorem 5, the stochastic dynamics of the

ergodic SEGS with symmetric matrix of generation proba-

bilities, γ , are resilient. Hence, a SEGS is a computationally

inexpensive on-line technique to achieve these characteristics

because only local decisions between two candidate optimiz-

ers are made at any time. The need to evaluate the fitness of

all elements in the domain of the objective function, or even

in a sub-population of candidate optimizers (as in genetic

algorithms or evolutionary strategies), is avoided.

The symmetry condition on the matrix of generation prob-

abilities, γ , implies that there exists equiprobable forward

and reverse transitions between any pair of cells prior to

the selection process. More specifically, symmetry of γ is a

requirement that mutations be reversible. This reversibility

requirement is satisfied in biology, and such mutations are

called true back mutations [43], [44].

Theorem 7: For the ergodic SEGS Γ = (X ,R,P,G,F),
assume that the matrix of generation probabilities, γ , is sym-

metric. Then the Markov chain representing the stochastic

dynamics of the ergodic SEGS is time-reversible, i.e.,

πiPi j = π jPji, ∀i, j. (26)

Proof: See [1].

As a consequence, the Markov chain representing the stochas-

tic dynamics of the SEGS and its time reversed form are

statistically the same.

The SEGS algorithm has many biological parallels. During

asexual reproduction, an additional cell is generated through

a division of genetic material in a process called mitosis

[12]. Each cell’s genetic identity is parameterized by a

sequence of symbols from a four letter alphabet, its genotype,

while the physical realization of a genotype is known as its

phenotype. Although reproduction occurs through operations

on the genotype, it is the functionality of the phenotype that

determines cell fitness [12]. Hence, it is necessary to account

for the genotype-phenotype mapping when evaluating cell

fitness in a SEGS.

V. THE PHYSICS PARALLELS IN THE SEGS MCMC

METHOD

The SEGS algorithm is an example of a Markov chain

Monte Carlo (MCMC) algorithm. MCMC algorithms are use-

ful for simulating large random fields through sampling, and

are frequently employed in statistical mechanics applications

[11]. MCMC algorithms utilize an irreducible, aperiodic,

time-homogeneous Markov chain such that the stationary

distribution, π , is the target distribution. Since convergence to

the target distribution is easier to check for reversible Markov

chains, these Markov chains are the most frequent case of

MCMC algorithms [11].

A generic formulation is specified by the Hastings algo-

rithm; special cases of the Hastings algorithm include the

Metropolis algorithm, which is used in simulated annealing,

and Barker’s algorithm. The latter algorithm is derived from

Barker’s sampler [45], which computes radial distribution

functions for plasmas over a wide range of temperatures and

densities to calculate macroscopic thermodynamic variables.

In [1], it is shown that the SEGS algorithm and Barker’s

algorithm are the same.

However, we arrived at Barker’s algorithm in a non-

traditional manner, i.e., we did not assume time-reversibility

and begin at Hasting’s algorithm. Instead, modeling Nature,

we started with a self-reproducing process and selected

according to local rationality. The aim was to achieve global

rational behavior, thereby resulting in resilience. A required

assumption was equiprobable forward and reverse transitions

prior to selection, a fact borne out in Nature. This assump-

tion resulted in the SEGS algorithm being time-reversible.

Furthermore, efficient searching suggested exponential fit-

ness functions, which are also documented in Nature. The

combination of an exponential fitness function and a SEGS

algorithm is the Barker sampler.

In light of the connection between rational behavior and

statistical mechanics through entropy, it is perhaps unsurpris-

ing that selective evolutionary generation results in Barker’s

version of an MCMC method.
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VI. THE IMPLICATION

Whereas the Metropolis algorithm is optimal with respect

to asymptotic variance in the class of Hastings algorithms

with fixed candidate-generating matrix Q [11], Barker’s

algorithm is optimal with respect to search efficiency under

the technical conditions specified in Theorem 3.

Since the SEGS technique results in Barker’s algorithm,

efficient search is guaranteed under these same technical

conditions. SEGS is a model for evolutionary processes

that achieve responsive behaviors, and the implication is

that evolution is also optimally search efficient when the

technical conditions hold. As documented in this paper,

the technical conditions (exponential fitness functions, true

back mutations, etc.) have been verified in Nature. Even

intermediate results of this model (rational behavior in col-

lectives, repeated selections corresponding to the level of

selectivity, losses in resilience due to prolonged selection)

are corroborated by examples in Nature.

Lastly, the fact that Nature utilizes sexual reproduction

pairs does not invalidate the above SEGS model and claim.

This is because half of the reproductive pairing can be

viewed as a cell in the model, and the other half can be

viewed as a resource; thus, the set of cells and resources

in the SEGS model have a non-empty intersection. Further,

the protestation that more than one resource is required for

reproduction can also be included in the model without

significant changes; each resource can itself be considered

a set containing the requisite water, nutrients, etc. required

by a cell for reproduction.
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